Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.099
Filter
1.
J Neurosci Res ; 102(6): e25358, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38859672

ABSTRACT

Neuroinflammation caused by excessive microglial activation plays a key role in the pathogenesis of ischemic stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulatory technique that has recently been reported to regulate microglial functions and exert anti-inflammatory effects. The intermittent burst stimulation (iTBS) regimen in rTMS improves neuronal excitability. However, whether iTBS exerts its anti-inflammatory effects by stimulating neurons and thereby modulating microglial polarization remains unclear. Motor function was assessed after 1 week of rTMS (iTBS regimen) treatment in adult male mice with occlusion/reperfusion of the middle cerebral artery (MCAO/r) injury. We also investigated the molecular biological alterations associated with microglial polarization using a cell proliferation assay, multiplex cytokine bioassays, and immunofluorescence staining. iTBS regimen can improve balance and motor coordination function, increase spontaneous movement, and improve walking function in mice with early cerebral ischemia injury. Expression levels of IL-1ß, TNF-α, and IL-10 increased significantly in mice with MCAO injury. Especially, rTMS significantly increased the number of proliferating cells in the infarcted cortex. The fluorescence intensity of MAP2 in the peri-infarct area of MCAO injured mice was low, but the signal was broader. Compared with MCAO group, the fluorescence intensity of MAP2 in rTMS group was significantly increased. rTMS inhibited pro-inflammatory M1 activation (Iba1+/CD86+) and improved anti-inflammatory M2 activation (Iba1+/CD206+) in the peri-infarct zone, thus significantly changing the phenotypic ratio M1/M2. rTMS improves motor dysfunction and neuroinflammation after cerebral I/R injury in mice by regulating microglial polarization.


Subject(s)
Ischemic Stroke , Microglia , Transcranial Magnetic Stimulation , Animals , Male , Transcranial Magnetic Stimulation/methods , Ischemic Stroke/therapy , Ischemic Stroke/physiopathology , Mice , Microglia/metabolism , Mice, Inbred C57BL , Infarction, Middle Cerebral Artery/therapy , Motor Activity/physiology , Neuronal Plasticity/physiology
2.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2316-2325, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812132

ABSTRACT

This study aimed to investigate the intervention effect of tetramethylpyrazine(TMP) combined with transplantation of neural stem cells(NSCs) on middle cerebral artery occlusion(MCAO) rat model and to explore the mechanism of TMP combined with NSCs transplantation on ischemic stroke based on the regulation of stem cell biological behavior. MCAO rats were randomly divided into a model group, a TMP group, an NSCs transplantation group, and a TMP combined with NSCs transplantation group according to neurological function scores. A sham group was set up at the same time. The neurological function score was used to evaluate the improvement of neurological function in MCAO rats after TMP combined with NSCs transplantation. The proliferation, migration, and differentiation of NSCs were evaluated by BrdU, BrdU/DCX, BrdU/NeuN, and BrdU/GFAP immunofluorescence labeling. The protein expression of stromal cell-derived factor 1(SDF-1), C-X-C motif chemokine receptor 4(CXCR4), as well as oxidative stress pathway proteins nuclear factor erythroid 2-related factor 2(Nrf2), Kelch-like ECH-associated protein 1(KEAP1), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1) was detected by Western blot to study the migration mechanism of TMP combined with NSCs. The results showed that TMP combined with NSCs transplantation significantly improved the neurological function score in MCAO rats. Immunofluorescence staining showed a significant increase in the number of BrdU~+, BrdU~+/DCX~+, BrdU~+/NeuN~+, and BrdU~+/GFAP~+ cells in the TMP, NSCs transplantation, and combined treatment groups, with the combined treatment group showing the most significant increase. Further Western blot analysis revealed significantly elevated expression of CXCR4 protein in the TMP, NSCs transplantation, and combined treatment groups, along with up-regulated protein expression of Nrf2, HO-1, and NQO1, and decreased KEAP1 protein expression. This study showed that both TMP and NSCs transplantation can promote the recovery of neurological function by promoting the proliferation, migration, and differentiation of NSCs, and the effect of TMP combined with NSCs transplantation is superior. The mechanism of action may be related to the activation of the Nrf2/HO-1/CXCR4 pathway.


Subject(s)
Brain Ischemia , Doublecortin Protein , NF-E2-Related Factor 2 , Neural Stem Cells , Pyrazines , Rats, Sprague-Dawley , Receptors, CXCR4 , Animals , Pyrazines/pharmacology , Neural Stem Cells/drug effects , Neural Stem Cells/transplantation , Neural Stem Cells/metabolism , Rats , Male , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Brain Ischemia/therapy , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Stem Cell Transplantation/methods , Cell Proliferation/drug effects , Cell Movement/drug effects , Humans , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Infarction, Middle Cerebral Artery/therapy , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics
3.
Zhen Ci Yan Jiu ; 49(5): 463-471, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764117

