Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.529
Filter
1.
Poult Sci ; 103(6): 103761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692088

ABSTRACT

Intestinal oxidative stress in broilers is produced by chronic heat stress (HS) and has a negative impact on poultry performance as it induces intestinal inflammation and promotes the invasion of gram-negative bacteria, such as bacterial lipopolysaccharide (LPS). Therefore, dietary inclusion of the antioxidant compound, ethoxyquin (EQ), could improve enteric antioxidant capacity, immune responses, and the epithelial barrier, and maintain the symbiotic gut microbiota community. To investigate the effects of EQ supplementation on alleviating enteric oxidative stress in heat-stressed broilers, 200 one-day-old male Ross 308 broilers were randomly assigned to 4 groups (n = 50 chicks/group; n = 10 chicks/replicate) and fed a basal diet supplemented with 0 (CT), 50 (EQ-50), 100 (EQ-100), and 200 (EQ-200) mg EQ/ kg-1 for 5 wk. The chicks were raised in floor pens inside the broiler farm at a temperature and humidity index (THI) of 29 from d 21 to d 35. Growth performance traits, relative organ index, hepatic antioxidant enzymes, serum immunity, total adenylate, and cytokine activities were improved in the EQ-50 group (linear or quadratic P < 0.05), promoting the relative mRNA expression of cytokine gene-related anti-inflammatory and growth factors. A distinct microbial community colonised the gut microbiota in the EQ-50 group, with a high relative abundance of Lactobacillus, Ligilactobacillus, Limosilactobacillus, Pediococcus, Blautia, and Faecalibacterium compared to the other groups. Dietary supplementation with 50 mg EQ/ kg-1 for 5 wk attenuates enteric oxidative stress and intestinal inflammation by enhancing serum immune and cytokine content (IgG, IL-6, and TGF-ß,) and symbiotic microbiota in heat-stressed broilers. EQ promotes the expression of Hsp70, SOD2, GPx 4, IL-6, and IGF-1 cytokine gene-related anti-inflammatory and growth factors in heat-stressed hepatic broilers. Collectively, EQ-50 could be a suitable feed supplement for attenuating enteric oxidative stress and intestinal inflammation, thereby promoting the productivity of heat-stressed broilers.


Subject(s)
Animal Feed , Chickens , Cytokines , Diet , Dietary Supplements , Ethoxyquin , Gastrointestinal Microbiome , Oxidative Stress , Animals , Male , Cytokines/metabolism , Cytokines/genetics , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Ethoxyquin/administration & dosage , Inflammation/veterinary , Random Allocation , Poultry Diseases/microbiology , Symbiosis , Dose-Response Relationship, Drug , Antioxidants/metabolism , Heat-Shock Response/drug effects , Hot Temperature
2.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38563227

ABSTRACT

The liver plays a critical role in metabolic activity and is the body's first immune barrier, and maintaining liver health is particularly important for poultry production. MicroRNAs (miRNAs) are involved in a wide range of biological activities due to their capacity as posttranscriptional regulatory elements. A growing body of research indicates that miR-21-5p plays a vital role as a modulator of liver metabolism in various species. However, the effect of miR-21-5p on the chicken liver is unclear. In the current study, we discovered that the fatty liver had high levels of miR-21-5p. Then the qPCR, Western blot, flow cytometry, enzyme-linked immunosorbent assay, dual-luciferase, and immunofluorescence assays were, respectively, used to determine the impact of miR-21-5p in the chicken liver, and it turned out that miR-21-5p enhanced lipogenesis, oxidative stress, and inflammatory responses, which ultimately induced hepatocyte apoptosis. Mechanically, we verified that miR-21-5p can directly target nuclear factor I B (NFIB) and kruppel-like factor 3 (KLF3). Furthermore, our experiments revealed that the suppression of NFIB promoted apoptosis and inflammation, and the KLF3 inhibitor accelerated lipogenesis and enhanced oxidative stress. Furthermore, the cotransfection results suggest that the PI3K/AKT pathway is also involved in the process of miRNA-21-5p-mediate liver metabolism regulation. In summary, our study demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting NFIB and KLF3 to suppress the PI3K/AKT signal pathway in chicken.


miR-21-5p is a typical noncoding RNA that could inhibit messenger RNA expression by targeting the 3ʹ-untranslated region to participate in fatty liver-related disease formation and progression. We demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting nuclear factor I B and kruppel-like factor 3 to suppress the PI3K/AKT signal pathway in chicken. This research established the regulatory network mechanisms of miR-21-5p in chicken hepatic lipogenesis and fatty liver syndrome.


Subject(s)
MicroRNAs , Proto-Oncogene Proteins c-akt , Animals , Proto-Oncogene Proteins c-akt/metabolism , NFI Transcription Factors/metabolism , Chickens/genetics , Chickens/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lipogenesis/genetics , Signal Transduction , MicroRNAs/genetics , MicroRNAs/metabolism , Liver/metabolism , Apoptosis , Inflammation/metabolism , Inflammation/veterinary , Cell Proliferation
3.
Open Vet J ; 14(3): 830-839, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682150

