Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.651
Filter
1.
J Med Virol ; 96(5): e29657, 2024 May.
Article in English | MEDLINE | ID: mdl-38727035

ABSTRACT

The H1N1pdm09 virus has been a persistent threat to public health since the 2009 pandemic. Particularly, since the relaxation of COVID-19 pandemic mitigation measures, the influenza virus and SARS-CoV-2 have been concurrently prevalent worldwide. To determine the antigenic evolution pattern of H1N1pdm09 and develop preventive countermeasures, we collected influenza sequence data and immunological data to establish a new antigenic evolution analysis framework. A machine learning model (XGBoost, accuracy = 0.86, area under the receiver operating characteristic curve = 0.89) was constructed using epitopes, physicochemical properties, receptor binding sites, and glycosylation sites as features to predict the antigenic similarity relationships between influenza strains. An antigenic correlation network was constructed, and the Markov clustering algorithm was used to identify antigenic clusters. Subsequently, the antigenic evolution pattern of H1N1pdm09 was analyzed at the global and regional scales across three continents. We found that H1N1pdm09 evolved into around five antigenic clusters between 2009 and 2023 and that their antigenic evolution trajectories were characterized by cocirculation of multiple clusters, low-level persistence of former dominant clusters, and local heterogeneity of cluster circulations. Furthermore, compared with the seasonal H1N1 virus, the potential cluster-transition determining sites of H1N1pdm09 were restricted to epitopes Sa and Sb. This study demonstrated the effectiveness of machine learning methods for characterizing antigenic evolution of viruses, developed a specific model to rapidly identify H1N1pdm09 antigenic variants, and elucidated their evolutionary patterns. Our findings may provide valuable support for the implementation of effective surveillance strategies and targeted prevention efforts to mitigate the impact of H1N1pdm09.


Subject(s)
Antigens, Viral , Influenza A Virus, H1N1 Subtype , Influenza, Human , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/virology , Influenza, Human/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Machine Learning , Evolution, Molecular , Epitopes/genetics , Epitopes/immunology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , COVID-19/immunology , Pandemics/prevention & control , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology
2.
Sci Rep ; 14(1): 10436, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714669

ABSTRACT

Influenza (sometimes referred to as "flu") is a contagious viral infection of the airways in the lungs that affects a significant portion of the world's population. Clinical symptoms of influenza virus infections can range widely, from severe pneumonia to moderate or even asymptomatic sickness. If left untreated, influenza can have more severe effects on the heart, brain, and lungs than on the respiratory tract and can necessitate hospitalization. This study was aimed to investigate and characterize all types of influenza cases prevailing in Nepal and to analyze seasonal occurrence of Influenza in Nepal in the year 2019. A cross sectional, retrospective and descriptive study was carried out at National Influenza Center (NIC), National Public Health Laboratory Kathmandu Nepal for the period of one year (Jan-Dec 2019). A total of 3606 throat swab samples from various age groups and sexes were processed at the NIC. The specimens were primarily stored at 4 °C and processed using ABI 7500 RT PCR system for the identification of Influenza virus types and subtypes. Data accessed for research purpose were retrieved from National Influenza Centre (NIC) on 1st Jan 2020. Of the total 3606 patients suspected of having influenza infection, influenza viruses were isolated from 1213 (33.6%) patients with male predominance. The highest number of infection was caused by Influenza A/Pdm09 strain 739 (60.9%) followed by Influenza B 304 (25.1%) and Influenza A/H3 169 (13.9%) and most remarkable finding of this study was the detection of H5N1 in human which is the first ever case of such infection in human from Nepal. Similar to other tropical nations, influenza viruses were detected year-round in various geographical locations of Nepal. The influenza virus type and subtypes that were in circulation in Nepal were comparable to vaccine candidate viruses, which the currently available influenza vaccine may prevent.