ABSTRACT

OBJECTIVES: To observe the effect of electro-scalp acupuncture (ESA) on the expression of cytochrome P450a1/b1 (CYP27a1/b1), cytochrome P45024a (CYP24a), signal transducer and activator of transcription (STAT)4, STAT6, tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-4 in ischemic cerebral cortex of rats with acute ischemic stroke, so as to explore its mechanism in alleviating inflammatory reaction of ischemic stroke. METHODS: Sixty SD rats were randomly divided into sham-operation, model, vitamin D3 and ESA groups, with 15 rats in each group. The middle cerebral artery occlusion rat model was established with thread ligation according to Zea-Longa's method. Rats in the vitamin D3 group were given 1, 25-VitD3 solution (3 ng·100 g-1·d-1) by gavage, once daily for 7 days. Rats in the ESA group were treated at bilateral anterior parietotemporal slash (MS6) with ESA (2 Hz/100 Hz, 1 mA), 30 min a day for 7 days. Before and after interventions, the neurological deficit score and neurobehavioral score were evaluated. TTC staining was used to detect the volume of cerebral infarction in rats. The positive expressions of CYP24a, CYP27a1 and CYP27b1 in the cerebral cortex of ischemic area were detected by immunofluorescence. The mRNA expressions of STAT4 and STAT6 in the cerebral cortex of ischemic area were detected by quantitative real-time PCR. The protein expression levels of TNF-α, IL-1ß and IL-4 in the cerebral cortex of ischemic area were detected by Western blot. RESULTS: Compared with the sham-operation group, the neurological deficit score, neurobehavioral score, the percentage of cerebral infarction volume, the positive expression level of CYP24a and mRNA expression level of STAT4, protein expression levels of TNF-α and IL-1ß in cerebral cortex were increased (P<0.01), while the positive expression levels of CYP27a1/b1 and STAT6 mRNA, protein expression level of IL-4 were decreased (P<0.01) in the model group. After the treatment and compared with the model group, the neurological deficit score, neurobehavioral score, the percentage of cerebral infarction volume, the positive expression level of CYP24a and mRNA expression level of STAT4, protein expression levels of TNF-α and IL-1ß in cerebral cortex were decreased (P<0.01), while the positive expression levels of CYP27a1/b1 and STAT6 mRNA expression level, protein expression level of IL-4 were increased (P<0.01) in the ESA and vitamin D3 groups. CONCLUSIONS: ESA can alleviate the inflammatory response in ischemic stroke, which maybe related to its function in regulating the balance between CYP27a1/b1 and CYP24a, converting vitamin D into active vitamin D3, inhibiting vitamin D3 degradation, and regulating Th1/Th2 balance.


Subject(s)
Infarction, Middle Cerebral Artery , Vitamin D3 24-Hydroxylase , Animals , Humans , Male , Rats , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Acupuncture Points , Brain Ischemia/therapy , Brain Ischemia/metabolism , Brain Ischemia/genetics , Cerebral Cortex/metabolism , Cholestanetriol 26-Monooxygenase/genetics , Cholestanetriol 26-Monooxygenase/metabolism , Cytokines/metabolism , Cytokines/genetics , Electroacupuncture , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism
4.
Neuroreport ; 35(10): 648-656, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38813901

ABSTRACT

Mitochondria play a crucial role in maintaining cellular energy supply and serve as a source of energy for repairing nerve damage following a stroke. Given that exercise has the potential to enhance energy metabolism, investigating the impact of exercise on mitochondrial function provides a plausible mechanism for stroke treatment. In our study, we established the middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats and implemented early exercise intervention. Neurological severity scores, beam-walking test score, and weight were used to evaluate neurological function. The volume of cerebral infarction was measured by MRI. Nerve cell apoptosis was detected by TUNEL staining. Mitochondrial morphology and structure were detected by mitochondrial electron microscopy. Mitochondrial function was assessed using membrane potential and ATP measurements. Western blotting was used to detect the protein expression of AMPK/PGC-1α/GLUT4. Through the above experiments, we found that early exercise improved neurological function in rats after MCAO, reduced cerebral infarction volume and neuronal apoptosis, promoted the recovery of mitochondrial morphology and function. We further examined the protein expression of AMPK/PGC-1α/GLUT4 signaling pathway and confirmed that early exercise was able to increase its expression. Therefore, we suggest that early exercise initiated the AMPK/PGC-1α/GLUT4 signaling pathway, restoring mitochondrial function and augmenting energy supply. This, in turn, effectively improved both nerve and body function in rats following ischemic stroke.


Subject(s)
AMP-Activated Protein Kinases , Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Rats, Sprague-Dawley , Signal Transduction , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/physiology , Male , AMP-Activated Protein Kinases/metabolism , Mitochondria/metabolism , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/therapy , Brain Ischemia/metabolism , Rats , Disease Models, Animal , Apoptosis/physiology
5.
Brain Behav ; 14(5): e3504, 2024 May.
Article in English | MEDLINE | ID: mdl-38698583

ABSTRACT

BACKGROUND: Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear. An evaluation of EA's effects on global and nodal topological properties in rats with ischemia reperfusion was conducted in this study. METHODS AND RESULTS: There were three groups of adult male Sprague-Dawley rats: sham-operated group (sham group), middle cerebral artery occlusion/reperfusion (MCAO/R) group, and MCAO/R plus EA (MCAO/R + EA) group. The differences in global and nodal topological properties, including shortest path length, global efficiency, local efficiency, small-worldness index, betweenness centrality (BC), and degree centrality (DC) were estimated. Graphical network analyses revealed that, as compared with the sham group, the MCAO/R group demonstrated a decrease in BC value in the right ventral hippocampus and increased BC in the right substantia nigra, accompanied by increased DC in the left nucleus accumbens shell (AcbSh). The BC was increased in the right hippocampus ventral and decreased in the right substantia nigra after EA intervention, and MCAO/R + EA resulted in a decreased DC in left AcbSh compared to MCAO/R. CONCLUSION: The results of this study provide a potential basis for EA to promote cognitive and motor function recovery after ischemic stroke.


