Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.289
Filter
1.
Front Immunol ; 15: 1393851, 2024.
Article in English | MEDLINE | ID: mdl-38919626

ABSTRACT

Tendinitis, characterized by the inflammation of tendons, poses significant challenges in both diagnosis and treatment due to its multifaceted etiology and complex pathophysiology. This study aimed to dissect the molecular mechanisms underlying tendinitis, with a particular focus on inflammasome-related genes and their interactions with the immune system. Through comprehensive gene expression analysis and bioinformatics approaches, we identified distinct expression profiles of inflammasome genes, such as NLRP6, NLRP1, and MEFV, which showed significant correlations with immune checkpoint molecules, indicating a pivotal role in the inflammatory cascade of tendinitis. Additionally, MYD88 and CD36 were found to be closely associated with HLA family molecules, underscoring their involvement in immune response modulation. Contrary to expectations, chemokines exhibited minimal correlation with inflammasome genes, suggesting an unconventional inflammatory pathway in tendinitis. Transcription factors like SP110 and CREB5 emerged as key regulators of inflammasome genes, providing insight into the transcriptional control mechanisms in tendinitis. Furthermore, potential therapeutic targets were identified through the DGidb database, highlighting drugs that could modulate the activity of inflammasome genes, offering new avenues for targeted tendinitis therapy. Our findings elucidate the complex molecular landscape of tendinitis, emphasizing the significant role of inflammasomes and immune interactions, and pave the way for the development of novel diagnostic and therapeutic strategies.


Subject(s)
Inflammasomes , Tendinopathy , Inflammasomes/genetics , Inflammasomes/metabolism , Inflammasomes/immunology , Humans , Tendinopathy/genetics , Tendinopathy/immunology , Computational Biology/methods , Gene Expression Profiling , Pyrin/genetics , NLR Proteins/genetics , Gene Expression Regulation , Transcriptome , Gene Regulatory Networks
2.
J Agric Food Chem ; 72(25): 14165-14176, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38872428

ABSTRACT

Atractylodes macrocephala Koidz, a traditional Chinese medicine, contains atractylenolide I (ATR-I), which has potential anticancer, anti-inflammatory, and immune-modulating properties. This study evaluated the therapeutic potential of ATR-I for indomethacin (IND)-induced gastric mucosal lesions and its underlying mechanisms. Noticeable improvements were observed in the histological morphology and ultrastructures of the rat gastric mucosa after ATR-I treatment. There was improved blood flow, a significant decrease in the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, and IL-18, and a marked increase in prostaglandin E2 (PGE2) expression in ATR-I-treated rats. Furthermore, there was a significant decrease in the mRNA and protein expression levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1), and nuclear factor-κB (NF-κB) in rats treated with ATR-I. The results show that ATR-I inhibits the NLRP3 inflammasome signaling pathway and effectively alleviates local inflammation, thereby improving the therapeutic outcomes against IND-induced gastric ulcers in rats.


Subject(s)
Atractylodes , Gastric Mucosa , Indomethacin , Inflammasomes , Lactones , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Sesquiterpenes , Stomach Ulcer , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Indomethacin/adverse effects , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Rats , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Lactones/pharmacology , Lactones/chemistry , Inflammasomes/metabolism , Inflammasomes/genetics , Inflammasomes/drug effects , Male , Atractylodes/chemistry , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , NF-kappa B/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Caspase 1/genetics , Caspase 1/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Interleukin-18/genetics , Interleukin-18/metabolism
3.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928186

ABSTRACT

The inflammasome regulates the innate inflammatory response and is involved in autoimmune diseases. In this study, we explored the levels of IL-18 and IL-1ß in serum and urine and the influence of various single-nucleotide polymorphisms (SNPs) on kidney lesions at diagnosis in patients with ANCA-associated vasculitis (AAV) and their clinical outcomes. Ninety-two patients with renal AAV were recruited, and blood and urine were collected at diagnosis. Serum and urine cytokine levels were measured by ELISA. DNA was extracted and genotyped using TaqMan assays for SNPs in several inflammasome genes. Lower serum IL-18 (p = 0.049) and the IL-18 rs187238 G-carrier genotype (p = 0.042) were associated with severe fibrosis. The IL-18 rs1946518 TT genotype was associated with an increased risk of relapse (p = 0.05), whereas GG was related to better renal outcomes (p = 0.031). The rs187238 GG genotype was identified as a risk factor for mortality within the first year after AAV diagnosis, independent of the requirement for dialysis or lung involvement (p = 0.013). We suggest that decreased cytokine levels could be a surrogate marker of scarring and chronicity of the renal lesions, together with the rs187238 GG genotype. If our results are validated, the rs1946518 TT genotype predicts the risk of relapse and renal outcomes during follow-up.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Inflammasomes , Interleukin-18 , Interleukin-1beta , Polymorphism, Single Nucleotide , Humans , Interleukin-18/genetics , Interleukin-18/blood , Male , Female , Inflammasomes/genetics , Middle Aged , Interleukin-1beta/genetics , Interleukin-1beta/blood , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/genetics , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/blood , Aged , Kidney/pathology , Kidney/metabolism , Genotype , Adult , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
4.
Int J Med Sci ; 21(8): 1438-1446, 2024.
Article in English | MEDLINE | ID: mdl-38903927