Subject(s)
Influenza, Human , Humans , Nepal/epidemiology , Influenza, Human/epidemiology , Influenza, Human/virology , Female , Male , Child , Adult , Adolescent , Middle Aged , Child, Preschool , Infant , Retrospective Studies , Young Adult , Cross-Sectional Studies , Aged , Influenza B virus/genetics , Influenza B virus/isolation & purification , Seasons , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification
3.
Arch Virol ; 169(6): 130, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807015

ABSTRACT

Qingke Pingchuan granules (QPGs), which contain Houttuynia cordata Thunb, Fritillaria cirrhosa, fired licorice, and fired bitter almonds, among other components, can clear heat and ventilate the lungs, relieving cough and asthma. Clinically, QPGs are mainly used to treat cough, asthma, fever and other discomforts caused by acute or chronic bronchitis. In this study, the antiviral activity of QPGs against respiratory syncytial virus (RSV), influenza A virus A/FM/1/47 (H1N1), oseltamivir-resistant H1N1, A/Beijing/32/92 (H3N2), Sendai virus, and human adenovirus type 3 in Hep-2 or MDCK cells was evaluated using the CCK-8 method, and the cytotoxicity of QPGs to these two cell lines was tested. The effect of QPGs on mice infected with influenza A virus A/FM/1/47 (H1N1) was evaluated by measuring body weight, survival time, and survival rate, as well as virus titers and lesions in the lungs and levels of inflammatory factors in serum. In addition, the expression of TLR-7-My88-NF-κB signaling pathway-related proteins in lung tissues was analyzed by Western blotting and qRT-PCR. The results showed that QPGs had a potent inhibitory effect on the six viruses tested in vitro. Interestingly, QPGs also displayed particularly pronounced antiviral activity against H1N1-OC, similar to that of oseltamivir, a well-known antiviral drug. QPGs effectively protected mice from infection by H1N1, as indicated by significantly increased body weights, survival times, and survival rates and reduced lung virus titers of inflammatory factors and lung tissue injury. The levels of TLR-7-MyD88-NF-κB-pathway-related proteins in the lung tissue of infected mice were found to be decreased after QPG treatment, thereby alleviating lung injury caused by excessive release of inflammatory factors. Taken together, these findings indicate that QPGs have satisfactory activity against influenza virus infection.


Subject(s)
Antiviral Agents , Drugs, Chinese Herbal , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice , Drugs, Chinese Herbal/pharmacology , Humans , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Dogs , Madin Darby Canine Kidney Cells , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/physiology , Mice, Inbred BALB C , Lung/virology , Lung/drug effects , Lung/pathology , Cell Line , Houttuynia/chemistry , Influenza, Human/drug therapy , Influenza, Human/virology , NF-kappa B/metabolism , Female , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/physiology
4.
J Med Virol ; 96(6): e29687, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783821

ABSTRACT

Pregnancy heightens susceptibility to influenza A virus (IAV) infection, thereby increasing the risk of severe pneumonia and maternal mortality. It also raises the chances of adverse outcomes in offspring, such as fetal growth restriction, preterm birth, miscarriage, and stillbirth in offsprings. However, the underlying mechanisms behind these effects remain largely unknown. Syncytiotrophoblast cells, crucial in forming the placental barrier, nutrient exchange and hormone secretion, have not been extensively studied for their responses to IAV. In our experiment, we used Forskolin-treated BeWo cells to mimic syncytiotrophoblast cells in vitro, and infected them with H1N1, H5N1 and H7N9 virus stains. Our results showed that syncytiotrophoblast cells, with their higher intensity of sialic acid receptors, strongly support IAV infection and replication. Notably, high-dose viral infection and prolonged exposure resulted in a significant decrease in fusion index, as well as gene and protein expression levels associated with trophoblast differentiation, ß-human chorionic gonadotropin secretion, estrogen and progesterone biosynthesis, and nutrient transport. In pregnant BALB/c mice infected with the H1N1 virus, we observed significant decreases in trophoblast differentiation and hormone secretion gene expression levels. IAV infection also resulted in preterm labor, fetal growth restriction, and increased maternal and fetal morbidity and mortality. Our findings indicate that IAV infection in syncytiotrophoblastic cells can result in adverse pregnancy outcomes by altering trophoblast differentiation, suppressing of ß-hCG secretion, and disrupting placental barrier function.


