Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.100
Filter
1.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38775708

ABSTRACT

In utero infection and maternal inflammation can adversely impact fetal brain development. Maternal systemic illness, even in the absence of direct fetal brain infection, is associated with an increased risk of neuropsychiatric disorders in affected offspring. The cell types mediating the fetal brain response to maternal inflammation are largely unknown, hindering the development of novel treatment strategies. Here, we show that microglia, the resident phagocytes of the brain, highly express receptors for relevant pathogens and cytokines throughout embryonic development. Using a rodent maternal immune activation (MIA) model in which polyinosinic:polycytidylic acid is injected into pregnant mice, we demonstrate long-lasting transcriptional changes in fetal microglia that persist into postnatal life. We find that MIA induces widespread gene expression changes in neuronal and non-neuronal cells; importantly, these responses are abolished by selective genetic deletion of microglia, indicating that microglia are required for the transcriptional response of other cortical cell types to MIA. These findings demonstrate that microglia play a crucial durable role in the fetal response to maternal inflammation, and should be explored as potential therapeutic cell targets.


Subject(s)
Brain , Inflammation , Microglia , Poly I-C , Animals , Microglia/metabolism , Microglia/immunology , Female , Pregnancy , Mice , Brain/pathology , Brain/immunology , Brain/metabolism , Inflammation/pathology , Inflammation/genetics , Poly I-C/pharmacology , Fetus , Mice, Inbred C57BL , Gene Expression Regulation, Developmental , Neurons/metabolism
2.
Front Immunol ; 15: 1370276, 2024.
Article in English | MEDLINE | ID: mdl-38742104

ABSTRACT

Background: Extensive observational studies have reported an association between inflammatory factors and autism spectrum disorder (ASD), but their causal relationships remain unclear. This study aims to offer deeper insight into causal relationships between circulating inflammatory factors and ASD. Methods: Two-sample bidirectional Mendelian randomization (MR) analysis method was used in this study. The genetic variation of 91 circulating inflammatory factors was obtained from the genome-wide association study (GWAS) database of European ancestry. The germline GWAS summary data for ASD were also obtained (18,381 ASD cases and 27,969 controls). Single nucleotide polymorphisms robustly associated with the 91 inflammatory factors were used as instrumental variables. The random-effects inverse-variance weighted method was used as the primary analysis, and the Bonferroni correction for multiple comparisons was applied. Sensitivity tests were carried out to assess the validity of the causal relationship. Results: The forward MR analysis results suggest that levels of sulfotransferase 1A1, natural killer cell receptor 2B4, T-cell surface glycoprotein CD5, Fms-related tyrosine kinase 3 ligand, and tumor necrosis factor-related apoptosis-inducing ligand are positively associated with the occurrence of ASD, while levels of interleukin-7, interleukin-2 receptor subunit beta, and interleukin-2 are inversely associated with the occurrence of ASD. In addition, matrix metalloproteinase-10, caspase 8, tumor necrosis factor-related activation-induced cytokine, and C-C motif chemokine 19 were considered downstream consequences of ASD. Conclusion: This MR study identified additional inflammatory factors in patients with ASD relative to previous studies, and raised a possibility of ASD-caused immune abnormalities. These identified inflammatory factors may be potential biomarkers of immunologic dysfunction in ASD.


Subject(s)
Autism Spectrum Disorder , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/blood , Autism Spectrum Disorder/immunology , Genetic Predisposition to Disease , White People/genetics , Biomarkers/blood , Inflammation/genetics , Inflammation/blood , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Male , Female , Cytokines/blood , Cytokines/genetics , Europe
3.
Front Immunol ; 15: 1381319, 2024.
Article in English | MEDLINE | ID: mdl-38742118

ABSTRACT

Introduction: Inflammation of the pancreas contributes to the development of diabetes mellitus. Although it is well-accepted that local inflammation leads to a progressive loss of functional beta cell mass that eventually causes the onset of the disease, the development of islet inflammation remains unclear. Methods: Here, we used single-cell RNA sequencing to explore the cell type-specific molecular response of primary human pancreatic cells exposed to an inflammatory environment. Results: We identified a duct subpopulation presenting a unique proinflammatory signature among all pancreatic cell types. Discussion: Overall, the findings of this study point towards a role for duct cells in the propagation of islet inflammation, and in immune cell recruitment and activation, which are key steps in the pathophysiology of diabetes mellitus.