ABSTRACT

Background: Exploring potential biomarkers for predicting clinical outcomes and developing targeted therapies for acute myeloid leukemia (AML) is of utmost importance. This study aimed to investigate the expression pattern of the thioredoxin-interacting protein (TXNIP)/nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) pathway and its role in the prognosis of AML patients. Methods: In this study, we examined the prognostic value of TXNIP/NLRP3 pathway in AML patients using microarray data from Gene Expression Omnibus (GEO) and transcriptome data from the Cancer Genome Atlas (TCGA) to develop a prognostic model and validated the results by quantitative real-time PCR (qRT-PCR) in a validation cohort of 26 AML patients and 18 healthy individuals from Jinan University (JNU) database. Results: Analysis of the GSE13159 database revealed that TXNIP, interleukin 1 beta (IL1B) within the TXNIP/NLRP3 pathway were significantly upregulated and caspase1 (CASP1) was downregulated in AML patients (TXNIP, P = 0.031; IL1B, P = 0.042; CASP1, P = 0.038). Compared to high NLRP3 expression, AML patients with low NLRP3 expression had a longer overall survival (OS) in the GSE12417 dataset (P = 0.004). Moreover, both the training and validation results indicated that lower TXNIP, NLRP3, and IL1B expression were associated with favorable prognosis (GSE12417, P = 0.009; TCGA, P = 0.050; JNU, P = 0.026). According to the receiver operating characteristic curve analysis, this model demonstrated a sensitivity of 84% for predicting three-year survival. These data might provide novel predictors for AML outcome and direction for further investigation of the possibility of using TXNIP/NLRP3/IL1B genes in novel targeted therapies for AML.


Subject(s)
Biomarkers, Tumor , Carrier Proteins , Inflammasomes , Interleukin-1beta , Leukemia, Myeloid, Acute , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Female , Male , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Inflammasomes/metabolism , Inflammasomes/genetics , Signal Transduction/genetics , Adult , Aged , Gene Expression Regulation, Leukemic , Thioredoxins/genetics , Thioredoxins/metabolism
5.
Arch Virol ; 169(7): 148, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888759

ABSTRACT

The inflammasome is a multimeric protein complex that plays a vital role in the defence against pathogens and is therefore considered an essential component of the innate immune system. In this study, the expression patterns of inflammasome genes (NLRC3, ASC, and CAS-1), antiviral genes (IFNγ and MX), and immune genes (IL-1ß and IL-18) were analysed in Oreochromis niloticus liver (ONIL) cells following stimulation with the bacterial ligands peptidoglycan (PGN) and lipopolysaccharide (LPS) and infection with TiLV. The cells were stimulated with PGN and LPS at concentrations of 10, 25, and 50 µg/ml. For viral infection, 106 TCID50 of TiLV per ml was used. After LPS stimulation, all seven genes were found to be expressed at specific time points at each of the three doses tested. However, at even higher doses of LPS, NLRC3 levels decreased. Following TiLV infection, all of the genes showed significant upregulation, especially at early time points. However, the gene expression pattern was found to be unique in PGN-treated cells. For instance, NLRC3 and ASC did not show any response to PGN stimulation, and the expression of IFNγ was downregulated at 25 and 50 µg of PGN per ml. CAS-1 and IL-18 expression was downregulated at 25 µg of PGN per ml. At a higher dose (50 µg/ml), IL-1ß showed downregulation. Overall, our results indicate that these genes are involved in the immune response to viral and bacterial infection and that the degree of response is ligand- and dose-dependent.


Subject(s)
Cichlids , Fish Diseases , Inflammasomes , Animals , Cichlids/immunology , Cichlids/genetics , Inflammasomes/genetics , Inflammasomes/immunology , Inflammasomes/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/microbiology , Fish Diseases/genetics , Cell Line , Peptidoglycan/pharmacology , Liver/virology , Liver/immunology , Lipopolysaccharides/pharmacology , Immunity, Innate , Fish Proteins/genetics , Interleukin-18/genetics , Interleukin-18/metabolism , Ligands , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , DNA Virus Infections/virology , DNA Virus Infections/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology
6.
J Cell Mol Med ; 28(9): e18286, 2024 May.
Article in English | MEDLINE | ID: mdl-38742843

ABSTRACT

Osteosarcoma, the primary bone cancer in adolescents and young adults, is notorious for its aggressive growth and metastatic potential. Our study delved into the prognostic impact of inflammasome-related gene signatures in osteosarcoma patients, employing comprehensive genetic profiling to uncover signatures linked with patient outcomes. We identified three patient subgroups through consensus clustering, with one showing worse survival rates correlated with high FGFR3 and RARB expressions. Immune profiling revealed significant immune cell infiltration differences among these subgroups, affecting survival. Utilising advanced machine learning, including StepCox and gradient boosting machine algorithms, we developed a prognostic model with a notable c-index of 0.706, highlighting CD36 and MYD88 as key genes. Higher inflammasome risk scores from our model were associated with poorer survival, corroborated across datasets. In vitro experiments validated CD36 and MYD88's roles in promoting osteosarcoma cell proliferation, invasion and migration, emphasising their therapeutic potential. This research offers new insights into inflammasomes' role in osteosarcoma, introducing novel biomarkers for risk assessment and potential therapeutic targets. Our findings suggest a pathway towards personalised treatment strategies, potentially improving patient outcomes in osteosarcoma.