Subject(s)
Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Pregnancy Outcome , Trophoblasts , Female , Trophoblasts/virology , Pregnancy , Animals , Humans , Influenza A Virus, H1N1 Subtype/physiology , Mice , Orthomyxoviridae Infections/virology , Influenza, Human/virology , Cell Line , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza A Virus, H7N9 Subtype/pathogenicity , Pregnancy Complications, Infectious/virology , Placenta/virology , Virus Replication
5.
Vet Res ; 55(1): 65, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773540

ABSTRACT

In 2020, a new genotype of swine H1N2 influenza virus (H1avN2-HA 1C.2.4) was identified in France. It rapidly spread within the pig population and supplanted the previously predominant H1avN1-HA 1C.2.1 virus. To characterize this new genotype which is genetically and antigenically distant from the other H1avNx viruses detected in France, an experimental study was conducted to compare the outcomes of H1avN2 and H1avN1 infections in pigs and evaluate the protection conferred by the only inactivated vaccine currently licensed in Europe containing an HA 1C (clade 1C.2.2) antigen. Infection with H1avN2 induced stronger clinical signs and earlier shedding than H1avN1. The neutralizing antibodies produced following H1avN2 infection were unable to neutralize H1avN1, and vice versa, whereas the cellular-mediated immunity cross-reacted. Vaccination slightly altered the impact of H1avN2 infection at the clinical level, but did not prevent shedding of infectious virus particles. It induced a cellular-mediated immune response towards H1avN2, but did not produce neutralizing antibodies against this virus. As in vaccinated animals, animals previously infected by H1avN1 developed a cross-reacting cellular immune response but no neutralizing antibodies against H1avN2. However, H1avN1 pre-infection induced a better protection against the H1avN2 infection than vaccination, probably due to higher levels of non-neutralizing antibodies and a mucosal immunity. Altogether, these results showed that the new H1avN2 genotype induced a severe respiratory infection and that the actual vaccine was less effective against this H1avN2-HA 1C.2.4 than against H1avN1-HA 1C.2.1, which may have contributed to the H1avN2 epizootic and dissemination in pig farms in France.


Subject(s)
Genotype , Influenza A Virus, H1N2 Subtype , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine , Swine Diseases/virology , Swine Diseases/immunology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , France/epidemiology , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza Vaccines/immunology , Virulence , Antibodies, Neutralizing/blood , Immunity, Cellular
6.
Influenza Other Respir Viruses ; 18(5): e13284, 2024 May.
Article in English | MEDLINE | ID: mdl-38773753

ABSTRACT

BACKGROUND: We report 2023/2024 season interim influenza vaccine effectiveness for three studies, namely, primary care in Great Britain, hospital settings in Scotland and hospital settings in England. METHODS: A test negative design was used to estimate vaccine effectiveness. RESULTS: Estimated vaccine effectiveness against all influenzas ranged from 63% (95% confidence interval 46 to 75%) to 65% (41 to 79%) among children aged 2-17, from 36% (20 to 49%) to 55% (43 to 65%) among adults 18-64 and from 40% (29 to 50%) to 55% (32 to 70%) among adults aged 65 and over. CONCLUSIONS: During a period of co-circulation of influenza A(H1N1)pdm09 and A(H3N2) in the United Kingdom, evidence for effectiveness of the influenza vaccine in both children and adults was found.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Influenza, Human , Primary Health Care , Secondary Care , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Adolescent , Adult , Child , Child, Preschool , Middle Aged , Young Adult , United Kingdom , Aged , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Male , Female , Influenza A Virus, H1N1 Subtype/immunology , Seasons , Vaccine Efficacy , Vaccination/statistics & numerical data
7.
Front Immunol ; 15: 1381508, 2024.
Article in English | MEDLINE | ID: mdl-38690272

ABSTRACT

Seasonal influenza remains a serious global health problem, leading to high mortality rates among the elderly and individuals with comorbidities. Vaccination is generally accepted as the most effective strategy for influenza prevention. While current influenza vaccines are effective, they still have limitations, including narrow specificity for certain serological variants, which may result in a mismatch between vaccine antigens and circulating strains. Additionally, the rapid variability of the virus poses challenges in providing extended protection beyond a single season. Therefore, mRNA technology is particularly promising for influenza prevention, as it enables the rapid development of multivalent vaccines and allows for quick updates of their antigenic composition. mRNA vaccines have already proven successful in preventing COVID-19 by eliciting rapid cellular and humoral immune responses. In this study, we present the development of a trivalent mRNA vaccine candidate, evaluate its immunogenicity using the hemagglutination inhibition assay, ELISA, and assess its efficacy in animals. We demonstrate the higher immunogenicity of the mRNA vaccine candidate compared to the inactivated split influenza vaccine and its enhanced ability to generate a cross-specific humoral immune response. These findings highlight the potential mRNA technology in overcoming current limitations of influenza vaccines and hold promise for ensuring greater efficacy in preventing seasonal influenza outbreaks.