ABSTRACT

Background: Heat stress (HS) is a main abiotic stress factor for the health and welfare of animals. Recently, the use of nano-emulsion essential oils exhibited a promising approach to mitigate the detrimental impacts of abiotic and biotic stresses, ultimately contributing to the global aim of sustainable livestock production. Aim: The current study was piloted to assess the impact of eugenol nano-emulsion (EUGN) supplementation on growth performance, serum metabolites, redox homeostasis, immune response, and pro-inflammatory reactions in growing rabbits exposed to HS. Methods: A total of 100 male weaning rabbits aged 35 days were divided into 4 treatments. Rabbits were fed the diet with EUGN at different concentrations: 0 (control group; EUGN0), 50 (EUGN50), 100 (EUGN100), and 150 (EUGN150) mg/kg diet for 8 weeks under summer conditions. Results: Dietary EUGN levels significantly improved (p < 0.05) the body weight, body weight gain, carcass weights, and improved feed conversion ratio of rabbits. EUGN supplementation significantly increased Hb, platelets, and red blood cells , while the mean corpuscular hemoglobin and eosinophils were significantly decreased compared to the control one. Compared with EUGN0 stressed rabbits, all EUGN-experimental groups had a reduction in levels of total glycerides (p < 0.01), uric acid, total bilirubin, direct bilirubin, and gamma-glutamyl transpeptidase (p < 0.01). Total antioxidant capacity and glutathione peroxidase were significantly improved by EUGN treatment when compared to the control one (p < 0.01), while the EUGN100 exhibited the greatest levels of catalase. Lipid peroxidation (malondialdehyde) was significantly decreased in EUGN-treated groups. All pro-inflammatory cytokines serum interleukin 4, Interleukin 1ß, and tumor necrosis factor alpha were considerably decreased after dietary EUGN supplementation (p < 0.05). The serum concentrations of immunoglobulins (IgG and IgM) were significantly improved in rabbits of the EUGN150 group. Conclusion: This study shows that EUGN can be used as a novel feed additive to enhance the growth performance, immune variables, and antioxidants, and reduce the inflammatory response of growing rabbits exposed to thermal stress.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Eugenol , Homeostasis , Animals , Rabbits , Eugenol/administration & dosage , Eugenol/pharmacology , Male , Dietary Supplements/analysis , Animal Feed/analysis , Homeostasis/drug effects , Diet/veterinary , Oxidation-Reduction/drug effects , Emulsions , Inflammation/veterinary , Heat-Shock Response/drug effects
4.
Poult Sci ; 103(5): 103638, 2024 May.
Article in English | MEDLINE | ID: mdl-38579575

ABSTRACT

Transport stress (TS) not only weakens poultry performance but also affects animal welfare. Additionally, TS can evoke cardiac damage by triggering sterile inflammation in chicks, but the underlying mechanism is not fully understood. Here, we aimed to elucidate how TS induces sterile inflammation and heart injury and to clarify the antagonism effect of astragalus polysaccharides (APS). We randomly divided 60 chicks (one-day-old female) into 5 groups (n = 12): Control_0h (Con_0h) group (chicks were slaughtered at initiation), Control group (stress-free control), TS group (simulated TS exposure for 8 h), TS plus water (TS+W) group, and TS plus APS (TS+APS) group. Before simulation transport, the chicks of TS+W and TS+APS groups were, respectively, dietary with 100 µL of water or APS (250 µg/mL). H&E staining was employed for cardiac histopathological observation. ELISA assay was used to measure oxidative stress marker levels (GSH, GPX, GST, and MDA). A commercial kit was used to isolate the mitochondrial portion, and qRT-PCR was employed to measure the mitochondrial DNA (mtDNA) levels. Furthermore, we evaluated the activity of mtDNA-mediated NF-κB, NLRP3 inflammasome, and cGAS-STING inflammatory pathways and the expression of downstream inflammatory factors by Western Blotting or qRT-PCR. Our findings revealed that APS notably relieved TS-induced myocardial histopathological lesions and infiltrations. Likewise, the decrease in proinflammatory factors (TNF-α, IL-1ß, and IL-6) and IFN-ß by APS further supported this result. Meanwhile, TS caused severe oxidative stress in the chick heart, as evidenced by decreased antioxidant enzymes and increased MDA. Importantly, APS prevented mtDNA stress and leakage by reducing oxidative stress. Interestingly, TS-induced mtDNA leakage caused a series of inflammation events via mtDNA-PRRs pathways, including TLR21-NF-κB, NLRP3 inflammasome, and cGAS-STING signaling. Encouragingly, all these adverse changes related to inflammation events induced by mtDNA-PRRs activation were all relieved by APS treatment. In summary, our findings provide the first evidence that inhibition of mtDNA-PRRs pathway-mediated sterile inflammation by APS could protect against TS-induced cardiac damage in chicks.


Subject(s)
Chickens , DNA, Mitochondrial , Inflammation , Polysaccharides , Poultry Diseases , Animals , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , DNA, Mitochondrial/metabolism , Inflammation/veterinary , Inflammation/chemically induced , Poultry Diseases/prevention & control , Poultry Diseases/chemically induced , Female , Stress, Physiological/drug effects , Astragalus Plant/chemistry , Random Allocation , Heart Diseases/veterinary , Heart Diseases/prevention & control , Heart Diseases/chemically induced , Heart Diseases/etiology , Oxidative Stress/drug effects , Signal Transduction/drug effects
5.
Fish Shellfish Immunol ; 149: 109582, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657880