Subject(s)
Biomarkers, Tumor , Bone Neoplasms , Gene Expression Regulation, Neoplastic , Inflammasomes , Osteosarcoma , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/immunology , Osteosarcoma/mortality , Inflammasomes/metabolism , Inflammasomes/genetics , Biomarkers, Tumor/genetics , Prognosis , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/mortality , Bone Neoplasms/immunology , Bone Neoplasms/diagnosis , Gene Expression Profiling , Female , Male , Transcriptome/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Adolescent , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism
7.
Vet Microbiol ; 294: 110127, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797057

ABSTRACT

Glaesserella parasuis (G. parasuis) is a common Gram-negative commensal bacterium in the upper respiratory tract of swine that can cause Glässer's disease under stress conditions. Pyroptosis is an important immune defence mechanism of the body that plays a crucial role in clearing pathogen infections and endogenous danger signals. This study aimed to investigate the mechanism of G. parasuis serotype 5 SQ (GPS5-SQ)-induced pyroptosis in swine tracheal epithelial cells (STECs). The results of the present study demonstrated that GPS5-SQ infection induces pyroptosis in STECs by enhancing the protein level of the N-terminal domain of gasdermin D (GSDMD-N) and activating the NOD-like receptor protein 3 (NLRP3) inflammasome. Furthermore, the levels of pyroptosis-related proteins, including GSDMD-N and cleaved caspase-1 were considerably decreased in STECs after the knockdown of retinoic acid inducible gene-I (RIG-I) and mitochondrial antiviral signaling protein (MAVS). These results indicated that GPS5-SQ might trigger pyroptosis through the activation of the RIG-I/MAVS/NLRP3 signaling pathway. More importantly, the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) repressed the activation of the RIG-I/MAVS/NLRP3 signaling and rescued the decrease in Occludin and zonula occludens-1 (ZO-1) after GPS5-SQ infection. Overall, our findings show that GPS5-SQ can activate RIG-I/MAVS/NLRP3 signaling and destroy the integrity of the epithelial barrier by inducing ROS generation in STECs, shedding new light on G. parasuis pathogenesis.


Subject(s)
Epithelial Cells , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Signal Transduction , Animals , Epithelial Cells/microbiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Swine , Haemophilus parasuis/pathogenicity , Haemophilus parasuis/genetics , Trachea/microbiology , Trachea/cytology , Swine Diseases/microbiology , Serogroup , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Inflammasomes/metabolism , Inflammasomes/genetics , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Haemophilus Infections/veterinary , Haemophilus Infections/microbiology
8.
Am J Physiol Renal Physiol ; 326(6): F988-F1003, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38634138