Subject(s)
Inflammation , Pancreatic Ducts , Single-Cell Analysis , Transcriptome , Humans , Pancreatic Ducts/pathology , Pancreatic Ducts/metabolism , Pancreatic Ducts/immunology , Inflammation/immunology , Inflammation/genetics , Gene Expression Profiling , Diabetes Mellitus/immunology , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Cells, Cultured , Inflammation Mediators/metabolism
4.
BMC Med Genomics ; 17(1): 124, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711024

ABSTRACT

BACKGROUND: Glycogen storage disease (GSD) is a disease caused by excessive deposition of glycogen in tissues due to genetic disorders in glycogen metabolism. Glycogen storage disease type I (GSD-I) is also known as VonGeirk disease and glucose-6-phosphatase deficiency. This disease is inherited in an autosomal recessive manner, and both sexes can be affected. The main symptoms include hypoglycaemia, hepatomegaly, acidosis, hyperlipidaemia, hyperuricaemia, hyperlactataemia, coagulopathy and developmental delay. CASE PRESENTATION: Here, we present the case of a 13-year-old female patient with GSD Ia complicated with multiple inflammatory hepatic adenomas. She presented to the hospital with hepatomegaly, hypoglycaemia, and epistaxis. By clinical manifestations and imaging and laboratory examinations, we suspected that the patient suffered from GSD I. Finally, the diagnosis was confirmed by liver pathology and whole-exome sequencing (WES). WES revealed a synonymous mutation, c.648 G > T (p.L216 = , NM_000151.4), in exon 5 and a frameshift mutation, c.262delG (p.Val88Phefs*14, NM_000151.4), in exon 2 of the G6PC gene. According to the pedigree analysis results of first-generation sequencing, heterozygous mutations of c.648 G > T and c.262delG were obtained from the patient's father and mother. Liver pathology revealed that the solid nodules were hepatocellular hyperplastic lesions, and immunohistochemical (IHC) results revealed positive expression of CD34 (incomplete vascularization), liver fatty acid binding protein (L-FABP) and C-reactive protein (CRP) in nodule hepatocytes and negative expression of ß-catenin and glutamine synthetase (GS). These findings suggest multiple inflammatory hepatocellular adenomas. PAS-stained peripheral hepatocytes that were mostly digested by PAS-D were strongly positive. This patient was finally diagnosed with GSD-Ia complicated with multiple inflammatory hepatic adenomas, briefly treated with nutritional therapy after diagnosis and then underwent living-donor liver allotransplantation. After 14 months of follow-up, the patient recovered well, liver function and blood glucose levels remained normal, and no complications occurred. CONCLUSION: The patient was diagnosed with GSD-Ia combined with multiple inflammatory hepatic adenomas and received liver transplant treatment. For childhood patients who present with hepatomegaly, growth retardation, and laboratory test abnormalities, including hypoglycaemia, hyperuricaemia, and hyperlipidaemia, a diagnosis of GSD should be considered. Gene sequencing and liver pathology play important roles in the diagnosis and typing of GSD.


Subject(s)
Glycogen Storage Disease Type I , Liver Neoplasms , Liver Transplantation , Humans , Glycogen Storage Disease Type I/genetics , Glycogen Storage Disease Type I/complications , Glycogen Storage Disease Type I/pathology , Female , Adolescent , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/complications , Adenoma/genetics , Adenoma/complications , Adenoma/pathology , Adenoma, Liver Cell/genetics , Adenoma, Liver Cell/complications , Adenoma, Liver Cell/pathology , Inflammation/genetics , Inflammation/pathology , Inflammation/complications
5.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724995

ABSTRACT

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Subject(s)
Epithelial Cells , Exosomes , MicroRNAs , Prostatitis , Stromal Cells , Male , Exosomes/metabolism , Prostatitis/genetics , Prostatitis/pathology , Prostatitis/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Animals , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Prostate/pathology , Prostate/metabolism , Pelvic Pain , Inflammation/genetics , Inflammation/pathology , Mice , MAP Kinase Signaling System
6.
Medicine (Baltimore) ; 103(19): e38146, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728446