ABSTRACT

Ammonia in aquatic environments is toxic to fish, directly impacting their growth performance and development. Activation of autophagy can facilitate intracellular component renewal and enhance an organism's adaptability to adverse environments. Therefore, this study investigates the impact of autophagy on the yellow catfish under acute ammonia stress. In this study, the yellow catfish intraperitoneally injected with 0.9 % sodium chloride were placed with 0 (CON group) and 125 (HA group) mg/L T-AN (Total ammonia nitrogen) dechlorinated water. The yellow catfish intraperitoneally injected with 30 mg/kg fish CQ (Chloroquine, HA + CQ group) and 1.5 mg/kg fish RAPA (rapamycin, HA + RAPA group) were placed in dechlorinated water containing 125 mg/L T-AN. The results showed that activation of autophagy by injecting with RAPA can alleviate oxidative stress (catalase, superoxide dismutase, total antioxidant capacity significantly increased, H2O2 content significantly decreased), and inflammatory response (pro-inflammatory factors TNF-α, MyD88, IL 1-ß gene expression decreased significantly), apoptosis (baxa, Bcl2, Tgf-ß, Smad2, Caspase3, Caspase 9 gene expression decreased significantly) induced by ammonia stress. In addition, activation of autophagy in yellow catfish can enhance ammonia detoxification by promoting the urea cycle and synthesis of glutamine (the mRNA level of CPS Ⅰ, ARG, OTC, ASS, ASL, and GS increased in the HA + RAPA group). The data above demonstrates that activating autophagy can alleviate oxidative stress, inflammatory responses, and cell apoptosis induced by ammonia stress. Therefore, enhancing autophagy is proposed as a potential strategy to mitigate the detrimental impacts of ammonia stress on yellow catfish.


Subject(s)
Ammonia , Apoptosis , Autophagy , Catfishes , Inflammation , Oxidative Stress , Animals , Catfishes/immunology , Ammonia/toxicity , Autophagy/drug effects , Apoptosis/drug effects , Oxidative Stress/drug effects , Inflammation/veterinary , Inflammation/chemically induced , Water Pollutants, Chemical/toxicity , Fish Diseases/immunology , Fish Diseases/chemically induced , Stress, Physiological/drug effects
6.
Fish Shellfish Immunol ; 149: 109575, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663463

ABSTRACT

Avamectin (AVM), a macrolide antibiotic, is widely used in fisheries, agriculture, and animal husbandry, however, its irrational use poses a great danger to aquatic organisms. Ferulic acid (FA) is a natural chemical found in the cell walls of plants. It absorbs free radicals from the surrounding environment and acts as an antioxidant. However, the protective effect of FA against kidney injury caused by AVM has not been demonstrated. In this study, 60 carp were divided into the control group, AVM group (2.404 µg/L), FA+AVM group and FA group (400 mg/kg). Pathological examination, quantitative real-time PCR (qPCR), reactive oxygen species (ROS) and western blot were used to evaluate the preventive effect of FA on renal tissue injury after AVM exposure. Histological findings indicated that FA significantly reduced the swelling and infiltration of inflammatory cells in the kidney tissues of carp triggered by AVM. Dihydroethidium (DHE) fluorescent probe assay showed that FA inhibited the accumulation of kidney ROS. Biochemical results showed that FA significantly increased glutathione (GSH) content, total antioxidant capacity (T-AOC) and catalase (CAT) activity, and decreased intracellular malondialdehyde (MDA) content. In addition, western blot results revealed that the protein expression levels of Nrf2 and p-NF-κBp65 in the carp kidney were inhibited by AVM, but reversed by the FA. The qPCR results exhibited that FA significantly increased the mRNA levels of tgf-ß1 and il-10, while significantly down-regulated the gene expression levels of tnf-α, il-6 and il-1ß. These data suggest that FA can reduce oxidative stress and renal tissue inflammation induced by AVM. At the same time, FA inhibited the apoptosis of renal cells induced by AVM by decreasing the transcription level and protein expression level of Bax, and increasing the transcription level and protein expression level of Bcl2, PI3K and AKT. This study provides preliminary evidence for the theory that FA reduces the level of oxidative stress, inflammation response and kidney tissue damage caused by apoptosis in carp, providing a theoretical basis for the prevention and treatment of the AVM.


Subject(s)
Apoptosis , Carps , Coumaric Acids , Fish Diseases , Inflammation , Ivermectin , Oxidative Stress , Animals , Carps/immunology , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Ivermectin/toxicity , Oxidative Stress/drug effects , Coumaric Acids/pharmacology , Fish Diseases/chemically induced , Fish Diseases/immunology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/veterinary , Apoptosis/drug effects , Kidney Diseases/veterinary , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/immunology , Kidney/drug effects , Kidney/pathology , Random Allocation , Animal Feed/analysis
7.
Fish Shellfish Immunol ; 149: 109578, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670413

ABSTRACT

MicroRNAs are increasingly recognized for their pivotal role in the immune system, yet the specific regulatory functions of fish-derived microRNAs remain largely unexplored. In this research, we discovered a novel miRNA, Cse-miR-144, in the Chinese tongue sole (Cynoglossus semilaevis), characterized by a 73-base pair precursor and a 21-nucleotide mature sequence. Our findings revealed that the expression of Cse-miR-144 was notably inhibited by various Vibrio species. Utilizing bioinformatics and dual-luciferase assay techniques, we established that the pro-inflammatory cytokine gene CsMAPK6 is a direct target of Cse-miR-144. Subsequent in vitro and in vivo western blotting analyses confirmed that Cse-miR-144 can effectively reduce the protein levels of CsMAPK6 post-transcriptionally. Moreover, CsMAPK6 is known to be involved in the activation of the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kB). Additional investigations using qPCR and ELISA demonstrated that suppression of Cse-miR-144 leads to an upsurge in the liver mRNA levels of various immune genes (including MYD88, TRAF6, NF-κB, TRAF2, TRAF3, and TNF), alongside a marked increase in the production and secretion of pro-inflammatory cytokines (IL-1ß, IL-6, and IL-8) in the bloodstream of C. semilaevis. These findings collectively underscore the potential of Cse-miR-144 as a key inhibitor of CsMAPK and its crucial role in modulating the immune and inflammatory responses in teleost fish. Compared to the siRNA, miRNA is a better tool in controlling the expression of target gene with a lower cost.