ABSTRACT

Acid sphingomyelinase (ASM) has been reported to increase tissue ceramide and thereby mediate hyperhomocysteinemia (hHcy)-induced glomerular nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation, inflammation, and sclerosis. In the present study, we tested whether somatic podocyte-specific silencing of Smpd1 gene (mouse ASM gene code) attenuates hHcy-induced NLRP3 inflammasome activation and associated extracellular vesicle (EV) release in podocytes and thereby suppresses glomerular inflammatory response and injury. In vivo, somatic podocyte-specific Smpd1 gene silencing almost blocked hHcy-induced glomerular NLRP3 inflammasome activation in Podocre (podocyte-specific expression of cre recombinase) mice compared with control littermates. By nanoparticle tracking analysis (NTA), floxed Smpd1 shRNA transfection was found to abrogate hHcy-induced elevation of urinary EV excretion in Podocre mice. In addition, Smpd1 gene silencing in podocytes prevented hHcy-induced immune cell infiltration into glomeruli, proteinuria, and glomerular sclerosis in Podocre mice. Such protective effects of podocyte-specific Smpd1 gene silencing were mimicked by global knockout of Smpd1 gene in Smpd1-/- mice. On the contrary, podocyte-specific Smpd1 gene overexpression exaggerated hHcy-induced glomerular pathological changes in Smpd1trg/Podocre (podocyte-specific Smpd1 gene overexpression) mice, which were significantly attenuated by transfection of floxed Smpd1 shRNA. In cell studies, we also confirmed that Smpd1 gene knockout or silencing prevented homocysteine (Hcy)-induced elevation of EV release in the primary cultures of podocyte isolated from Smpd1-/- mice or podocytes of Podocre mice transfected with floxed Smpd1 shRNA compared with WT/WT podocytes. Smpd1 gene overexpression amplified Hcy-induced EV secretion from podocytes of Smpd1trg/Podocre mice, which was remarkably attenuated by transfection of floxed Smpd1 shRNA. Mechanistically, Hcy-induced elevation of EV release from podocytes was blocked by ASM inhibitor (amitriptyline, AMI), but not by NLRP3 inflammasome inhibitors (MCC950 and glycyrrhizin, GLY). Super-resolution microscopy also showed that ASM inhibitor, but not NLRP3 inflammasome inhibitors, prevented the inhibition of lysosome-multivesicular body interaction by Hcy in podocytes. Moreover, we found that podocyte-derived inflammatory EVs (released from podocytes treated with Hcy) induced podocyte injury, which was exaggerated by T cell coculture. Interstitial infusion of inflammatory EVs into renal cortex induced glomerular injury and immune cell infiltration. In conclusion, our findings suggest that ASM in podocytes plays a crucial role in the control of NLRP3 inflammasome activation and inflammatory EV release during hHcy and that the development of podocyte-specific ASM inhibition or Smpd1 gene silencing may be a novel therapeutic strategy for treatment of hHcy-induced glomerular disease with minimized side effect.NEW & NOTEWORTHY In the present study, we tested whether podocyte-specific silencing of Smpd1 gene attenuates hyperhomocysteinemia (hHcy)-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and associated inflammatory extracellular vesicle (EV) release in podocytes and thereby suppresses glomerular inflammatory response and injury. Our findings suggest that acid sphingomyelinase (ASM) in podocytes plays a crucial role in the control of NLRP3 inflammasome activation and inflammatory EV release during hHcy. Based on our findings, it is anticipated that the development of podocyte-specific ASM inhibition or Smpd1 gene silencing may be a novel therapeutic strategy for treatment of hHcy-induced glomerular disease with minimized side effects.


Subject(s)
Hyperhomocysteinemia , Inflammasomes , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Podocytes , Sphingomyelin Phosphodiesterase , Animals , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Podocytes/metabolism , Podocytes/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Hyperhomocysteinemia/metabolism , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/genetics , Inflammasomes/metabolism , Inflammasomes/genetics , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism , Glomerulonephritis/pathology , Glomerulonephritis/metabolism , Glomerulonephritis/genetics , Gene Silencing , Mice , Mice, Inbred C57BL , Extracellular Vesicles/metabolism , Male , Disease Models, Animal
9.
Free Radic Biol Med ; 220: 15-27, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38679301

ABSTRACT

BACKGROUND: Chronic alcohol exposure induces cognitive impairment and NLRP3 inflammasome activation in the mPFC (medial prefrontal cortex). Mitophagy plays a crucial role in neuroinflammation, and dysregulated mitophagy is associated with behavioral deficits. However, the potential relationships among mitophagy, inflammation, and cognitive impairment in the context of alcohol exposure have not yet been studied. NRF2 promotes the process of mitophagy, while alcohol inhibits NRF2 expression. Whether NRF2 activation can ameliorate defective mitophagy and neuroinflammation in the presence of alcohol remains unknown. METHODS: BV2 cells and primary microglia were treated with alcohol. C57BL/6J mice were repeatedly administered alcohol intragastrically. BNIP3-siRNA, PINK1-siRNA, CCCP and bafilomycin A1 were used to regulate mitophagy in BV2 cells. RTA-408 acted as an NRF2 activator. Mitochondrial dysfunction, mitophagy and NLRP3 inflammasome activation were assayed. Behavioral tests were used to assess cognition. RESULTS: Chronic alcohol exposure impaired the initiation of both receptor-mediated mitophagy and PINK1-mediated mitophagy in the mPFC and in vitro microglial cells. Silencing BNIP3 or PINK1 induced mitochondrial dysfunction and aggravated alcohol-induced NLRP3 inflammasome activation in BV2 cells. In addition, alcohol exposure inhibited the NRF2 expression both in vivo and in vitro. NRF2 activation by RTA-408 ameliorated NLRP3 inflammasome activation and mitophagy downregulation in microglia, ultimately improving cognitive impairment in the presence of alcohol. CONCLUSION: Chronic alcohol exposure-induced impaired mitophagy initiation contributed to NLRP3 inflammasome activation and cognitive deficits, which could be alleviated by NRF2 activation via RTA-408.