Subject(s)
Electroacupuncture , Infarction, Middle Cerebral Artery , Magnetic Resonance Imaging , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Electroacupuncture/methods , Male , Rats , Reperfusion Injury/physiopathology , Reperfusion Injury/therapy , Reperfusion Injury/diagnostic imaging , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Brain Ischemia/therapy , Brain Ischemia/physiopathology , Brain Ischemia/diagnostic imaging , Disease Models, Animal , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Ischemic Stroke/therapy , Ischemic Stroke/physiopathology , Ischemic Stroke/diagnostic imaging , Hippocampus/diagnostic imaging , Hippocampus/physiopathology
6.
Brain Res Bull ; 212: 110967, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670470

ABSTRACT

PURPOSE: Post-stroke cognitive impairment (PSCI) is a common complication of ischemic stroke episodes. Memory impairment is an important component of the poststroke cognitive syndrome. Microglial activation plays a critical role in stroke-induced neuroinflammation. Previous studies have reported that electroacupuncture (EA) provides neuroprotective effects by reducing the expression levels of the Purinergic receptor P2X ligand-gated ion channel 7 (P2X7) and inhibiting neuroinflammation in rat model of ischemic stroke. Further understanding of the role and connections between P2X7R and microglial activation in EA-induced anti-inflammatory can reveal novel targets for post-stroke memory impairment treatment. METHODS: A Middle cerebral artery occlusion and reperfusion (MCAO/R) model was established. We used 2'(3')-O-(4-benzoyl) benzoyl ATP (BzATP) as a P2X7R agonist. Following MCAO/R injury, the rats underwent EA therapy at the Baihui (DU20) and Shenting (DU24) acupoints for seven consecutive days. The Barnes maze test was used to evaluate memory function. Following intervention, a T2 weighted images (T2WI) scan was performed to identify changes in cerebral infarction volume in MCAO/R rats. The levels of Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6) and Interleukin-4 (IL-4), Interleukin-10 (IL-10) in the peri-infarct hippocampal were examined by ELISA. Immunofluorescence was employed to evaluate Iba-1+ / P2X7R+, Iba-1+/ iNOS+ and Iba-1+/ Arg-1+ cell populations in the peri-infarct hippocampal DG area. The protein expression of P2X7R, Nuclear factor E2-related factor 2 (Nrf2), Recombinant nlr family, pyrin domain containing protein 3 (NLRP3), Inducible nitric oxide synthase (iNOS) and Arginase-1 (Arg-1) in the peri-infarct hippocampal were investigated using western blot assays. Besides, we also measured the levels of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA). RESULTS: We found EA treatment reduced inflammation and oxidative stress, which is consistent with a decrease in P2X7R expression and improved learning and memory functions. In contrast, we found BzATP enhanced inflammation and oxidative stress. Moreover, our results showed EA treatment up-regulated Nrf2, down-regulated NLRP3, and promoted microglia M2 polarization. Finally, EA-mediated positive effects were reversed by intracerebroventricular injection of BzATP, which is consistent with an increase in P2X7R expression. CONCLUSION: EA ameliorates memory impairment in a rat model of ischemic stroke by reducing inflammation and ROS through the inhibition of P2X7R expression. In turn, this mechanism regulates Nrf2 and NLRP3 expression, suggesting EA is beneficial for ischemic stroke treatment using P2X7R as target.


Subject(s)
Electroacupuncture , Memory Disorders , Microglia , Neuroinflammatory Diseases , Rats, Sprague-Dawley , Receptors, Purinergic P2X7 , Stroke , Animals , Electroacupuncture/methods , Receptors, Purinergic P2X7/metabolism , Microglia/metabolism , Male , Memory Disorders/therapy , Memory Disorders/etiology , Memory Disorders/metabolism , Rats , Stroke/metabolism , Stroke/complications , Stroke/therapy , Neuroinflammatory Diseases/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Disease Models, Animal , Hippocampus/metabolism , Ischemic Stroke/metabolism , Ischemic Stroke/complications
7.
Behav Brain Res ; 467: 115018, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678971

ABSTRACT

Poststroke cognitive impairment (PSCI) is a common complication of stroke, but effective treatments are currently lacking. Repetitive transcranial magnetic stimulation (rTMS) is gradually being applied to treat PSCI, but there is limited evidence of its efficacy. To determine rTMS effects on PSCI, we constructed a transient middle cerebral artery occlusion (tMCAO) rat model. Rats were then grouped by random digital table method: the sham group (n = 10), tMCAO group (n = 10) and rTMS group (n = 10). The shuttle box and Morris water maze (MWM) tests were conducted to detect the cognitive functions of the rats. In addition, synaptic density and synaptic ultrastructural parameters, including the active zone length, synaptic cleft width, and postsynaptic density (PSD) thickness, were quantified and analyzed using an electron microscope. What's more, synaptic associated proteins, including PSD95, SYN, and BDNF were detected by western blot. According to the shuttle box and MWM tests, rTMS improved tMCAO rats' cognitive functions, including spatial learning and memory and decision-making abilities. Electron microscopy revealed that rTMS significantly increased the synaptic density, synaptic active zone length and PSD thickness and decreased the synaptic cleft width. The western blot results showed that the expression of PSD95, SYN, and BDNF was markedly increased after rTMS stimulation. Based on these results, we propose that 20 Hz rTMS can significantly alleviate cognitive impairment after stroke. The underlying mechanism might be modulating the synaptic plasticity and up-regulating the expression PSD95, SYN, and BDNF in the hippocampus.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Disease Models, Animal , Hippocampus , Neuronal Plasticity , Rats, Sprague-Dawley , Transcranial Magnetic Stimulation , Animals , Neuronal Plasticity/physiology , Cognitive Dysfunction/therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Male , Rats , Hippocampus/metabolism , Brain Ischemia/therapy , Brain Ischemia/physiopathology , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/complications , Disks Large Homolog 4 Protein/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Maze Learning/physiology
8.
Int Immunopharmacol ; 132: 112030, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38603861