Subject(s)
Antibodies, Viral , Cross Reactions , Immunity, Humoral , Influenza Vaccines , mRNA Vaccines , Influenza Vaccines/immunology , Animals , mRNA Vaccines/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Humans , Cross Reactions/immunology , Mice , Influenza, Human/prevention & control , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Female , Seasons , Immunogenicity, Vaccine , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Mice, Inbred BALB C , Influenza A Virus, H1N1 Subtype/immunology , COVID-19/prevention & control , COVID-19/immunology , Vaccination
8.
Front Immunol ; 15: 1342497, 2024.
Article in English | MEDLINE | ID: mdl-38694499

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a phenotypically heterogenous group of cells that potently suppress the immune response. A growing body of evidence supports the important role of MDSCs in a variety of lung diseases, such as asthma. However, the role of MDSCs in asthma exacerbation has so far not been investigated. Here, we studied the role of MDSCs in a murine model of influenza virus-induced asthma exacerbation. BALB/c mice were exposed to house dust mite (HDM) three times a week for a total of five weeks to induce a chronic asthmatic phenotype, which was exacerbated by additional exposure to the A/Hamburg/5/2009 hemagglutinin 1 neuraminidase 1 (H1N1) influenza virus. Induction of lung inflammatory features, production of T helper (Th) 1- and Th2- associated inflammatory cytokines in the lavage fluid and an increased airway hyper-responsiveness were observed, establishing the asthma exacerbation model. The number and activity of pulmonary M-MDSCs increased in exacerbated asthmatic mice compared to non-exacerbated asthmatic mice. Furthermore, depletion of MDSCs aggravated airway hyper-responsiveness in exacerbated asthmatic mice. These findings further denote the role of MDSCs in asthma and provide some of the first evidence supporting a potential important role of MDSCs in asthma exacerbation.


Subject(s)
Asthma , Cytokines , Disease Models, Animal , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Myeloid-Derived Suppressor Cells , Orthomyxoviridae Infections , Animals , Asthma/immunology , Myeloid-Derived Suppressor Cells/immunology , Mice , Orthomyxoviridae Infections/immunology , Cytokines/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Female , Pyroglyphidae/immunology , Disease Progression , Lung/immunology , Lung/pathology , Lung/virology , Th2 Cells/immunology
9.
Influenza Other Respir Viruses ; 18(5): e13295, 2024 May.
Article in English | MEDLINE | ID: mdl-38744684

ABSTRACT

BACKGROUND: The 2022/23 influenza season in the United Kingdom saw the return of influenza to prepandemic levels following two seasons with low influenza activity. The early season was dominated by A(H3N2), with cocirculation of A(H1N1), reaching a peak late December 2022, while influenza B circulated at low levels during the latter part of the season. From September to March 2022/23, influenza vaccines were offered, free of charge, to all aged 2-13 (and 14-15 in Scotland and Wales), adults up to 49 years of age with clinical risk conditions and adults aged 50 and above across the mainland United Kingdom. METHODS: End-of-season adjusted vaccine effectiveness (VE) estimates against sentinel primary-care attendance for influenza-like illness, where influenza infection was laboratory confirmed, were calculated using the test negative design, adjusting for potential confounders. METHODS: Results In the mainland United Kingdom, end-of-season VE against all laboratory-confirmed influenza for all those > 65 years of age, most of whom received adjuvanted quadrivalent vaccines, was 30% (95% CI: -6% to 54%). VE for those aged 18-64, who largely received cell-based vaccines, was 47% (95% CI: 37%-56%). Overall VE for 2-17 year olds, predominantly receiving live attenuated vaccines, was 66% (95% CI: 53%-76%). CONCLUSION: The paper provides evidence of moderate influenza VE in 2022/23.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza Vaccines , Influenza, Human , Primary Health Care , Vaccine Efficacy , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Middle Aged , Adolescent , Adult , Primary Health Care/statistics & numerical data , United Kingdom/epidemiology , Aged , Young Adult , Child , Female , Male , Child, Preschool , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Seasons , Vaccination/statistics & numerical data
10.
Acta Biochim Pol ; 71: 12289, 2024.
Article in English | MEDLINE | ID: mdl-38721309