Subject(s)
Cognitive Dysfunction , Inflammasomes , Membrane Proteins , Microglia , Mitophagy , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mitophagy/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Inflammasomes/metabolism , Inflammasomes/genetics , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/pathology , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Protein Kinases/metabolism , Protein Kinases/genetics , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prefrontal Cortex/drug effects , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Ethanol/toxicity , Ethanol/adverse effects
10.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612539

ABSTRACT

The most critical forms of coronavirus disease 2019 (COVID-19) are associated with excessive activation of the inflammasome. Despite the COVID-19 impact on public health, we still do not fully understand the mechanisms by which the inflammatory response influences disease prognosis. Accordingly, we aimed to elucidate the role of polymorphisms in the key genes of the formation and signaling of the inflammasome as biomarkers of COVID-19 severity. For this purpose, a large and well-defined cohort of 377 COVID-19 patients with mild (n = 72), moderate (n = 84), severe (n = 100), and critical (n = 121) infections were included. A total of 24 polymorphisms located in inflammasome-related genes (NLRP3, NLRC4, NLRP1, CARD8, CASP1, IL1B, IL18, NFKB1, ATG16L1, and MIF) were genotyped in all of the patients and in the 192 healthy controls (HCs) (who were without COVID-19 at the time of and before the study) by RT-qPCR. Our results showed that patients with mild, moderate, severe, and critical COVID-19 presented similar allelic and genotypic distribution in all the variants studied. No statistically significant differences in the haplotypic distribution of NLRP3, NLRC4, NLRP1, CARD8, CASP1, IL1B, and ATG16L1 were observed between COVID-19 patients, who were stratified by disease severity. Each stratified group of patients presented a similar genetic distribution to the HCs. In conclusion, our results suggest that the inflammasome polymorphisms studied are not associated with the worsening of COVID-19.


Subject(s)
COVID-19 , Inflammasomes , Humans , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , COVID-19/genetics , Biomarkers , Caspase 1/genetics , Polymorphism, Genetic , Neoplasm Proteins , CARD Signaling Adaptor Proteins/genetics
11.
Gene ; 918: 148459, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38608794

ABSTRACT

BACKGROUND: Genetic diversity among species influences the disease severity outcomes linked to air pollution. However, the mechanism responsible for this variability remain elusive and needs further investigation. OBJECTIVE: To investigate the genetic factors and pathways linked with differential susceptibility in mouse strains associated with diesel exhaust exposure. METHODS: C57BL/6 and Balb/c mice were exposed to diesel exhaust (DE) for 5 days/week for 30 min/day for 8 weeks. Body weight of mice was recorded every week and airway hyperresponsiveness towards DE exposure was recorded after 24 h of last exposure. Mice were euthanised to collect BALF, blood, lung tissues for immunobiochemical assays, structural integrity and genetic studies. RESULTS: C57BL/6 mice showed significantly decreased body weight in comparison to Balb/c mice (p < 0.05). Both mouse strains showed lung resistance and damage to elastance upon DE exposure compared to respective controls (p < 0.05) with more pronounced effects in C57BL/6 mice. Lung histology showed increase in bronchiolar infiltration and damage to the wall in C57BL/6 mice (p < 0.05). DE exposure upregulated pro-inflammatory and Th2 cytokine levels in C57BL/6 in comparison to Balb/c mice. C57BL/6 mice showed increase in Caspase-1 and ASC expression confirming activation of downstream pathway. This showed significant activation of inflammasome pathway in C57BL/6 mice with ∼2-fold increase in NLRP3 and elevated IL-1ß expression. Gasdermin-D levels were increased in C57BL/6 mice demonstrating induction of pyroptosis that corroborated with IL-1ß secretion (p < 0.05). Genetic variability among both species was confirmed with sanger's sequencing suggesting presence of SNPs in 3'UTRs of IL-1ß gene influencing expression between mouse strains. CONCLUSIONS: C57BL/6 mice exhibited increased susceptibility to diesel exhaust in contrast to Balb/c mice via activation of NLRP3-related pyroptosis. Differential susceptibility between strains may be attributed via SNPs in the 3'UTRs of the IL-1ß gene.


Subject(s)
Mice, Inbred BALB C , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pneumonia , Pyroptosis , Vehicle Emissions , Animals , Vehicle Emissions/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Pneumonia/genetics , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/chemically induced , Lung/pathology , Lung/metabolism , Lung/drug effects , Disease Susceptibility , Inflammasomes/metabolism , Inflammasomes/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
12.
J Agric Food Chem ; 72(15): 8460-8475, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38564364

ABSTRACT

Liver injury and progressive liver failure are severe life-threatening complications in sepsis, further worsening the disease and leading to death. Macrophages and their mediated inflammatory cytokine storm are critical regulators in the occurrence and progression of liver injury in sepsis, for which effective treatments are still lacking. l-Ascorbic acid 6-palmitate (L-AP), a food additive, can inhibit neuroinflammation by modulating the phenotype of the microglia, but its pharmacological action in septic liver damage has not been fully explored. We aimed to investigate L-AP's antisepticemia action and the possible pharmacological mechanisms in attenuating septic liver damage by modulating macrophage function. We observed that L-AP treatment significantly increased survival in cecal ligation and puncture-induced WT mice and attenuated hepatic inflammatory injury, including the histopathology of the liver tissues, hepatocyte apoptosis, and the liver enzyme levels in plasma, which were comparable to NLRP3-deficiency in septic mice. L-AP supplementation significantly attenuated the excessive inflammatory response in hepatic tissues of septic mice in vivo and in cultured macrophages challenged by both LPS and ATP in vitro, by reducing the levels of NLRP3, pro-IL-1ß, and pro-IL-18 mRNA expression, as well as the levels of proteins for p-I-κB-α, p-NF-κB-p65, NLRP3, cleaved-caspase-1, IL-1ß, and IL-18. Additionally, it impaired the inflammasome ASC spot activation and reduced the inflammatory factor contents, including IL-1ß and IL-18 in plasma/cultured superannuants. It also prevented the infiltration/migration of macrophages and their M1-like inflammatory polarization while improving their M2-like polarization. Overall, our findings revealed that L-AP protected against sepsis by reducing macrophage activation and inflammatory cytokine production by suppressing their activation in NF-κB and NLRP3 inflammasome signal pathways in septic liver.