ABSTRACT

Breast cancer is a prevalent ailment among women, and the inflammatory response plays a crucial role in the management and prediction of breast cancer (BRCA). However, the new subtypes based on inflammation in BRCA research are still undefined. The databases including The Cancer Genome Atlas and gene expression omnibus were utilized to gather clinical data and somatic mutation information for approximately 1069 BRCA patients. Through Consensus Clustering, novel subtypes linked to inflammation were identified. A comparative analysis was conducted on the prognosis, and immune cell infiltration, and somatic mutation of the new subtypes. Additionally, an investigation into drug therapy and immunotherapy was conducted to distinguish high-risk individuals from low-risk ones. The findings of this investigation proposed the categorization of BRCA into innovative subtypes predicated on the inflammatory response and 6 key genes were a meaningful approach. Specifically, the low-, medium-, and high-inflammation subtypes exhibited varying degrees of association with clinicopathological features, tumor microenvironment, and prognosis. Notably, the high-inflammation subtype was characterized by a strong correlation with immunosuppressive microenvironments and a higher frequency of somatic mutations, which was an indication of poorer health. This study revealed that a brand-new classification could throw new light on the effective prognosis. The integration of multiple key genes was a new characterization that could promote more immunotherapy strategies and contribute to predicting the efficacy of the chemotherapeutic drugs.


Subject(s)
Breast Neoplasms , Inflammation , Tumor Microenvironment , Humans , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Female , Inflammation/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Prognosis , Mutation , Immunotherapy/methods , Middle Aged , Biomarkers, Tumor/genetics
7.
Cell Mol Biol Lett ; 29(1): 64, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698311

ABSTRACT

Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Inflammation , Osteoarthritis , Humans , Osteoarthritis/genetics , Osteoarthritis/therapy , CRISPR-Cas Systems/genetics , Inflammation/genetics , Gene Editing/methods , Animals , Genetic Therapy/methods , Cartilage/metabolism , Cartilage/pathology , Cellular Senescence/genetics , Cartilage, Articular/pathology , Cartilage, Articular/metabolism
8.
Commun Biol ; 7(1): 527, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714733

ABSTRACT

Macrophages are versatile cells of the innate immune system that work by altering their pro- or anti-inflammatory features. Their dysregulation leads to inflammatory disorders such as inflammatory bowel disease. We show that macrophage-specific upregulation of the clock output gene and transcription factor E4BP4 reduces the severity of colitis in mice. RNA-sequencing and single-cell analyses of macrophages revealed that increased expression of E4BP4 leads to an overall increase in expression of anti-inflammatory genes including Il4ra with a concomitant reduction in pro-inflammatory gene expression. In contrast, knockout of E4BP4 in macrophages leads to increased proinflammatory gene expression and decreased expression of anti-inflammatory genes. ChIP-seq and ATAC-seq analyses further identified Il4ra as a target of E4BP4, which drives anti-inflammatory polarization in macrophages. Together, these results reveal a critical role for E4BP4 in regulating macrophage inflammatory phenotypes and resolving inflammatory bowel diseases.


Subject(s)
Colitis , Macrophages , Animals , Macrophages/immunology , Macrophages/metabolism , Colitis/genetics , Colitis/immunology , Colitis/metabolism , Colitis/pathology , Colitis/chemically induced , Mice , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Mice, Knockout , Phenotype , Mice, Inbred C57BL , Disease Models, Animal , Severity of Illness Index , Male , Inflammation/genetics , Inflammation/metabolism
9.
Sci Rep ; 14(1): 10468, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714870

ABSTRACT

Inflammatory age (iAge) is a vital concept for understanding the intricate interplay between chronic inflammation and aging in the context of cancer. However, the importance of iAge-clock-related genes (iAge-CRGs) across cancers remains unexplored. This study aimed to explore the mechanisms and applications of these genes across diverse cancer types. We analyzed profiling data from over 10,000 individuals, covering 33 cancer types, 750 small molecule drugs, and 24 immune cell types. We focused on DCBLD2's function at the single-cell level and computed an iAge-CRG score using GSVA. This score was correlated with cancer pathways, immune infiltration, and survival. A signature was then derived using univariate Cox and LASSO regression, followed by ROC curve analysis, nomogram construction, decision curve analysis, and immunocytochemistry. Our comprehensive analysis revealed epigenetic, genomic, and immunogenomic alterations in iAge-CRGs, especially DCBLD2, leading to abnormal expression. Aberrant DCBLD2 expression strongly correlated with cancer-associated fibroblast infiltration and prognosis in multiple cancers. Based on GSVA results, we developed a risk model using five iAge-CRGs, which proved to be an independent prognostic index for uveal melanoma (UVM) patients. We also systematically evaluated the correlation between the iAge-related signature risk score and immune cell infiltration. iAge-CRGs, particularly DCBLD2, emerge as potential targets for enhancing immunotherapy outcomes. The strong correlation between abnormal DCBLD2 expression, cancer-associated fibroblast infiltration, and patient survival across various cancers underscores their significance. Our five-gene risk signature offers an independent prognostic tool for UVM patients, highlighting the crucial role of these genes in suppressing the immune response in UVM.Kindly check and confirm whether the corresponding affiliation is correctly identified.I identified the affiliation is correctly.thank you.Per style, a structured abstract is not allowed so we have changed the structured abstract to an unstructured abstract. Please check and confirm.I confirm the abstract is correctly ,thank you.