Subject(s)
Fish Diseases , Fish Proteins , Flatfishes , Gene Expression Regulation , Immunity, Innate , MicroRNAs , Vibrio Infections , Vibrio , Animals , MicroRNAs/genetics , MicroRNAs/immunology , Flatfishes/immunology , Flatfishes/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Vibrio/physiology , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Inflammation/immunology , Inflammation/veterinary , Inflammation/genetics , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism
8.
Open Vet J ; 14(1): 25-31, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633174

ABSTRACT

Background: Affection with Corynebacterium pseudotuberculosis (C. pseudotuberculosis) and development of cellulitis and/or abscess formation with cutaneous lymphangitis in cattle is rare to some extent, so literature about the biochemical changes that would accompany this infection is rare. Aim: In this context, the present study was designed to screen the effect of the infection with C. pseudotuberculosis cutaneous lymphangitis on the release of some immune molecules, organ functions, and redox state in Baladi cows. Methods: Fourteen Baladi cows from a small dairy farm in El-Behira, Egypt, were selected to complete this study. After bacteriological culture confirmation, seven of them were found suffering from cutaneous lesions due to infection with C. pseudotuberculosis (Diseased group), while the others were healthy (Healthy group). Serum samples were obtained to evaluate the presumptive changes in some clinicopathological parameters. Results: Serum analysis revealed a significant decrease in the levels of interferon-gamma and interleukin-17 as well as a significant decrement in the concentration of beta-defensin (ß-defensin) and lipocalin-2. While serum level of interleukin-10 recorded a significant increase in these animals when compared to healthy control animals. Concurrently, the affected animals recorded a significant elevation in serum levels of hepato-cardiac enzymes, urea, and creatinine in addition to disturbance in the serum redox state. Conclusion: In conclusion, infection with C. pseudotuberculosis cattle may disturb the defensive immune state, body organ function, and redox state of the animals.


Subject(s)
Cattle Diseases , Corynebacterium Infections , Lymphangitis , beta-Defensins , Female , Cattle , Animals , Lymphangitis/veterinary , Cytokines , Inflammation/veterinary , Cattle Diseases/microbiology , Corynebacterium Infections/microbiology , Corynebacterium Infections/pathology , Corynebacterium Infections/veterinary
9.
Open Vet J ; 14(1): 416-427, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633182

ABSTRACT

Background: Acute lung injury (ALI) is a severe condition distinguished by inflammation and impaired gas exchange in the lungs. Staphylococcus aureus, a common bacterium, can cause ALI through its virulence factors. Aloe vera is a medicinal plant that has been traditionally used to treat a variety of illnesses due to its anti-inflammatory properties. Chitosan nanoparticles are biocompatible and totally biodegradable materials that have shown potential in drug delivery systems. Aim: To explore the antibacterial activity of Aloe vera-loaded chitosan nanoparticles (AV-CS-NPs) against S. aureus in vitro and in vivo with advanced techniques. Methods: The antibacterial efficacy of AV-CS-NPs was evaluated through a broth microdilution assay. In addition, the impact of AV-CS-NPs on S. aureus-induced ALI in rats was examined by analyzing the expression of genes linked to inflammation, oxidative stress, and apoptosis. Furthermore, rat lung tissue was scanned histologically. The rats were divided into three groups: control, ALI, and treatment with AV-CS-NPs. Results: The AV-CS-NPs that were prepared exhibited clustered semispherical and spherical forms, having an average particle size of approximately 60 nm. These nanoparticles displayed a diverse structure with an uneven distribution of particle sizes. The maximum entrapment efficiency of 95.5% ± 1.25% was achieved. The obtained findings revealed that The minimum inhibitory concentration and minimum bactericidal concentration values were determined to be 5 and 10 ug/ml, respectively, indicating the potent bactericidal effect of the NPs. Also, S. aureus infected rats explored upregulation in the mRNA expression of TLR2 and TLR4 compared to healthy control groups. AV-CS-NP treatment reverses the case where there was repression in mRNA expression of TLR2 and TLR4 compared to S. aureus-treated rats. Conclusion: These NPs can serve as potential candidates for the development of alternative antimicrobial agents.


Subject(s)
Acute Lung Injury , Aloe , Chitosan , Nanoparticles , Rodent Diseases , Rats , Animals , Chitosan/chemistry , Chitosan/pharmacology , NF-kappa B/pharmacology , Staphylococcus aureus , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Nanoparticles/chemistry , Signal Transduction , Anti-Bacterial Agents/pharmacology , Acute Lung Injury/veterinary , Inflammation/veterinary , RNA, Messenger/pharmacology
10.
J Reprod Dev ; 70(3): 169-176, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38644218