Subject(s)
Inflammasomes , Sepsis , Mice , Animals , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Interleukin-18 , Macrophage Activation , Signal Transduction , Liver/metabolism , Ascorbic Acid , Sepsis/complications , Sepsis/drug therapy , Lipopolysaccharides/pharmacology
13.
Sci Rep ; 14(1): 8070, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580672

ABSTRACT

Obesity is associated with increased ovarian inflammation and the establishment of leptin resistance. We presently investigated the role of impaired leptin signalling on transcriptional regulation in granulosa cells (GCs) collected from genetically obese mice. Furthermore, we characterised the association between ovarian leptin signalling, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and macrophage infiltration in obese mice. After phenotype characterisation, ovaries were collected from distinct group of animals for protein and mRNA expression analysis: (i) mice subjected to a diet-induced obesity (DIO) protocol, where one group was fed a high-fat diet (HFD) and another a standard chow diet (CD) for durations of 4 or 16 weeks; (ii) mice genetically deficient in the long isoform of the leptin receptor (ObRb; db/db); (iii) mice genetically deficient in leptin (ob/ob); and (iv) mice rendered pharmacologically hyperleptinemic (LEPT). Next, GCs from antral follicles isolated from db/db and ob/ob mice were subjected to transcriptome analysis. Transcriptional analysis revealed opposing profiles in genes associated with steroidogenesis and prostaglandin action between the genetic models, despite the similarities in body weight. Furthermore, we observed no changes in the mRNA and protein levels of NLRP3 inflammasome components in the ovaries of db/db mice or in markers of M1 and M2 macrophage infiltration. This contrasted with the downregulation of NLRP3 inflammasome components and M1 markers in ob/ob and 16-wk HFD-fed mice. We concluded that leptin signalling regulates NLRP3 inflammasome activation and the expression of M1 markers in the ovaries of obese mice in an ObRb-dependent and ObRb-independent manner. Furthermore, we found no changes in the expression of leptin signalling and NLRP3 inflammasome genes in GCs from db/db and ob/ob mice, which was associated with no effects on macrophage infiltration genes, despite the dysregulation of genes associated with steroidogenesis in homozygous obese db/db. Our results suggest that: (i) the crosstalk between leptin signalling, NLRP3 inflammasome and macrophage infiltration takes place in ovarian components other than the GC compartment; and (ii) transcriptional changes in GCs from homozygous obese ob/ob mice suggest structural rearrangement and organisation, whereas in db/db mice the impairment in steroidogenesis and secretory activity.


Subject(s)
Inflammasomes , Leptin , Animals , Female , Mice , Granulosa Cells/metabolism , Inflammasomes/genetics , Leptin/metabolism , Mice, Obese , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Proteins , Obesity/metabolism , Receptors, Leptin/genetics , RNA, Messenger
14.
Sci Signal ; 17(830): eade4335, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564492

ABSTRACT

Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1ß (IL-1ß) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule-1 (ICAM-1). FTH-ICAM-1 stimulated the expression of Il1b, NLRP3 inflammasome activation, and the processing and secretion of IL-1ß in a manner that depended on plasma membrane remodeling, clathrin-mediated endocytosis, and lysosomal destabilization. FTH-ICAM-1 signaling at early endosomes stimulated Il1b expression, implying that this endosomal signaling primed inflammasome activation in HSCs. In contrast, lysosomal destabilization was required for FTH-induced IL-1ß secretion, suggesting that lysosomal damage activated inflammasomes. FTH induced IL-1ß production in liver slices from wild-type mice but not in those from Icam1-/- or Nlrp3-/- mice. Thus, FTH signals through its receptor ICAM-1 on HSCs to activate the NLRP3 inflammasome. We speculate that this pathway contributes to hepatic inflammation, a key process that stimulates hepatic fibrogenesis associated with chronic liver disease.