ABSTRACT

Mast cells (MCs) play a significant role in various diseases, and their activation and degranulation can trigger inflammatory responses and barrier damage. Several studies have indicated that vagus nerve stimulation (VNS) exerts ameliorates neurological injury, and regulates gut MC degranulation. However, there is limited research on the modulatory effect of VNS on MCs in both the gut and brain in brain ischemia-reperfusion (I/R) injury in this process. We aim to develop a minimally invasive, targeted and convenient VNS approach to assess the impact of VNS and to clarify the relationship between VNS and MCs on the prognosis of acute ischemic stroke. We utilized middle cerebral artery occlusion/reperfusion (MCAO/r) to induce brain I/R injury. After the experiment, the motor function and neurofunctional impairments of the rats were detected, and the gastrointestinal function, blood-brain barrier (BBB) and intestinal barrier damage, and systemic and local inflammation were evaluated by Nissl, TTC staining, Evans blue, immunofluorescence staining, transmission electron microscopy, western blot assays, ELISA, and fecal 16S rRNA sequencing methods. Our research confirmed that our minimally invasive VNS method is a novel approach for stimulating the vagus nerve. VNS alleviated motor deficits and gastrointestinal dysfunction while also suppressing intestinal and neuroinflammation. Additionally, VNS ameliorated gut microbiota dysbiosis in rats. Furthermore, our analysis indicated that VNS reduces chymase secretion by modulating MCs degranulation and improves intestinal and BBB damage. Our results showed that VNS treatment can alleviate the damage of BBB and colonic barrier after cerebral I/R by modulating mast cell degranulation, and alleviates systemic inflammatory responses.


Subject(s)
Blood-Brain Barrier , Brain-Gut Axis , Cell Degranulation , Gastrointestinal Microbiome , Ischemic Stroke , Mast Cells , Rats, Sprague-Dawley , Reperfusion Injury , Vagus Nerve Stimulation , Animals , Mast Cells/immunology , Vagus Nerve Stimulation/methods , Male , Rats , Reperfusion Injury/therapy , Reperfusion Injury/immunology , Ischemic Stroke/therapy , Brain-Gut Axis/physiology , Infarction, Middle Cerebral Artery/therapy , Disease Models, Animal , Brain Ischemia/therapy , Brain Ischemia/immunology
9.
Neuroscience ; 545: 185-195, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38522660

ABSTRACT

Post-stroke cognitive impairment is a significant challenge with limited treatment options. Electroacupuncture (EA) has shown promise in improving cognitive function after stroke. Our study explores the underlying mechanism of EA in alleviating cognitive impairment through the inhibition of autophagy. We utilized a rat model of stroke induced by middle cerebral artery occlusion (MCAO) to evaluate the efficacy of EA. Treatment with EA was observed to markedly improve cognitive function and reduce inflammation in MCAO rats, as evidenced by decreased neurological deficit scores, shorter latencies in the water maze test, and diminished infarct volumes. EA also attenuated tissue damage in the hippocampus and lowered the levels of pro-inflammatory cytokines and oxidative stress markers. Although autophagy was upregulated in MCAO rats, EA treatment suppressed this process, indicated by a reduction in autophagosome formation and alteration of autophagy-related protein expression. The protective effects of EA were reversed by the autophagy activator rapamycin. EA treatment elevated the levels of microRNA (miR)-135a-5p expression, and suppression of this elevation attenuated the remedial efficacy of EA in addressing cognitive impairment and inflammation. MiR-135a-5p targeted mammalian target of rapamycin (mTOR)/NOD-like receptor protein 3 (NLRP3) signaling to repress autophagy. EA treatment inhibits autophagy and alleviates cognitive impairment in post-stroke rats. It exerts its beneficial effects by upregulating miR-135a-5p and targeting the mTOR/NLRP3 axis.


Subject(s)
Autophagy , Cognitive Dysfunction , Electroacupuncture , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , TOR Serine-Threonine Kinases , Animals , Male , Rats , Autophagy/physiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Cognitive Dysfunction/metabolism , Disease Models, Animal , Electroacupuncture/methods , Hippocampus/metabolism , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/metabolism , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Signal Transduction/physiology , Stroke/metabolism , Stroke/complications , Stroke/therapy , TOR Serine-Threonine Kinases/metabolism
10.
Chin J Integr Med ; 30(6): 543-550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38532151