ABSTRACT

The aim of the study was to determine the level of anti-hemagglutinin antibodies in the serum of patients during the 2021/2022 epidemic season in Poland. A total of 700 sera samples were tested, divided according to the age of the patients into 7 age groups: 0-4 years of age, 5-9 years of age, 10-14 years of age, 15-25 years of age, 26-44 years of age, 45-64 years of age and ≥65 years of age, 100 samples were collected from each age group. Anti-hemagglutinin antibody levels was determined using the haemagglutination inhibition assay (OZHA). The results obtained confirm the presence of anti-hemagglutinin antibodies for the antigens A/Victoria/2570/2019 (H1N1) pdm09, A/Cambodia/e0826360/2020 (H3N2), B/Washington/02/2019 and B/Phuket/3073/2013 recommended by World Health Organization (WHO) for the 2021/2022 epidemic season. The analysis of the results shows differences in the levels of individual anti-hemagglutinin antibodies in the considered age groups. In view of very low percentage of the vaccinated population in Poland, which was 6.90% in the 2021/2022 epidemic season, the results obtained in the study would have to be interpreted as the immune system response in patients after a previous influenza virus infection.


Subject(s)
Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza, Human , Humans , Poland/epidemiology , Adult , Middle Aged , Adolescent , Influenza, Human/immunology , Influenza, Human/epidemiology , Influenza, Human/blood , Influenza, Human/virology , Child , Aged , Child, Preschool , Antibodies, Viral/blood , Antibodies, Viral/immunology , Young Adult , Infant , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Male , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Female , Infant, Newborn , Hemagglutination Inhibition Tests , Influenza B virus/immunology , Seasons , Epidemics , Prevalence
11.
ACS Appl Mater Interfaces ; 16(19): 25169-25180, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695741

ABSTRACT

Additive manufacturing holds promise for rapid prototyping and low-cost production of biosensors for diverse pathogens. Among additive manufacturing methods, screen printing is particularly desirable for high-throughput production of sensing platforms. However, this technique needs to be combined with carefully formulated inks, rapid postprocessing, and selective functionalization to meet all requirements for high-performance biosensing applications. Here, we present screen-printed graphene electrodes that are processed with thermal annealing to achieve high surface area and electrical conductivity for sensitive biodetection via electrochemical impedance spectroscopy. As a proof-of-concept, this biosensing platform is utilized for electrochemical detection of SARS-CoV-2. To ensure reliable specificity in the presence of multiple variants, biolayer interferometry (BLI) is used as a label-free and dynamic screening method to identify optimal antibodies for concurrent affinity to the Spike S1 proteins of Delta, Omicron, and Wild Type SARS-CoV-2 variants while maintaining low affinity to competing pathogens such as Influenza H1N1. The BLI-identified antibodies are robustly bound to the graphene electrode surface via oxygen moieties that are introduced during the thermal annealing process. The resulting electrochemical immunosensors achieve superior metrics including rapid detection (55 s readout following 15 min of incubation), low limits of detection (approaching 500 ag/mL for the Omicron variant), and high selectivity toward multiple variants. Importantly, the sensors perform well on clinical saliva samples detecting as few as 103 copies/mL of SARS-CoV-2 Omicron, following CDC protocols. The combination of the screen-printed graphene sensing platform and effective antibody selection using BLI can be generalized to a wide range of point-of-care immunosensors.


Subject(s)
Biosensing Techniques , Graphite , Interferometry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Graphite/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Biosensing Techniques/methods , Humans , Interferometry/instrumentation , Spike Glycoprotein, Coronavirus/immunology , COVID-19/diagnosis , COVID-19/virology , Electrodes , Electrochemical Techniques/methods , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/immunology
12.
Influenza Other Respir Viruses ; 18(5): e13301, 2024 May.
Article in English | MEDLINE | ID: mdl-38733199

ABSTRACT

BACKGROUND: Human contact patterns are a key determinant driving the spread of respiratory infectious diseases. However, the relationship between contact patterns and seasonality as well as their possible association with the seasonality of respiratory diseases is yet to be clarified. METHODS: We investigated the association between temperature and human contact patterns using data collected through a cross-sectional diary-based contact survey in Shanghai, China, between December 24, 2017, and May 30, 2018. We then developed a compartmental model of influenza transmission informed by the derived seasonal trends in the number of contacts and validated it against A(H1N1)pdm09 influenza data collected in Shanghai during the same period. RESULTS: We identified a significant inverse relationship between the number of contacts and the seasonal temperature trend defined as a spline interpolation of temperature data (p = 0.003). We estimated an average of 16.4 (95% PrI: 15.1-17.5) contacts per day in December 2017 that increased to an average of 17.6 contacts (95% PrI: 16.5-19.3) in January 2018 and then declined to an average of 10.3 (95% PrI: 9.4-10.8) in May 2018. Estimates of influenza incidence obtained by the compartmental model comply with the observed epidemiological data. The reproduction number was estimated to increase from 1.24 (95% CI: 1.21-1.27) in December to a peak of 1.34 (95% CI: 1.31-1.37) in January. The estimated median infection attack rate at the end of the season was 27.4% (95% CI: 23.7-30.5%). CONCLUSIONS: Our findings support a relationship between temperature and contact patterns, which can contribute to deepen the understanding of the relationship between social interactions and the epidemiology of respiratory infectious diseases.