ABSTRACT

Metabolic stress and subsequent hepatic dysfunction in high-producing dairy cows are associated with inflammatory diseases and declining fertility. Lipopolysaccharide (LPS)-binding protein (LBP) is produced by hepatocytes and controls the immune response, suggesting that it is involved in the pathophysiology of inflammation-related attenuation of reproductive functions during metabolic stress. This study investigated the effect of LBP on the inflammatory status, oocyte quality, and steroidogenesis in the follicular microenvironment of dairy cows. Using bovine ovaries obtained from a slaughterhouse, follicular fluid and granulosa cells were collected from large follicles to evaluate the follicular status of metabolism, inflammation, and steroidogenesis. Cumulus-oocyte complexes were aspirated from small follicles and subjected to in vitro embryo production. The results showed that follicular fluid LBP concentrations were significantly higher in cows with fatty livers and hepatitis than in those with healthy livers. Follicular fluid LBP and LPS concentrations were negatively correlated, whereas LPS concentration showed a positive correlation with the concentrations of non-esterified fatty acids (NEFA) and ß-hydroxybutyric acid in follicular fluid. The blastulation rate of oocytes after in vitro fertilization was impaired in cows in which coexisting large follicles had high NEFA levels. Follicular fluid NEFA concentration was negatively correlated with granulosa cell expression of the estradiol (E2) synthesis-related gene (CYP19A1). Follicular fluid LBP concentration was positively correlated with follicular fluid E2 concentration and granulosa cell CYP19A1 expression. In conclusion, follicular fluid LBP may be associated with favorable conditions in the follicular microenvironment, including low LPS levels and high E2 production by granulosa cells.


Subject(s)
Acute-Phase Proteins , Carrier Proteins , Follicular Fluid , Granulosa Cells , Inflammation , Membrane Glycoproteins , Ovarian Follicle , Animals , Female , Follicular Fluid/metabolism , Cattle , Granulosa Cells/metabolism , Acute-Phase Proteins/metabolism , Carrier Proteins/metabolism , Ovarian Follicle/metabolism , Membrane Glycoproteins/metabolism , Inflammation/metabolism , Inflammation/veterinary , Lipopolysaccharides/pharmacology , Oocytes/metabolism , Estradiol/metabolism , Fertilization in Vitro/veterinary , Fatty Acids, Nonesterified/metabolism , Cattle Diseases/metabolism , Aromatase/metabolism
11.
Poult Sci ; 103(6): 103719, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38603936

ABSTRACT

Lipopolysaccharide (LPS) from Gram-negative bacteria initially induces liver inflammation with proinflammatory cytokines expressions. However, the underlying hepatoprotective mechanism of quercetin on LPS-induced hepatic inflammation remains unclear. Specific pathogen-free chicken embryos (n = 120) were allocated control vehicle, PBS with or without ethanol vehicle, LPS (125 ng/egg) with or without quercetin treatment (10, 20, or 40 nmol/egg, respectively), quercetin groups (10, 20, or 40 nmol/egg). Fifteen-day-old embryonated eggs were inoculated abovementioned solutions via the allantoic cavity. At embryonic d 19, the livers of the embryos were collected for histopathological examination, RNA extraction, real-time polymerase chain reaction, and immunohistochemistry investigation. We found that the liver presented inflammatory response (heterophils infiltration) after LPS induction. The LPS-induced mRNA expressions of inflammation-related factors (TLR4, TNFα, IL-1ß, IL-10, IL-6, MYD88, NF-κB1, p38, and MMP3) were upregulated after LPS induction when compared with the PBS group, while quercetin could downregulate these expressions as compared with the LPS group. Quercetin significantly decreased the immunopositivity to TLR4 and MMP3 in the treatment group when compared with the LPS group. Quercetin could significantly downregulate the mRNA expressions of autophagy-related genes (ATG5, ATG7, Beclin-1, LC3A, and LC3B) and necroptosis-related genes (Fas, Bcl-2, Drp1, and RIPK1) after LPS induction. Quercetin significantly decreased the immunopositivity to LC3 in the treatment group when compared with the LPS group; meanwhile, quercetin significantly decreased the protein expressions of LC3-I, LC3-II, and the rate of LC3-II/LC3-I. In conclusions, quercetin can alleviate hepatic inflammation induced by LPS through modulating autophagy and necroptosis.


Subject(s)
Autophagy , Inflammation , Lipopolysaccharides , Necroptosis , Poultry Diseases , Quercetin , Animals , Quercetin/pharmacology , Quercetin/administration & dosage , Autophagy/drug effects , Poultry Diseases/chemically induced , Poultry Diseases/prevention & control , Necroptosis/drug effects , Chick Embryo , Inflammation/chemically induced , Inflammation/veterinary , Specific Pathogen-Free Organisms , Chickens
12.
Fish Shellfish Immunol ; 148: 109511, 2024 May.
Article in English | MEDLINE | ID: mdl-38499215

ABSTRACT

Lactobacillus rhamnosus is a probiotic, which not only promotes the growth of animals, but also has anti-inflammatory effects. However, the mechanism by which Lactobacillus rhamnosus regulates intestinal immunity is not well comprehended. Hence, the study aimed to research how Lactobacillus rhamnosus affects the intestinal immunity using juvenile grass carp (Ctenopharyngodon idella) as a model. We selected 1800 juvenile grass carp for testing. They were divided into six treatments and fed with six gradients of Lactobacillus rhamnosus GCC-3 (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 g/kg) for 70 days. Enteritis was subsequently induced with dextroside sodium sulfate. Results indicated that dietary Lactobacillus rhamnosus GCC-3 addition improved growth performance. Meanwhile, appropriate levels of Lactobacillus rhamnosus GCC-3 alleviated excessive inflammatory response by down-regulating the expression of TLR4 and NOD receptors, up-regulating the expression of TOR, and then down-regulating the expression of NF-κB. Additionally, appropriate Lactobacillus rhamnosus GCC-3 improved intestinal immunity by reducing pyroptosis triggered by NLRP3 inflammasome and mediated by GSDME. Furthermore, 16 S rRNA sequencing showing appropriate levels of Lactobacillus rhamnosus GCC-3 increased Lactobacillus and Bifidobacterium abundance and decreased Aeromonas abundance. These results suggest that Lactobacillus rhamnosus GCC-3 can alleviate intestinal inflammation through down-regulating NF-κB and up-regulating TOR signaling pathways, as well as by inhibiting pyroptosis.