ABSTRACT

OBJECTIVE: To observe the angiogenesis effect of electroacupuncture (EA) at Shuigou acupoint (GV 26) in the treatment of cerebral ischemia, and explore the value of miRNA-7 (miR-7) in it. METHODS: First, 48 mice were randomly divided into sham operation, middle cerebral artery occlusion (MCAO) model, and EA treatment groups. Then 9 mice were divided into carrier control group, miR-7 knockout group and miR-7 overexpression group (n=3 each group). Finally, 20 mice were divided into model and carrier control group, model and miR-7 knockout group, EA treatment and carrier control group and EA treatment and miR-7 overexpression group, with 3-6 mice in each group. The MCAO model was established in the MCAO and EA groups. Neurological deficit score and 2,3,5-triphenyltetrazolium chloride (TTC) staining were used to evaluate the severity of cerebral ischemia. Hematoxylin-eosin staining was used to describe basic pathological changes. Immunohistochemistry was used to quantify cerebral microvessel density. Real-time PCR and Western blot were used to detect the expression of miR-7 and its downstream target genes Krüppel-like factor 4/vascular endothelial growth factor (KLF4/VEGF) and angiopoietin-2 (ANG-2) in the ischemic cerebral cortex. RESULTS: After EA, neurological deficit scores and infarction volumes decreased, and the density of cerebral microvessels increased. In the MCAO group, miR-7 expression was higher than that in the sham group (P<0.01). After EA at GV 26, miR-7 expression decreased (P<0.01) and the expression of downstream target genes KLF4/VEGF and ANG-2 increased as compared with the MCAO group (P<0.01). After EA combined with overexpression of miR-7, the expression of downstream target genes KLF4/VEGF and ANG-2 decreased compared to the control EA group (P<0.01). After miR-7 knockdown, the expression of KLF4/VEGF and ANG-2 increased (P<0.05 or P<0.01). CONCLUSIONS: EA could promote angiogenesis in MCAO mice likely by inhibiting the expression of miR-7 and relieving inhibition of downstream target genes KLF4/VEGF and ANG-2.


Subject(s)
Brain Ischemia , Electroacupuncture , Kruppel-Like Factor 4 , MicroRNAs , Neovascularization, Physiologic , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Physiologic/genetics , Male , Brain Ischemia/therapy , Brain Ischemia/genetics , Brain Ischemia/pathology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Mice , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice, Inbred C57BL , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/genetics , Microvessels/pathology , Disease Models, Animal , Angiogenesis
11.
BMJ Open ; 14(2): e080738, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38417967

ABSTRACT

OBJECTIVES: To investigate the impact of the COVID-19 pandemic as well as concomitant COVID-19 itself on stroke care, focusing on middle cerebral artery (MCA) territory infarctions. DESIGN: Registry-based study. SETTING: We used the National Inpatient Sample (NIS) database, which covers a wide range of hospitals within the USA. PARTICIPANTS: The NIS was queried for patients with MCA strokes between 2016 and 2020. In total, 35 231 patients were included. OUTCOME MEASURES: Outcome measures were postprocedural complications, length of stays (LOSs), in-hospital mortality and non-routine discharge. Propensity score matching using all available baseline variables was performed to reduce confounders when comparing patients with and without concomitant COVID-19. RESULTS: Mechanical thrombectomy (MT) was performed in 48.4%, intravenous thrombolysis (IVT) in 38.2%, and both MT and IVT (MT+IVT) in 13.4% of patients. A gradual increase in the use of MT and an opposite decrease in the use of IVT (p<0.001) was detected during the study period. Overall, 25.0% of all patients were admitted for MCA strokes during the pandemic period (2020), of these 209 (2.4%) were concomitantly diagnosed with COVID-19. Patients with MCA strokes and concomitant COVID-19 were significantly younger (64.9 vs 70.0; p<0.001), had significantly worse NIH Stroke Severity scores, and worse outcomes in terms of LOS (12.3 vs 8.2; p<0.001), in-hospital mortality (26.3% vs 9.8%; p<0.001) and non-routine discharge (84.2% vs 76.9%; p=0.013), as compared with those without COVID-19. After matching, only in-hospital mortality rates remained significantly higher in patients with COVID-19 (26.7% vs 8.5%; p<0.001). Additionally, patients with COVID-19 had higher rates of thromboembolic (12.3% vs 7.6%; p=0.035) and respiratory (11.3% vs 6.6%; p=0.029) complications. CONCLUSIONS: Among patients with MCA stroke, those with concomitant COVID-19 were significantly younger and had higher stroke severity scores. They were more likely to experience thromboembolic and respiratory complications and in-hospital mortality compared with matched controls.


Subject(s)
Brain Ischemia , COVID-19 , Stroke , Humans , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/epidemiology , Infarction, Middle Cerebral Artery/therapy , Pandemics , Thrombectomy , Treatment Outcome , COVID-19/complications , COVID-19/therapy , Stroke/complications , Registries , Thrombolytic Therapy , Brain Ischemia/complications , Fibrinolytic Agents/therapeutic use
12.
CNS Neurosci Ther ; 30(2): e14618, 2024 02.
Article in English | MEDLINE | ID: mdl-38334061

ABSTRACT

AIMS: We investigated the potential mechanisms underlying the therapeutic efficacy of electroacupuncture (EA) at the Shuigou (GV26) and Baihui (GV20) acupoints in the treatment of ischemic stroke. METHODS: We assessed the therapeutic effects of EA on MCAO mice through behavioral studies and TTC staining. Various techniques, such as RT-PCR, immunofluorescence, and Western blots, were employed to evaluate the activation and polarization of microglia/macrophages, and changes in the TRPV4 ion channel. We used the TRPV4 antagonist GSK2193874 (GSK219) to verify the involvement of TRPV4 in the therapeutic effects of EA. RESULTS: EA effectively improved neurological impairments and reduced cerebral infarction volume in MCAO mice. It suppressed activated microglia/macrophages and inhibited their polarization toward the M1 phenotype post-MCAO. EA also downregulated the expression of pro-inflammatory cytokines, including Tnf-α, Il-6, Il-1ß, and Ccl-2 mRNA. Furthermore, EA reduced the elevated expression of TRPV4 following MCAO. Treatment with the TRPV4 antagonist GSK219 mirrored the effects of EA in MCAO mice. Notably, the combination of EA and GSK219 did not demonstrate an additive or synergistic effect. CONCLUSION: EA may inhibit neuroinflammation and exhibit a protective effect against ischemic brain injury by suppressing TRPV4 and the subsequent M1 polarization of microglia/macrophages.