Subject(s)
Influenza, Human , Seasons , Humans , Influenza, Human/transmission , Influenza, Human/epidemiology , China/epidemiology , Cross-Sectional Studies , Respiratory Tract Infections/transmission , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Temperature , Female , Male , Adult , Influenza A Virus, H1N1 Subtype , Middle Aged , Young Adult , Adolescent , Incidence , Child
13.
PLoS One ; 19(5): e0302865, 2024.
Article in English | MEDLINE | ID: mdl-38723016

ABSTRACT

Influenza A viruses (IAVs) continue to pose a huge threat to public health, and their prevention and treatment remain major international issues. Neuraminidase (NA) is the second most abundant surface glycoprotein on influenza viruses, and antibodies to NA have been shown to be effective against influenza infection. In this study, we generated a monoclonal antibody (mAb), named FNA1, directed toward N1 NAs. FNA1 reacted with H1N1 and H5N1 NA, but failed to react with the NA proteins of H3N2 and H7N9. In vitro, FNA1 displayed potent antiviral activity that mediated both NA inhibition (NI) and blocking of pseudovirus release. Moreover, residues 219, 254, 358, and 388 in the NA protein were critical for FNA1 binding to H1N1 NA. However, further validation is necessary to confirm whether FNA1 mAb is indeed a good inhibitor against NA for application against H1N1 and H5N1 viruses.


Subject(s)
Antibodies, Monoclonal , Influenza A Virus, H1N1 Subtype , Neuraminidase , Neuraminidase/immunology , Neuraminidase/metabolism , Neuraminidase/antagonists & inhibitors , Antibodies, Monoclonal/immunology , Influenza A Virus, H1N1 Subtype/immunology , Humans , Animals , Antibodies, Viral/immunology , Mice , Influenza A Virus, H5N1 Subtype/immunology , Mice, Inbred BALB C , Antiviral Agents/pharmacology , Viral Proteins/immunology , Viral Proteins/metabolism , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology
14.
J Infect ; 88(6): 106164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692359

ABSTRACT

OBJECTIVES: We evaluated Nanopore sequencing for influenza surveillance. METHODS: Influenza A and B PCR-positive samples from hospital patients in Oxfordshire, UK, and a UK-wide population survey from winter 2022-23 underwent Nanopore sequencing following targeted rt-PCR amplification. RESULTS: From 941 infections, successful sequencing was achieved in 292/388 (75 %) available Oxfordshire samples: 231 (79 %) A/H3N2, 53 (18 %) A/H1N1, and 8 (3 %) B/Victoria and in 53/113 (47 %) UK-wide samples. Sequencing was more successful at lower Ct values. Most same-sample replicate sequences had identical haemagglutinin segments (124/141, 88 %); 36/39 (92 %) Illumina vs. Nanopore comparisons were identical, and 3 (8 %) differed by 1 variant. Comparison of Oxfordshire and UK-wide sequences showed frequent inter-regional transmission. Infections were closely-related to 2022-23 vaccine strains. Only one sample had a neuraminidase inhibitor resistance mutation. 849/941 (90 %) Oxfordshire infections were community-acquired. 63/88 (72 %) potentially healthcare-associated cases shared a hospital ward with ≥ 1 known infectious case. 33 epidemiologically-plausible transmission links had sequencing data for both source and recipient: 8 were within ≤ 5 SNPs, of these, 5 (63 %) involved potential sources that were also hospital-acquired. CONCLUSIONS: Nanopore influenza sequencing was reproducible and antiviral resistance rare. Inter-regional transmission was common; most infections were genomically similar. Hospital-acquired infections are likely an important source of nosocomial transmission and should be prioritised for infection prevention and control.