Subject(s)
Carps , Fish Diseases , Lacticaseibacillus rhamnosus , Animals , NF-kappa B/metabolism , Dietary Supplements , Immunity, Innate , Carps/metabolism , Diet/veterinary , Inflammation/veterinary , Animal Feed/analysis , Fish Proteins/genetics
13.
Comp Immunol Microbiol Infect Dis ; 107: 102148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430666

ABSTRACT

Leishmaniasis is a zoonotic disease caused by Leishmania spp., impacts multiple systems and organs. While hematological and biochemical profiles aren't definitive for diagnosis, recent studies have identified the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and systemic immune-inflammation index (SII) as predictors of morbidity and mortality in critically ill human and dog patients. This study examined 100 dogs diagnosed with leishmaniasis, categorized by the International Renal Interest Society (IRIS) stages 1-4. Additionally, the dogs were divided based on whether they survived less or more than one year (L1Y and G1Y). Control group consisted of 43 dogs. The NLR increased as the disease progressed (IRIS 1-4), presenting statistically significant differences (P<0.05) when compared to the control group (2,37±2,08) IRIS 3 and 4 (4,59±13,39 and 6,99±12,86, respectively), and G1Y and L1Y (3,60±4,02 and 4,87±5,82, respectively). Significant changes in SII were only evident in short-term survivors (L1Y 951,93±1402) and advanced renal disease cases (IRIS 4 stage 1073,68±1901,09). Conversely, PLR remained largely unchanged. In conclusion, these results suggest that the neutrophil-to-lymphocyte ratio (NLR) and systemic immune-inflammation index (SII) may serve as potential markers for assessing disease progression and prognosis in dogs diagnosed with leishmaniasis.


Subject(s)
Leishmaniasis , Neutrophils , Humans , Dogs , Animals , Clinical Relevance , Lymphocytes , Inflammation/veterinary , Leishmaniasis/diagnosis , Leishmaniasis/veterinary , Retrospective Studies
14.
Vet Immunol Immunopathol ; 270: 110738, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452577

ABSTRACT

Laminitis is a pathology of the equine digit ultimately leading to a failure of the dermo-epidermal interface. Neutrophil activation is recognized as a major factor in SIRS-associated laminitis and has recently been described in induced endocrinopathic laminitis evidenced by the presence of myeloperoxidase (MPO). Neutrophil extracellular traps (NET) are released with neutrophil activation. This study aimed to investigate the presence and activity of MPO and NET in the lamellar tissue of equids presented with naturally occurring laminitis. Samples of lamellar tissue of five horses and five donkeys presented with laminitis, as well as eight control horses without laminitis, were collected. Lamellar tissue extracts were submitted to ELISA and specific immuno-extraction followed by enzymatic detection (SIEFED) assays to confirm the presence and activity of both MPO and NET. Lamellar sections were also immunohistopathologically stained for MPO and NET. Analysis of lamellar tissue extracts revealed that laminitis cases had significantly higher levels of total MPO concentration, MPO activity, and NET-bound MPO activity in comparison to control horses. Moreover, a strong correlation was identified between the activity of NET-bound MPO and the total MPO activity, which suggests that MPO activity partly originates from NET-bound MPO. Immunohistochemical staining showed that MPO and NET labelling in laminitis cases was moderate to marked, primarily in the epidermis and in inflammatory infiltrates containing neutrophils, while labelling in control horses was minimal. This article constitutes the first indication of the presence and activity of NET-bound MPO in the lamellar tissue of horses and donkeys with naturally occurring laminitis. Targeting these substances may provide new treatment possibilities for this debilitating disease.


Subject(s)
Dermatitis , Extracellular Traps , Foot Diseases , Horse Diseases , Horses , Animals , Foot Diseases/veterinary , Dermatitis/veterinary , Equidae , Peroxidase , Tissue Extracts , Horse Diseases/pathology , Inflammation/veterinary
15.
Res Vet Sci ; 171: 105231, 2024 May.
Article in English | MEDLINE | ID: mdl-38513460

ABSTRACT

Intestinal disorders can affect pigs of any age, especially when animals are young and more susceptible to infections and environmental stressors. For instance, pathogenic E. coli can alter intestinal functions, thus leading to altered nutrient adsorption by interacting with local cells through lipopolysaccharide (LPS). Among several compounds studied to counteract the negative effects on the intestine, short-chain fatty acids (SCFA) were demonstrated to exert beneficial effects on gut epithelial cells and resident immune cells. In this study, acetate and propionate were tested for their beneficial effects in a co-culture model of IPEC-J2 and porcine PBMC pre-stimulated with LPS from E. coli 0111:B4 aimed at mimicking the interaction between intestinal cells and immune cells in an inflammatory/activated status. IPEC-J2 viability was partially reduced when co-cultured with activated PBMC and nitric oxide concentration increased. IPEC-J2 up-regulated innate and inflammatory markers, namely BD-1, TLR-4, IL-8, TNF-α, NF-κB, and TGF-ß. Acetate and propionate positively modulated the inflammatory condition by sustaining cell viability, reducing the oxidative stress, and down-regulating the expression of inflammatory mediators. TNF-α expression and secretion showed an opposite effect in IPEC-J2 depending on the extent of LPS stimulation of PBMC and TGF-ß modulation. Therefore, SCFA proved to mediate a differential effect depending on the degree and duration of inflammation. The expression of the tight junction proteins (TJp) claudin-4 and zonula occludens-1 was up-regulated by LPS while SCFA influenced TJp with a different kinetics depending on PBMC stimulation. The co-culture model of IPEC-J2 and LPS-activated PBMC proved to be feasible to address the modulation of markers related to anti-bacterial immunity and inflammation, and intestinal epithelial barrier integrity, which are involved in the in vivo responsiveness and plasticity to infections.