Subject(s)
Biomarkers, Tumor , Neoplasms , Humans , Prognosis , Neoplasms/genetics , Neoplasms/immunology , Biomarkers, Tumor/genetics , Inflammation/genetics , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Aging/genetics , Aging/immunology , Multiomics
10.
BMC Genomics ; 25(1): 446, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714962

ABSTRACT

BACKGROUND: Air exposure is an inevitable source of stress that leads to significant mortality in Coilia nasus. Our previous research demonstrated that adding 10‰ NaCl to aquatic water could enhance survival rates, albeit the molecular mechanisms involved in air exposure and salinity mitigation remained unclear. Conversely, salinity mitigation resulted in decreased plasma glucose levels and improved antioxidative activity. To shed light on this phenomenon, we characterized the transcriptomic changes in the C. nasus brain upon air exposure and salinity mitigation by integrated miRNA-mRNA analysis. RESULTS: The plasma glucose level was elevated during air exposure, whereas it decreased during salinity mitigation. Antioxidant activity was suppressed during air exposure, but was enhanced during salinity mitigation. A total of 629 differentially expressed miRNAs (DEMs) and 791 differentially expressed genes (DEGs) were detected during air exposure, while 429 DEMs and 1016 DEGs were identified during salinity mitigation. GO analysis revealed that the target genes of DEMs and DEGs were enriched in biological process and cellular component during air exposure and salinity mitigation. KEGG analysis revealed that the target genes of DEMs and DEGs were enriched in metabolism. Integrated analysis showed that 24 and 36 predicted miRNA-mRNA regulatory pairs participating in regulating glucose metabolism, Ca2+ transport, inflammation, and oxidative stress. Interestingly, most of these miRNAs were novel miRNAs. CONCLUSION: In this study, substantial miRNA-mRNA regulation pairs were predicted via integrated analysis of small RNA sequencing and RNA-Seq. Based on predicted miRNA-mRNA regulation and potential function of DEGs, miRNA-mRNA regulatory network involved in glucose metabolism and Ca2+ transport, inflammation, and oxidative stress in C. nasus brain during air exposure and salinity mitigation. They regulated the increased/decreased plasma glucose and inhibited/promoted antioxidant activity during air exposure and salinity mitigation. Our findings would propose novel insights to the mechanisms underlying fish responses to air exposure and salinity mitigation.


Subject(s)
Brain , Gene Regulatory Networks , Inflammation , MicroRNAs , Oxidative Stress , RNA, Messenger , Salinity , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Brain/metabolism , Animals , Inflammation/genetics , Inflammation/metabolism , Gene Expression Profiling , Air , Transcriptome
11.
Cell Rep Med ; 5(5): 101556, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776872

ABSTRACT

Cardiovascular disease plays a central role in the electrical and structural remodeling of the right atrium, predisposing to arrhythmias, heart failure, and sudden death. Here, we dissect with single-nuclei RNA sequencing (snRNA-seq) and spatial transcriptomics the gene expression changes in the human ex vivo right atrial tissue and pericardial fluid in ischemic heart disease, myocardial infarction, and ischemic and non-ischemic heart failure using asymptomatic patients with valvular disease who undergo preventive surgery as the control group. We reveal substantial differences in disease-associated gene expression in all cell types, collectively suggesting inflammatory microvascular dysfunction and changes in the right atrial tissue composition as the valvular and vascular diseases progress into heart failure. The data collectively suggest that investigation of human cardiovascular disease should expand to all functionally important parts of the heart, which may help us to identify mechanisms promoting more severe types of the disease.