Subject(s)
Influenza B virus , Influenza, Human , Nanopore Sequencing , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , United Kingdom/epidemiology , Nanopore Sequencing/methods , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/classification , Female , Male , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Adult , Middle Aged , Adolescent , Aged , Young Adult , Child , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/classification
15.
J Med Chem ; 67(10): 8201-8224, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38736187

ABSTRACT

Although vaccination remains the prevalent prophylactic means for controlling Influenza A virus (IAV) infections, novel structural antivirus small-molecule drugs with new mechanisms of action for treating IAV are highly desirable. Herein, we describe a modular biomimetic strategy to expeditiously achieve a new class of macrocycles featuring oxime, which might target the hemagglutinin (HA)-mediated IAV entry into the host cells. SAR analysis revealed that the size and linker of the macrocycles play an important role in improving potency. Particularly, as a 14-membered macrocyclic oxime, 37 exhibited potent inhibitory activity against IAV H1N1 with an EC50 value of 23 nM and low cytotoxicity, which alleviated cytopathic effects and protected cell survival obviously after H1N1 infection. Furthermore, 37 showed significant synergistic activity with neuraminidase inhibitor oseltamivir in vitro.


Subject(s)
Antiviral Agents , Influenza A Virus, H1N1 Subtype , Macrocyclic Compounds , Oximes , Influenza A Virus, H1N1 Subtype/drug effects , Oximes/pharmacology , Oximes/chemistry , Oximes/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Structure-Activity Relationship , Humans , Dogs , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Animals , Madin Darby Canine Kidney Cells , Drug Discovery , Biomimetics , Oseltamivir/pharmacology , Oseltamivir/chemistry
16.
Nat Commun ; 15(1): 4350, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782954

ABSTRACT

mRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. Here, we generate an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. The H5 mRNA-LNP vaccine elicits strong T cell and antibody responses in female mice, including neutralizing antibodies and broadly-reactive anti-HA stalk antibodies. The H5 mRNA-LNP vaccine elicits antibodies at similar levels compared to whole inactivated vaccines in female mice with and without prior H1N1 exposures. Finally, we find that the H5 mRNA-LNP vaccine is immunogenic in male ferrets and prevents morbidity and mortality of animals following 2.3.4.4b H5N1 challenge. Together, our data demonstrate that a monovalent mRNA-LNP vaccine expressing 2.3.4.4b H5 is immunogenic and protective in pre-clinical animal models.


Subject(s)
Antibodies, Viral , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Nanoparticles , Orthomyxoviridae Infections , mRNA Vaccines , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Female , Mice , Nanoparticles/chemistry , Male , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , mRNA Vaccines/immunology , Antibodies, Neutralizing/immunology , Mice, Inbred BALB C , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Influenza in Birds/virology , Humans , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Birds/virology , Lipids/chemistry , Liposomes
17.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791439

ABSTRACT

Lefamulin is a first-in-class systemic pleuromutilin antimicrobial and potent inhibitor of bacterial translation, and the most recent novel antimicrobial approved for the treatment of community-acquired pneumonia (CAP). It exhibits potent antibacterial activity against the most prevalent bacterial pathogens that cause typical and atypical pneumonia and other infectious diseases. Early studies indicate additional anti-inflammatory activity. In this study, we further investigated the immune-modulatory activity of lefamulin in the influenza A/H1N1 acute respiratory distress syndrome (ARDS) model in BALB/c mice. Comparators included azithromycin, an anti-inflammatory antimicrobial, and the antiviral oseltamivir. Lefamulin significantly decreased the total immune cell infiltration, specifically the neutrophils, inflammatory monocytes, CD4+ and CD8+ T-cells, NK cells, and B-cells into the lung by Day 6 at both doses tested compared to the untreated vehicle control group (placebo), whereas azithromycin and oseltamivir did not significantly affect the total immune cell counts at the tested dosing regimens. Bronchioalveolar lavage fluid concentrations of pro-inflammatory cytokines and chemokines including TNF-α, IL-6, IL-12p70, IL-17A, IFN-γ, and GM-CSF were significantly reduced, and MCP-1 concentrations were lowered (not significantly) by lefamulin at the clinically relevant 'low' dose on Day 3 when the viral load peaked. Similar effects were also observed for oseltamivir and azithromycin. Lefamulin also decreased the viral load (TCID50) by half a log10 by Day 6 and showed positive effects on the gross lung pathology and survival. Oseltamivir and lefamulin were efficacious in the suppression of the development of influenza-induced bronchi-interstitial pneumonia, whereas azithromycin did not show reduced pathology at the tested treatment regimen. The observed anti-inflammatory and immune-modulatory activity of lefamulin at the tested treatment regimens highlights a promising secondary pharmacological property of lefamulin. While these results require confirmation in a clinical trial, they indicate that lefamulin may provide an immune-modulatory activity beyond its proven potent antibacterial activity. This additional activity may benefit CAP patients and potentially prevent acute lung injury (ALI) and ARDS.