Subject(s)
Escherichia coli , Swine Diseases , Animals , Swine , Escherichia coli/metabolism , Lipopolysaccharides/toxicity , Tumor Necrosis Factor-alpha/metabolism , Propionates , Leukocytes, Mononuclear/metabolism , Cell Line , Epithelial Cells/metabolism , Fatty Acids, Volatile , Acetates , Transforming Growth Factor beta , Inflammation/veterinary , Intestinal Mucosa/metabolism
16.
Open Vet J ; 14(2): 730-737, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38549571

ABSTRACT

Background: Controlling apoptosis induced by oxidative stress in pancreatic ß-cells provides promising strategies for preventing and treating diabetes. Clinacanthus nutans leaves possess bioactive constituents with potential antioxidant and anti-diabetic properties. Aim: This study aimed to investigate the molecular mechanisms by which C. nutans extract protects pancreatic ß-cells from apoptotic damage in streptozotocin (STZ)-induced diabetic rats. Methods: Diabetes was induced in male Wistar rats by intraperitoneal injection of 45 mg/kg STZ, followed by 28 days of treatment with C. nutans leaf extract and Glibenclamide as the standard drug. At the end of the study, blood samples were collected to measure glucose levels, oxidative stress markers, and inflammation. Pancreatic tissue was stained immunohistochemically to detect c-Jun N-terminal kinase (JNK) and Caspase-3 expression. Results: The administration of C. nutans leaf extract to diabetic rats significantly reduced fasting blood glucose, malondialdehyde, and tumor necrosis factor-α levels, while concurrently enhancing the activity of superoxide dismutase. The immunohistochemical studies revealed a decrease in the expression of JNK and caspase-3 in the pancreatic islets of diabetic rats. Conclusion: Clinacanthus nutans exhibits the potential to protect pancreatic ß-cells from apoptosis by suppressing oxidative stress and inflammation.


Subject(s)
Diabetes Mellitus, Experimental , Rodent Diseases , Rats , Male , Animals , Streptozocin/therapeutic use , Caspase 3/metabolism , Rats, Wistar , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Oxidative Stress , Apoptosis , Inflammation/drug therapy , Inflammation/veterinary , Plant Extracts/pharmacology , Plant Extracts/chemistry
17.
Open Vet J ; 14(2): 664-673, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38549578

ABSTRACT

Background: Inflammation caused by Opisthorchis viverrini infection increases the risk of cholangitis, cholecystitis, and leads to bile duct cancer (cholangiocarcinoma or CCA). However, only certain infected individuals are susceptible to CCA, suggesting the involvement of host factors in cancer development. In addition, there are reports indicating differences in the locations of CCA. Aim: This study aims to investigate cellular inflammatory responses in the common bile duct (CB), intrahepatic bile duct (IHB), and gallbladder (GB) in susceptible and non-susceptible hosts following O. viverrini infection. Methods: Thirty Syrian golden hamsters (a susceptible host) and 30 BALB/c mice (a non-susceptible host) infected with O. viverrini were studied at six time points (five animals per group). Histopathological evaluations were conducted on samples from the IHB, CB, and GB. Inflammatory cell infiltration was quantitatively assessed and compared between groups and time points. Statistical analysis was performed using one-way ANOVA, with a significance level of p < 0.05. Results: Inflammation was significantly more pronounced in the IHB compared to the other two biliary locations. In comparison between susceptible and non-susceptible hosts, the intensity of inflammation was higher in the OV+H group than in the OV+M group (p < 0.05). Conclusion: This study highlights the association between host response to inflammation, tissue location, and host susceptibility, with the IHB showing particular susceptibility to inflammation and pathological changes. These findings contribute to our understanding of the increased risk of CCA in susceptible hosts.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Opisthorchiasis , Opisthorchis , Rodent Diseases , Cricetinae , Mice , Animals , Opisthorchiasis/complications , Opisthorchiasis/pathology , Opisthorchiasis/veterinary , Opisthorchis/physiology , Bile Ducts, Intrahepatic/pathology , Mesocricetus , Cholangiocarcinoma/pathology , Cholangiocarcinoma/veterinary , Inflammation/veterinary , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/veterinary
18.
Sci Total Environ ; 923: 171475, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38453063

ABSTRACT

Climbazole is an azole biocide that has been widely used in formulations of personal care products. Climbazole can cause developmental toxicity and endocrine disruption as well as gut disturbance in aquatic organisms. However, the mechanisms behind gut toxicity induced by climbazole still remain largely unclear in fish. Here, we evaluate the gut effects by exposing grass carp (Ctenopharyngodon idella) to climbazole at levels ranging from 0.2 to 20 µg/L for 42 days by evaluating gene transcription and expression, biochemical analyses, correlation network analysis, and molecular docking. Results showed that climbazole exposure increased cyp1a mRNA expression and ROS level in the three treatment groups. Climbazole also inhibited Nrf2 and Keap1 transcripts as well as proteins, and suppressed the transcript levels of their subordinate antioxidant molecules (cat, sod, and ho-1), increasing oxidative stress. Additionally, climbazole enhanced NF-κB and iκBα transcripts and proteins, and the transcripts of NF-κB downstream pro-inflammatory factors (tnfα, and il-1ß/6/8), leading to inflammation. Climbazole increased pro-apoptosis-related genes (fadd, bad1, and caspase3), and decreased anti-apoptosis-associated genes (bcl2, and bcl-xl), suggesting a direct reaction to apoptosis. The molecular docking data showed that climbazole could form stable hydrogen bonds with CYP1A. Mechanistically, our findings suggested that climbazole can induce inflammation and oxidative stress through CYP450s/ROS/Nrf2/NF-κB pathways, resulting in cell apoptosis in the gut of grass carp.