Subject(s)
Heart Atria , Microvessels , Myocardial Ischemia , Transcriptome , Humans , Heart Atria/pathology , Heart Atria/metabolism , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Myocardial Ischemia/metabolism , Transcriptome/genetics , Microvessels/pathology , Inflammation/pathology , Inflammation/genetics , Male , Female , Middle Aged , Aged , Gene Expression Regulation
12.
Hum Mol Genet ; 33(R1): R80-R91, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38779772

ABSTRACT

Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.


Subject(s)
DNA, Mitochondrial , Immunity, Innate , Mitochondria , Signal Transduction , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/immunology , Mitochondria/metabolism , Mitochondria/immunology , Mitochondria/genetics , Animals , Signal Transduction/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Interferon Type I/genetics , Inflammation/immunology , Inflammation/genetics
13.
Proc Natl Acad Sci U S A ; 121(22): e2322524121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781216

ABSTRACT

Long noncoding RNAs (lncRNAs) account for the largest portion of RNA from the transcriptome, yet most of their functions remain unknown. Here, we performed two independent high-throughput CRISPRi screens to understand the role of lncRNAs in monocyte function and differentiation. The first was a reporter-based screen to identify lncRNAs that regulate TLR4-NFkB signaling in human monocytes and the second screen identified lncRNAs involved in monocyte to macrophage differentiation. We successfully identified numerous noncoding and protein-coding genes that can positively or negatively regulate inflammation and differentiation. To understand the functional roles of lncRNAs in both processes, we chose to further study the lncRNA LOUP [lncRNA originating from upstream regulatory element of SPI1 (also known as PU.1)], as it emerged as a top hit in both screens. Not only does LOUP regulate its neighboring gene, the myeloid fate-determining factor SPI1, thereby affecting monocyte to macrophage differentiation, but knockdown of LOUP leads to a broad upregulation of NFkB-targeted genes at baseline and upon TLR4-NFkB activation. LOUP also harbors three small open reading frames capable of being translated and are responsible for LOUP's ability to negatively regulate TLR4/NFkB signaling. This work emphasizes the value of high-throughput screening to rapidly identify functional lncRNAs in the innate immune system.


Subject(s)
Cell Differentiation , Inflammation , Macrophages , Monocytes , RNA, Long Noncoding , Signal Transduction , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Macrophages/metabolism , Macrophages/cytology , Cell Differentiation/genetics , Monocytes/metabolism , Monocytes/cytology , Inflammation/genetics , Inflammation/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , NF-kappa B/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , CRISPR-Cas Systems , Gene Expression Regulation
14.
Nat Commun ; 15(1): 4411, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782943

ABSTRACT

Cross-sectional studies have demonstrated strong associations between physical frailty and depression. However, the evidence from prospective studies is limited. Here, we analyze data of 352,277 participants from UK Biobank with 12.25-year follow-up. Compared with non-frail individuals, pre-frail and frail individuals have increased risk for incident depression independent of many putative confounds. Altogether, pre-frail and frail individuals account for 20.58% and 13.16% of depression cases by population attributable fraction analyses. Higher risks are observed in males and individuals younger than 65 years than their counterparts. Mendelian randomization analyses support a potential causal effect of frailty on depression. Associations are also observed between inflammatory markers, brain volumes, and incident depression. Moreover, these regional brain volumes and three inflammatory markers-C-reactive protein, neutrophils, and leukocytes-significantly mediate associations between frailty and depression. Given the scarcity of curative treatment for depression and the high disease burden, identifying potential modifiable risk factors of depression, such as frailty, is needed.


Subject(s)
Brain , Depression , Frailty , Inflammation , Mendelian Randomization Analysis , Humans , Male , Female , Depression/genetics , Frailty/genetics , Aged , Brain/pathology , Brain/diagnostic imaging , Brain/metabolism , Middle Aged , Inflammation/genetics , Risk Factors , United Kingdom/epidemiology , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Cross-Sectional Studies , Prospective Studies , Adult , Biomarkers , Neutrophils
15.
Biomolecules ; 14(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38785927