Subject(s)
Inflammasomes , Liver Diseases , Rats , Mice , Animals , Inflammasomes/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Hepatic Stellate Cells/metabolism , Ferritins/genetics , Ferritins/metabolism , Interleukin-1beta/metabolism , Inflammation/genetics , Inflammation/metabolism
15.
J Agric Food Chem ; 72(11): 5734-5745, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38453725

ABSTRACT

Parkinson's disease (PD) is marked by the degeneration of dopaminergic neurons of the substantia nigra (SN), with neuroinflammation and mitochondrial dysfunction being key contributors. The neuroprotective potential of folic acid (FA) in the dopaminergic system of PD was assessed in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model. MPTP (20 mg/kg of body weight) was administered to C57BL/6J mice to simulate PD symptoms followed by FA treatment (5 mg/kg of body weight). Behavioral tests, pole, rotarod, and open-field tests, evaluated motor function, while immunohistochemistry, ELISA, RT-qPCR, and Western blotting quantified neuroinflammation, oxidative stress markers, and mitochondrial function. FA supplementation considerably improved motor performance, reduced homocysteine levels and mitigated oxidative damage in the SN. The FA-attenuated activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome lessened glial cell activity and reduced neuroinflammation. At the molecular level, FA reduced DNA damage, downregulated phosphorylated p53, and induced the expression of peroxisome proliferator-activated receptor α coactivator 1α (PGC-1α), enhancing mitochondrial function. Therefore, FA exerts neuroprotection in MPTP-induced PD by inhibiting neuroinflammation via NLRP3 inflammasome suppression and promoting mitochondrial integrity through the p53-PGC-1α pathway. Notable limitations of our study include its reliance on a single animal model and the incompletely elucidated mechanisms underlying the impact of FA on mitochondrial dynamics. Future investigations will explore the clinical utility of FA and its molecular mechanisms, further advancing it as a potential therapeutic for managing and delaying the progression of PD.


Subject(s)
MPTP Poisoning , Neuroprotective Agents , Parkinson Disease , Mice , Animals , Inflammasomes/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Dopaminergic Neurons , MPTP Poisoning/drug therapy , MPTP Poisoning/metabolism , Neuroinflammatory Diseases , Tumor Suppressor Protein p53/metabolism , Mice, Inbred C57BL , Parkinson Disease/genetics , Mitochondria/metabolism , Body Weight , Disease Models, Animal , Neuroprotective Agents/pharmacology
16.
Antiviral Res ; 224: 105857, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453031

ABSTRACT

The emerging SARS-CoV-2 variants are evolving to evade human immunity and differ in their pathogenicity. While evasion of the variants from adaptive immunity is widely investigated, there is a paucity of knowledge about their interactions with innate immunity. Inflammasome assembly is one of the most potent mechanisms of the early innate response to viruses, but when it is inappropriate, it can perpetuate tissue damage. In this study, we focused on the capacity of SARS-CoV-2 Alpha and Delta variants to activate the NLRP3 inflammasome. We compared the macrophage activation, particularly the inflammasome formation, using Alpha- and Delta-spike virus-like particles (VLPs). We found that VLPs of both variants activated the inflammasome even without a priming step. Delta-spike VLPs had a significantly stronger effect on triggering pyroptosis and inflammasome assembly in THP-1 macrophages than did Alfa-spike VLPs. Cells treated with Delta VLPs showed greater cleavage of caspase-1 and IL-1ß release. Furthermore, Delta VLPs induced stronger cytokine secretion from macrophages and caused essential impairment of mitochondrial respiration in comparison to Alpha VLPs. Additionally, infection of primary human monocyte-derived macrophages with the SARS-CoV-2 variants confirmed the observations in VLPs. Collectively, we revealed that SARS-CoV-2 Delta had a greater impact on the inflammasome activation, cell death and mitochondrial respiration in macrophages than did the Alpha variant. Importantly, the differential response to the SARS-CoV-2 variants can influence the efficacy of therapies targeting the host's innate immunity.


Subject(s)
COVID-19 , Inflammasomes , Humans , Inflammasomes/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/metabolism , Macrophages
17.
Nat Commun ; 15(1): 2751, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553499

ABSTRACT

Influenza virus activates cellular inflammasome pathways, which can be both beneficial and detrimental to infection outcomes. Here, we investigate the function of the inflammasome-activated, pore-forming protein gasdermin D (GSDMD) during infection. Ablation of GSDMD in knockout (KO) mice (Gsdmd-/-) significantly attenuates influenza virus-induced weight loss, lung dysfunction, lung histopathology, and mortality compared with wild type (WT) mice, despite similar viral loads. Infected Gsdmd-/- mice exhibit decreased inflammatory gene signatures shown by lung transcriptomics. Among these, diminished neutrophil gene activation signatures are corroborated by decreased detection of neutrophil elastase and myeloperoxidase in KO mouse lungs. Indeed, directly infected neutrophils are observed in vivo and infection of neutrophils in vitro induces release of DNA and tissue-damaging enzymes that is largely dependent on GSDMD. Neutrophil depletion in infected WT mice recapitulates the reductions in mortality, lung inflammation, and lung dysfunction observed in Gsdmd-/- animals, while depletion does not have additive protective effects in Gsdmd-/- mice. These findings implicate a function for GSDMD in promoting lung neutrophil responses that amplify influenza virus-induced inflammation and pathogenesis. Targeting the GSDMD/neutrophil axis may provide a therapeutic avenue for treating severe influenza.