Subject(s)
Carps , Dietary Supplements , Imidazoles , Animals , Dietary Supplements/analysis , Diet , NF-kappa B , Kelch-Like ECH-Associated Protein 1/metabolism , Immunity, Innate , Azoles/toxicity , NF-E2-Related Factor 2/metabolism , Molecular Docking Simulation , Reactive Oxygen Species/metabolism , Signal Transduction , Fish Proteins/genetics , Fish Proteins/metabolism , Inflammation/chemically induced , Inflammation/veterinary , Oxidative Stress , Apoptosis , Carps/metabolism
19.
BMC Vet Res ; 20(1): 110, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500105

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a common condition in veterinary medicine that is difficult to manage.Veterinary regenerative therapy based on adipose mesenchymal stem cells seem to be an effective strategy for the treatment of traumatic brain injury. In this study, we evaluated therapeutic efficacy of canine Adipose-derived mesenchymal stem cells (AD-MSCs)in a rat TBI model, in terms of improved nerve function and anti-neuroinflammation. RESULTS: Canine AD-MSCs promoted neural functional recovery, reduced neuronal apoptosis, and inhibited the activation of microglia and astrocytes in TBI rats. According to the results in vivo, we further investigated the regulatory mechanism of AD-MSCs on activated microglia by co-culture in vitro. Finally, we found that canine AD-MSCs promoted their polarization to the M2 phenotype, and inhibited their polarization to the M1 phenotype. What's more, AD-MSCs could reduce the migration, proliferation and Inflammatory cytokines of activated microglia, which is able to inhibit inflammation in the central system. CONCLUSIONS: Collectively, the present study demonstrates that transplantation of canine AD-MSCs can promote functional recovery in TBI rats via inhibition of neuronal apoptosis, glial cell activation and central system inflammation, thus providing a theoretical basis for canine AD-MSCs therapy for TBI in veterinary clinic.


Subject(s)
Brain Injuries, Traumatic , Dog Diseases , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Rodent Diseases , Rats , Animals , Dogs , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/veterinary , Microglia , Macrophages , Inflammation/veterinary , Mesenchymal Stem Cell Transplantation/veterinary , Mesenchymal Stem Cell Transplantation/methods
20.
Poult Sci ; 103(5): 103586, 2024 May.
Article in English | MEDLINE | ID: mdl-38442474

ABSTRACT

Intestinal inflammation is a primary contributor to poor growth performance during poultry production. Chlorogenic acid (CGA) is a natural phenolic acid that exhibits superior anti-inflammatory activity and improved intestinal health. To investigate the protective effects and molecular mechanisms of CGA during intestinal inflammation in lipopolysaccharide (LPS)-challenged broilers, we randomly divided 288 one-day-old male Cobb broilers into 4 groups: a control group fed a basal diet (CON group), a basal diet + LPS group (LPS group), and 2 basal diet groups fed 500 or 750 mg/kg CGA + LPS (CGA_500 or CGA_750 groups). Broilers were injected with LPS or saline at 15, 17, 19, and 21 d old. Chlorogenic acid supplementation improved the growth performance of LPS-challenged broilers by increasing average daily gain (ADG) and reducing feed/gain (F/G) ratios (P < 0.05). CGA also improved intestinal barrier function in LPS-challenged boilers by enhancing jejunum morphology and integrity, decreasing intestinal permeability, and increasing occludin 3, zonula occludens-1, and mucin 2 expression (P < 0.05). CGA supplementation also improved systemic and jejunum antioxidant capacity by significantly enhancing glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities (P < 0.05), and reducing malonaldehyde (MDA) and protein carbonyl (PCO) levels (P < 0.05). Chlorogenic acid supplementation reduced systemic and jejunum pro-inflammatory cytokines (interleukin (IL)-1ß, IL-6, and IL-12) and increased anti-inflammatory cytokines (IL-10) in LPS-challenged broilers (P < 0.05) by inhibiting the toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway (P < 0.05). In addition, the protective effects of CGA toward intestinal inflammation and apoptosis appeared to be correlated with inhibited endoplasmic reticulum (ER) stress (P < 0.05). In summary, CGA supplementation improved intestinal morphology and integrity by inhibiting TLR4/NF-κB and ER stress pathways, which potentially reduced oxidative stress and inflammation, and ultimately improved the growth performance of LPS-challenged broilers.


Subject(s)
Chickens , Chlorogenic Acid , Dietary Supplements , Endoplasmic Reticulum Stress , Lipopolysaccharides , NF-kappa B , Poultry Diseases , Animals , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/pharmacology , Lipopolysaccharides/pharmacology , Male , NF-kappa B/metabolism , Poultry Diseases/chemically induced , Poultry Diseases/drug therapy , Endoplasmic Reticulum Stress/drug effects , Dietary Supplements/analysis , Diet/veterinary , Inflammation/veterinary , Inflammation/drug therapy , Inflammation/chemically induced , Random Allocation , Animal Feed/analysis , Intestines/drug effects , Intestines/pathology , Intestinal Diseases/veterinary , Intestinal Diseases/chemically induced , Intestinal Diseases/drug therapy , Intestinal Diseases/prevention & control , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...