ABSTRACT

Caspase-5 is a protease that induces inflammation in response to lipopolysaccharide (LPS), a component of the cell envelope of Gram-negative bacteria. The expression level of the CASP5 gene is very low in the basal state, but strongly increases in the presence of LPS. Intracellular LPS binds to the caspase activation and recruitment domain (CARD) of caspase-5, leading to the formation of a non-canonical inflammasome. Subsequently, the catalytic domain of caspase-5 cleaves gasdermin D and thereby facilitates the formation of cell membrane pores through which pro-inflammatory cytokines of the interleukin-1 family are released. Caspase-4 is also able to form a non-canonical inflammasome upon binding to LPS, but its expression is less dependent on LPS than the expression of caspase-5. Caspase-4 and caspase-5 have evolved via the duplication of a single ancestral gene in a subclade of primates, including humans. Notably, the main biomedical model species, the mouse, has only one ortholog, namely caspase-11. Here, we review the structural features and the mechanisms of regulation that are important for the pro-inflammatory roles of caspase-5. We summarize the interspecies differences and the evolution of pro-inflammatory caspases in mammals and discuss the potential roles of caspase-5 in the defense against Gram-negative bacteria and in sepsis.


Subject(s)
Caspases , Inflammation , Humans , Animals , Inflammation/metabolism , Inflammation/genetics , Caspases/metabolism , Caspases/genetics , Caspases/chemistry , Evolution, Molecular , Lipopolysaccharides , Caspases, Initiator/metabolism , Caspases, Initiator/genetics , Inflammasomes/metabolism , Gram-Negative Bacteria
16.
Biomolecules ; 14(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38785970

ABSTRACT

Inflammageing is a condition of perpetual low-grade inflammation induced by ageing. Inflammageing may be predicted by the C-reactive protein (CRP) or by a recently described biomarker which measures N-glycosylated side chains of the carbohydrate component of several acute-phase proteins known as GlycA. The objective of this study was to examine in depth the genetic relationships between CRP and GlycA as well as between each of them and other selected cytokines, which may shed light on the mechanisms of inflammageing. Using the Olink 96 Inflammation panel, data on inflammatory mediators for 1518 twins from the TwinsUK dataset were acquired. Summary statistics for genome-wide association studies for several cytokines as well as CRP and GlycA were collected from public sources. Extensive genetic correlation analyses, colocalization and genetic enrichment analyses were carried out to detect the shared genetic architecture between GlycA and CRP. Mendelian randomization was carried out to assess potential causal relationships. GlycA predicted examined cytokines with a magnitude twice as great as that of CRP. GlycA and CRP were significantly genetically correlated (Rg = 0.4397 ± 0.0854, p-value = 2.60 × 10-7). No evidence of a causal relationship between GlycA and CRP, or between these two biomarkers and the cytokines assessed was obtained. However, the aforementioned relationships were explained well by horizontal pleiotropy. Five exonic genetic variants annotated to five genes explain the shared genetic architecture observed between GlycA and CRP: IL6R, GCKR, MLXIPL, SERPINA1, and MAP1A. GlycA and CRP possess a shared genetic architecture, but the relationship between them appears to be modest, which may imply the promotion of differing inflammatory pathways. GlycA appears to be a more robust predictor of cytokines compared to CRP.


Subject(s)
C-Reactive Protein , Genome-Wide Association Study , Inflammation , Humans , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Inflammation/genetics , Biomarkers , Male , Cytokines/genetics , Cytokines/metabolism , Female , Mendelian Randomization Analysis , Aged , Aging/genetics , Glycoproteins/genetics , Polymorphism, Single Nucleotide , Receptors, Immunologic
17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 296-302, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710513