Subject(s)
Brain Ischemia , Electroacupuncture , Ischemic Stroke , Reperfusion Injury , Stroke , Animals , Mice , Brain Ischemia/therapy , Brain Ischemia/metabolism , Electroacupuncture/methods , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Neuroinflammatory Diseases , Reperfusion Injury/metabolism , Stroke/therapy , Stroke/metabolism , TRPV Cation Channels/genetics
13.
J Cereb Blood Flow Metab ; 44(7): 1128-1144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38230663

ABSTRACT

The neural cell adhesion molecule (NCAM) promotes neural development and regeneration. Whether NCAM mimetic peptides could synergize with bone marrow mesenchymal stem cells (BMSCs) in stroke treatment deserves investigation. We found that the NCAM mimetic peptide P2 promoted BMSC proliferation, migration, and neurotrophic factor expression, protected neurons from oxygen-glucose deprivation through ERK and PI3K/AKT activation and anti-apoptotic mechanisms in vitro. Following middle cerebral artery occlusion (MCAO) in rats, P2 alone or in combination with BMSCs inhibited neuronal apoptosis and induced the phosphorylation of ERK and AKT. P2 combined with BMSCs enhanced neurotrophic factor expression and BMSC proliferation in the ischemic boundary zone. Moreover, combined P2 and BMSC therapy induced translocation of nuclear factor erythroid 2-related factor, upregulated heme oxygenase-1 expression, reduced infarct volume, and increased functional recovery as compared to monotreatments. Treatment with LY294002 (PI3K inhibitor) and PD98059 (ERK inhibitor) decreased the neuroprotective effects of combined P2 and BMSC therapy in MCAO rats. Collectively, P2 is neuroprotective while P2 and BMSCs work synergistically to improve functional outcomes after ischemic stroke, which may be attributed to mechanisms involving enhanced BMSC proliferation and neurotrophic factor release, anti-apoptosis, and PI3K/AKT and ERK pathways activation.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neural Cell Adhesion Molecules , Rats, Sprague-Dawley , Recovery of Function , Stroke , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Male , Neural Cell Adhesion Molecules/metabolism , Stroke/therapy , Stroke/metabolism , Recovery of Function/drug effects , Recovery of Function/physiology , Mesenchymal Stem Cell Transplantation/methods , Rats , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Cell Proliferation/drug effects , Apoptosis/drug effects , Peptides/pharmacology , Peptides/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cells, Cultured
14.
CNS Neurosci Ther ; 30(2): e14412, 2024 02.
Article in English | MEDLINE | ID: mdl-37592866

ABSTRACT

AIMS: The current evidence demonstrates that mesenchymal stem cells (MSCs) hold therapeutic potential for ischemic stroke. However, it remains unclear how changes in the secretion of MSC cytokines following the overexpression of heme oxygenase-1 (HO-1) impact excessive inflammatory activation in a mouse ischemic stroke model. This study investigated this aspect and provided further insights. METHODS: The middle cerebral artery occlusion (MCAO) mouse model was established, and subsequent injections of MSC, MSCHO-1 , or PBS solutions of equal volume were administered via the mice's tail vein. Histopathological analysis was conducted on Days 3 and 28 post-MCAO to observe morphological changes in brain slices. mRNA expression levels of various factors, including IL-1ß, IL-6, IL-17, TNF-α, IL-1Ra, IL-4, IL-10, TGF-ß, were quantified. The effects of MSCHO-1 treatment on neurons, microglia, and astrocytes were observed using immunofluorescence after transplantation. The polarization direction of macrophages/microglia was also detected using flow cytometry. RESULTS: The results showed that the expression of anti-inflammatory factors in the MSCHO-1 group increased while that of pro-inflammatory factors decreased. Small animal fluorescence studies and immunofluorescence assays showed that the homing function of MSCsHO-1 was unaffected, leading to a substantial accumulation of MSCsHO-1 in the cerebral ischemic region within 24 h. Neurons were less damaged, activation and proliferation of microglia were reduced, and polarization of microglia to the M2 type increased after MSCHO-1 transplantation. Furthermore, after transplantation of MSCsHO-1 , the mortality of mice decreased, and motor function improved significantly. CONCLUSION: The findings indicate that MSCs overexpressing HO-1 exhibited significant therapeutic effects against hyper-inflammatory injury after stroke in mice, ultimately promoting recovery after ischemic stroke.