Subject(s)
Neutrophils , Orthomyxoviridae , Animals , Mice , Neutrophils/metabolism , Gasdermins , Inflammasomes/genetics , Inflammasomes/metabolism , Inflammation/genetics , Inflammation/metabolism , Orthomyxoviridae/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism
18.
Atherosclerosis ; 391: 117491, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471264

ABSTRACT

BACKGROUND AND AIMS: NLRP3 inflammasome plays a key role in vascular inflammation and atherosclerosis. Circular RNAs (circRNAs) are involved in disease development by regulating gene expression, and have emerged as promising novel disease biomarkers. This study aimed to identify the NLRP3 inflammasome-associated circRNA biomarkers of carotid atherosclerosis. METHODS: Based on the differential expression profiles of circRNAs in patients with carotid artery plaque (CAP) and healthy controls, hsa_circ_0043621, hsa_circ_0051995, and hsa_circ_0123388 were screened and validated using real-time quantitative polymerase chain reaction (RT-qPCR). Potential circRNA-miRNA-mRNA interactions were explored using a luciferase assay. The biological roles of the validated circRNAs were investigated in human umbilical vein endothelial cells (HUVECs) using Western blotting, transwell, and CCK-8 assays. Clinical significance was assessed using receiver operating characteristic (ROC) curves and logistic regression analysis. RESULTS: The expression levels of all candidate circRNAs were significantly higher in patients with CAP than in controls (p<0.05), which was consistent with the results of the microarray analysis. Overexpression of hsa_circ_0043621 significantly increased the expression of NLRP3, induced migration of HUVECs, and inhibited cell proliferation. hsa_circ_0043621 demonstrated reasonable diagnostic accuracy for CAP detection and increased intima-media thickness (IMT). hsa_circ_0043621 upregulation was an independent predictor of an increased risk of CAP and increased IMT. CONCLUSIONS: hsa_circ_0043621 is a valuable circulating biomarker of carotid atherosclerosis and may contribute to its pathogenesis by regulating the NLRP3 inflammasome.


Subject(s)
Carotid Artery Diseases , Carotid Stenosis , MicroRNAs , Humans , RNA, Circular/genetics , Inflammasomes/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Carotid Intima-Media Thickness , MicroRNAs/genetics , Biomarkers/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Carotid Artery Diseases/genetics , Carotid Artery Diseases/metabolism , Carotid Stenosis/metabolism
19.
J Exp Med ; 221(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38530241

ABSTRACT

NLRP3-associated autoinflammatory disease is a heterogenous group of monogenic conditions caused by NLRP3 gain-of-function mutations. The poor functional characterization of most NLRP3 variants hinders diagnosis despite efficient anti-IL-1 treatments. Additionally, while NLRP3 is controlled by priming and activation signals, gain-of-functions have only been investigated in response to priming. Here, we characterize 34 NLRP3 variants in vitro, evaluating their activity upon induction, priming, and/or activation signals, and their sensitivity to four inhibitors. We highlight the functional diversity of the gain-of-function mutants and describe four groups based on the signals governing their activation, correlating partly with the symptom severity. We identify a new group of NLRP3 mutants responding to the activation signal without priming, associated with frequent misdiagnoses. Our results identify key NLRP3 residues controlling inflammasome activity and sensitivity to inhibitors, and antagonistic mechanisms with broader efficacy for therapeutic strategies. They provide new insights into NLRP3 activation, an explanatory mechanism for NLRP3-AID heterogeneity, and original tools for NLRP3-AID diagnosis and drug development.


Subject(s)
Gain of Function Mutation , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Gain of Function Mutation/genetics , Inflammasomes/genetics , Drug Development , Syndrome
20.
Biomolecules ; 14(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38540722

ABSTRACT

Schizophrenia is a complex mental condition, with key symptoms marked for diagnosis including delusions, hallucinations, disorganized thinking, reduced emotional expression, and social dysfunction. In the context of major developmental hypotheses of schizophrenia, notably those concerning maternal immune activation and neuroinflammation, we studied NLRP1 expression and content in the postmortem brain tissue of 10 schizophrenia and 10 control subjects. In the medial orbitofrontal cortex (Brodmann's area 11/12) and dorsolateral prefrontal cortex (area 46) from both hemispheres of six schizophrenia subjects, the NLRP1 mRNA expression was significantly higher than in six control brains (p < 0.05). As the expression difference was highest for the medial orbitofrontal cortex in the right hemisphere, we assessed NLRP1-immunoreactive pyramidal neurons in layers III, V, and VI in the medial orbitofrontal cortex in the right hemisphere of seven schizophrenia and five control brains. Compared to controls, we quantified a significantly higher number of NLRP1-positive pyramidal neurons in the schizophrenia brains (p < 0.01), suggesting NLRP1 inflammasome activation in schizophrenia subjects. Layer III pyramidal neuron dysfunction aligns with working memory deficits, while impairments of pyramidal neurons in layers V and VI likely disrupt predictive processing. We propose NLRP1 inflammasome as a potential biomarker and therapeutic target in schizophrenia.


Subject(s)
Schizophrenia , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Cerebral Cortex/metabolism , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , NLR Proteins/genetics , NLR Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...