ABSTRACT

Objective To evaluate the effects of heme oxygenase-1 (HO-1) gene deletion on immune cell composition and inflammatory injury in lung tissues of mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods C57BL/6 wild-type (WT) mice and HO-1 conditional-knockout (HO-1-/-) mice on the same background were randomly divided into four groups (n=5 in every group): WT control group, LPS-treated WT group, HO-1-/- control group and LPS-treated HO-1-/- group. LPS-treated WT and HO-1-/- groups were injected with LPS (15 mg/kg) through the tail vein to establish ALI model, while WT control group and HO-1-/- control group were injected with an equivalent volume of normal saline through the tail vein, respectively. Twelve hours later, the mice were sacrificed and lung tissues from each group were collected for analysis. Histopathological alterations of lung tissues were assessed by HE staining. The levels of mRNA expression of tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and IL-6 were determined by PCR. The percentages of neutrophils (CD45+CD11b+Ly6G+Ly6C-), total monocytes (CD45+CD11b+Ly6Chi), pro-inflammatory monocyte subsets (CD45+CD11b+Ly6ChiCCR2hi) and total macrophages (CD45+CD11b+F4/80+), M1 macrophage (CD45+CD11b+F4/80+CD86+), M2 macrophage (CD45+CD11b+F4/80+CD206+), total T cells (CD45+CD3+), CD3+CD4+ T cells, CD3+CD8+ T cells and myeloid suppressor cells (MDSCs, CD45+CD11b+Gr1+) were detected by flow cytometry. Results Compared with the corresponding control groups, HE staining exhibited increased inflammation in the lung tissues of both LPS-treated WT and HO-1-/- model mice; mRNA expression levels of TNF-α, IL-1ß and IL-6 were up-regulated; the proportions of neutrophils, total monocytes, pro-inflammatory monocyte subsets, MDSCs and total macrophages increased significantly. The percentage of CD3+, CD3+CD4+ and CD3+CD8+ T cells decreased significantly. Under resting-state, compared with WT control mice, the proportion of neutrophils, monocytes and pro-inflammatory monocyte subset increased in lung tissues of HO-1-/- control mice, while the proportion of CD3+ and CD3+CD8+ T cells decreased. Compared with LPS-treated WT mice, the mRNA expression levels of TNF-α and IL-1ß were up-regulated in lung tissues of LPS-treated HO-1-/- mice; the proportion of total monocytes, pro-inflammatory monocyte subsets, M1 macrophages and M1/M2 ratio increased greatly; the percentage of CD3+CD8+ T cells decreased significantly. Conclusion The deletion of HO-1 affects the function of the lung immune system and aggravates the inflammatory injury after LPS stimulation in ALI mice.


Subject(s)
Acute Lung Injury , Heme Oxygenase-1 , Lipopolysaccharides , Lung , Mice, Inbred C57BL , Mice, Knockout , Animals , Male , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Inflammation/genetics , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Lung/pathology , Lung/immunology , Lung/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
Cell Mol Biol Lett ; 29(1): 73, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745115

ABSTRACT

Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-ß, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.


Subject(s)
Chemokines, CXC , Cytokines , Disease Progression , Prostatic Neoplasms , Humans , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/therapy , Male , Cytokines/metabolism , Chemokines, CXC/metabolism , Chemokines, CXC/genetics , Tumor Microenvironment/genetics , Inflammation/metabolism , Inflammation/genetics , Animals , Signal Transduction
19.
Commun Biol ; 7(1): 599, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762541

ABSTRACT

Accumulating evidence suggests that endothelial cells can be useful therapeutic targets. One of the potential targets is an endothelial cell-specific protein, Roundabout4 (ROBO4). ROBO4 has been shown to ameliorate multiple diseases in mice, including infectious diseases and sepsis. However, its mechanisms are not fully understood. In this study, using RNA-seq analysis, we found that ROBO4 downregulates prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes cyclooxygenase-2. Mechanistic analysis reveals that ROBO4 interacts with IQ motif-containing GTPase-activating protein 1 (IQGAP1) and TNF receptor-associated factor 7 (TRAF7), a ubiquitin E3 ligase. In this complex, ROBO4 enhances IQGAP1 ubiquitination through TRAF7, inhibits prolonged RAC1 activation, and decreases PTGS2 expression in inflammatory endothelial cells. In addition, Robo4-deficiency in mice exacerbates PTGS2-associated inflammatory diseases, including arthritis, edema, and pain. Thus, we reveal the molecular mechanism by which ROBO4 suppresses the inflammatory response and vascular hyperpermeability, highlighting its potential as a promising therapeutic target for inflammatory diseases.


Subject(s)
Cyclooxygenase 2 , Inflammation , Receptors, Cell Surface , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Animals , Mice , Inflammation/metabolism , Inflammation/genetics , Humans , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Mice, Knockout , Mice, Inbred C57BL , Male , Endothelial Cells/metabolism , Roundabout Proteins
20.
Commun Biol ; 7(1): 615, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777862

ABSTRACT

Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.


Subject(s)
Adenosine Deaminase , Hematopoiesis , Hematopoietic Stem Cells , Inflammation , Zebrafish , Animals , Zebrafish/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/deficiency , Hematopoietic Stem Cells/metabolism , Inflammation/genetics , Inflammation/metabolism , Hematopoiesis/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Humans , Signal Transduction , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...