Subject(s)
Ischemic Stroke , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Stroke , Animals , Humans , Mice , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Inflammation/metabolism , Ischemic Stroke/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Stroke/therapy , Stroke/metabolism
15.
Neurochem Res ; 49(3): 718-731, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38063947

ABSTRACT

Cerebral ischemic stroke is a cerebrovascular disease, which is related to DNA damage. Many researches have shown that Ku70 is a key regulator for DNA damage. Here, we aimed to explore Ku70 roles in cerebral ischemic stroke and its potential molecular mechanism. In our study, neural stem cells (NSCs) were induced by oxygen-glucose deprivation/reoxygenation (OGD/R) for constructing cerebral ischemic stroke cell model. CCK8 assay, Brdu/GFP staining, flow cytometry and TUNEL staining were performed to examine cell proliferation, cell cycle and apoptosis, respectively. Relative mRNA and protein levels were detected by quantitative real-time PCR and western blot analysis, respectively. Ku70 positive cells were examined by immunofluorescence staining. Comet assay was employed to determine DNA damage. Animal experiments were performed to assess the effect of transplanting NSCs and Ku70-overexpressed NSCs on neurological deficits, infarct volume, brain edema and blood‒brain barrier (BBB) integrity in middle cerebral artery occlusion (MCAO) model. Our data found that Ku70 expression was decreased in NSCs after OGD/R. Overexpression of Ku70 reduced DNA damage and apoptosis of OGD/R-induced NSCs. Knockdown of Ku70 promoted the activity of ATM/p53. Moreover, KU60019 (ATM-specific inhibitor) reversed the promoting effects of Ku70 silencing on DNA damage and apoptosis in OGD/R-induced NSCs. In animal experiments, transplantation of NSCs-overexpressed Ku70 enhanced cell survival, improved motor function, reduced infarct volume, relieved brain edema and alleviated BBB dysfunction in MCAO mice models. In conclusion, Ku70 overexpression repressed the DNA damage and apoptosis in OGD/R-induced NSCs by regulating ATM/p53 pathway, and transplantation of NSCs-overexpressed Ku70 played neuroprotective effects in MCAO mice models.


Subject(s)
Brain Edema , Brain Ischemia , Ischemic Stroke , Neural Stem Cells , Reperfusion Injury , Stroke , Mice , Animals , Brain Edema/metabolism , Tumor Suppressor Protein p53/metabolism , Brain Ischemia/metabolism , Stroke/metabolism , Neural Stem Cells/metabolism , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Oxygen/metabolism , Reperfusion Injury/metabolism , Ischemic Stroke/metabolism , Apoptosis
16.
Stem Cells Transl Med ; 13(2): 177-190, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38016184

ABSTRACT

Stroke is a leading cause of death in the US and around the world but with limited treatment options. Survivors often present with long-term cognitive and neurological deficits. Stem cell-based therapy has emerged as a potential treatment for stroke. While stem cell transplantation in stroke has reached clinical trials, mostly safety outcomes have been reported with efficacy readouts warranting more studies. In an effort to optimize the stem cell regimen for stroke, here we conducted vis-a-vis comparison of different routes of transplantation, namely, intracerebral, intraarterial, and intranasal delivery of expanded human CD34 + stem cells, called ProtheraCytes, in the established stroke model of transient middle cerebral artery occlusion (MCAO) using adult Sprague-Dawley rats. After adjusting for the dose and subacute timing of cell delivery, animals were randomly assigned to receive either ProtheraCytes or vehicle. Motor and neurological assays from days 7 to 28 post-stroke revealed significant functional recovery across all 3 delivery routes of ProtheraCytes compared to vehicle-treated stroke rats. Additionally, ProtheraCytes-transplanted stroke rats displayed significantly reduced infarct size and cell loss in the peri-infarct area coupled with enhanced neurogenesis and angiogenesis compared to vehicle-treated stroke rats. These results highlight the safety and efficacy of transplanting ProtheraCytes, including via the minimally invasive intranasal route, in conferring robust and stable behavioral and histological positive outcomes in experimental stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Rats , Humans , Animals , Rats, Sprague-Dawley , Stroke/therapy , Stroke/pathology , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/pathology , Stem Cells/pathology , Neurogenesis , Brain Ischemia/therapy , Disease Models, Animal , Recovery of Function
17.
Acta Neurol Belg ; 124(1): 249-256, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37751116

ABSTRACT

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) has been reported to induce neurogenesis and angiogenesis. As increased neural activity can induce a hemodynamic response, we investigated the effect of rTMS on perfusion in patients with middle cerebral artery steno-occlusion. METHODS: This was a prospective, randomized, open-label, blinded end-point, pilot study. Patients were divided into two groups (rTMS intervention and non-intervention) which were both administered antiplatelet drugs to treat vascular steno-occlusion. In the intervention group, additional rTMS was performed on the area with stenosis and obstruction. Perfusion rates were compared using single-photon emission computed tomography / computed tomography (SPECT/CT). RESULTS: From June 2020 to May 2022, 16 patients were subjected to 1:1 randomization. Using the standardized uptake value ratio (SUVr) to quantify perfusion in the affected brain region, the corresponding SPECT/CT values before and after rTMS were obtained. Imaging analysis was compared between eight and seven patients in the rTMS and control groups, respectively. Based on the comparison between the target and ipsilateral cerebellum SUVmeans, four patients had a ≥ 20% increase in SUVr in the rTMS group and none in the control group. Changes in SUVr were significantly different between the initial and follow-up SPECT/CT in the rTMS group (p = 0.033); no significant difference was observed in the control group (p = 0.481). CONCLUSION: We observed a significant improvement in perfusion in the stimulation group in a perfusion test performed between 6 and 12 months after rTMS stimulation in stroke patients with steno-occlusion of the middle cerebral artery.


Subject(s)
Stroke , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Pilot Projects , Middle Cerebral Artery/diagnostic imaging , Prospective Studies , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/therapy , Cerebrovascular Circulation/physiology
18.
Exp Neurol ; 373: 114658, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38141805

ABSTRACT

BACKGROUND: Silent information regulator 1 (SIRT1) plays a beneficial role in cerebral ischemic injury. Previous reports have demonstrated that transcutaneous electrical acupoint stimulation (TEAS) exerts a beneficial effect on ischemic stroke; however, whether SIRT1 participates in the underlying mechanism for the neuroprotective effects of TEAS against ischemic brain damage has not been confirmed. METHODS: The rat models of middle cerebral artery occlusion/reperfusion (MCAO/R) were utilized in the current experiment. After MCAO/R surgery, rats in TEAS, EC and EX group received TEAS intervention with or without the injection of EX527, the SIRT1 inhibitor. Neurological deficit scores, infarct volume, hematoxylin eosin (HE) staining and apoptotic cell number were measured. The results of RNA sequencing were analyzed to determine the differential expression changes of genes among sham, MCAO and TEAS groups, in order to investigate the possible pathological processes involved in cerebral ischemia and explore the protective mechanisms of TEAS. Moreover, oxidative stress markers including MDA, SOD, GSH and GSH-Px were measured with assay kits. The levels of the proinflammatory cytokines, such as IL-6, IL-1ß and TNF-α, were detected by ELISA assay, and Iba-1 (the microglia marker protein) positive cells was measured by immunofluorescence (IF). Western blot and IF were utilized to examine the levels of key molecules in SIRT1/FOXO3a and SIRT1/BRCC3/NLRP3 signaling pathways. RESULTS: TEAS significantly decreased brain infarcted size and apoptotic neuronal number, and alleviated neurological deficit scores and morphological injury by activating SIRT1. The results of RNA-seq and bioinformatic analysis revealed that oxidative stress and inflammation were the key pathological mechanisms, and TEAS alleviated oxidative injury and inflammatory reactions following ischemic stroke. Then, further investigation indicated that TEAS notably attenuated neuronal apoptosis, neuroinflammation and oxidative stress damage in the hippocampus of rats with MCAO/R surgery. Moreover, TEAS intervention in the MCAO/R model significantly elevated the expressions of SIRT1, FOXO3a, CAT, BRCC3, NLRP3 in the hippocampus. Furthermore, EX527, as the inhibitor of SIRT1, obviously abolished the anti-oxidative stress and anti-neuroinflammatory roles of TEAS, as well as reversed the TEAS-mediated elevation of SIRT1, FOXO3a, CAT and reduction of BRCC3 and NLRP3 mediated by following MCAO/R surgery. CONCLUSIONS: In summary, these findings clearly suggested that TEAS attenuated brain damage by suppressing apoptosis, oxidative stress and neuroinflammation through modulating SIRT1/FOXO3a and SIRT1/BRCC3/NLRP3 signaling pathways following ischemic stroke, which can be a promising treatment for stroke patients.


Subject(s)
Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Animals , Humans , Rats , Acupuncture Points , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/pathology , Inflammation/therapy , Inflammation/pathology , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress , Reperfusion , Reperfusion Injury/pathology , Signal Transduction , Sirtuin 1/metabolism
20.
Neurosci Res ; 203: 42-50, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38154662

ABSTRACT

Numerous evidences showed that human umbilical cord blood (UCB) mononuclear cells were a promising approach for the therapy of ischemic stroke(IS). The effect of stage-specific embryonic antigen 3 (SSEA3)positive subpopulation in UCB was not investigated in IS. In this study, we isolated SSEA3 positive cells from healthy UCB mononuclear cells, which comprised about 7.01% of the total UCB-mononuclear cells. Flow cytometry analysis revealed that SSEA3(+)UCB cells were almost positive for CD44 and CD45, and negative for CD73, CD90 and CD105. The expression of Oct3/4 in SSEA3(+)UCB cells were higher than that in UCB. SSEA3(+)UCB cells sorted by magnetic cell sorting were intravenously injected into the middle cerebral arterial occlusion(MCAO) rat model. Neurological score showed that SSEA3(+)UCB transplantation group exhibited significant improvements in the functional outcome of MCAO rats than UCB transplantation group. Nissl staining and microtubule association protein-2(MAP2) immunofluorescence staining showed that the SSEA3(+)UCB transplantation group decreased neuronal loss. SSEA3(+)UCB transplantation group reduced neuronal apoptosis, inhibited caspase3 expression, and decreased tumor necrosis factor α(TNF-α). These results indicate that SSEA3 positive cells are a novel subpopulation of UCB cells, which exhibit great potential for the treatment of ischemic stroke.


Subject(s)
Disease Models, Animal , Fetal Blood , Ischemic Stroke , Animals , Humans , Ischemic Stroke/therapy , Ischemic Stroke/metabolism , Fetal Blood/cytology , Leukocytes, Mononuclear/transplantation , Leukocytes, Mononuclear/metabolism , Male , Rats, Sprague-Dawley , Rats , Infarction, Middle Cerebral Artery/therapy , Cord Blood Stem Cell Transplantation/methods , Stage-Specific Embryonic Antigens/metabolism , Brain Ischemia/therapy , Apoptosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...