Subject(s)
Disease Models, Animal , Diterpenes , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/drug effects , Mice , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Diterpenes/pharmacology , Diterpenes/therapeutic use , Cytokines/metabolism , Azithromycin/pharmacology , Azithromycin/therapeutic use , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Female , Lung/immunology , Lung/virology , Lung/drug effects , Lung/pathology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Tetrahydronaphthalenes/pharmacology , Tetrahydronaphthalenes/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Bronchoalveolar Lavage Fluid/immunology , Polycyclic Compounds , Thioglycolates
18.
Influenza Other Respir Viruses ; 18(5): e13307, 2024 May.
Article in English | MEDLINE | ID: mdl-38798072

ABSTRACT

BACKGROUND: Seroepidemiological studies provide estimates of population-level immunity, prevalence/incidence of infections, and evaluation of vaccination programs. We assessed the seroprevalence of protective antibodies against influenza and evaluated the correlation of seroprevalence with the cumulative annual influenza incidence rate. METHODS: We conducted an annual repeated cross-sectional seroepidemiological survey, during June-August, from 2014 to 2019, in Portugal. A total of 4326 sera from all age groups, sex, and regions was tested by hemagglutination inhibition assay. Seroprevalence and geometric mean titers (GMT) of protective antibodies against influenza were assessed by age group, sex, and vaccine status (65+ years old). The association between summer annual seroprevalence and the difference of influenza incidence rates between one season and the previous one was measured by Pearson correlation coefficient (r). RESULTS: Significant differences in seroprevalence of protective antibodies against influenza were observed in the population. Higher seroprevalence and GMT for A(H1N1)pdm09 and A(H3N2) were observed in children (5-14); influenza B seroprevalence in adults 65+ was 1.6-4.4 times than in children (0-4). Vaccinated participants (65+) showed significant higher seroprevalence/GMT for influenza. A strong negative and significant correlation was found between seroprevalence and ILI incidence rate for A(H1N1)pdm09 in children between 5 and 14 (r = -0.84; 95% CI, -0.98 to -0.07); a weak negative correlation was observed for A(H3N2) and B/Yamagata (r ≤ -0.1). CONCLUSIONS: The study provides new insight into the anti-influenza antibodies seroprevalence measured in summer on the ILI incidence rate in the next season and the need for adjusted preventive health care measures to prevent influenza infection and transmission.


Subject(s)
Antibodies, Viral , Influenza, Human , Humans , Seroepidemiologic Studies , Cross-Sectional Studies , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/immunology , Female , Male , Adult , Incidence , Antibodies, Viral/blood , Child, Preschool , Child , Middle Aged , Adolescent , Young Adult , Aged , Portugal/epidemiology , Infant , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Hemagglutination Inhibition Tests , Influenza B virus/immunology , Seasons , Infant, Newborn , Aged, 80 and over
19.
Virus Res ; 345: 199402, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772446

ABSTRACT

H1N1 influenza virus is a significant global public health concern. Monoclonal antibodies (mAbs) targeting specific viral proteins such as hemagglutinin (HA) have become an important therapeutic strategy, offering highly specific targeting to block viral transmission and infection. This study focused on the development of mAbs targeting HA of the A/Victoria/2570/2019 (H1N1pdm09, VIC-19) strain by utilizing hybridoma technology to produce two mAbs with high binding capacity. Notably, mAb 2B2 has demonstrated a strong affinity for HA proteins in recent H1N1 influenza vaccine strains. In vitro assessments showed that both mAbs exhibited broad-spectrum hemagglutination inhibition and potent neutralizing effects against various vaccine strains of H1N1pdm09 viruses. 2B2 was also effective in animal models, offering both preventive and therapeutic protection against infections caused by recent H1N1 strains, highlighting its potential for clinical application. By individually co-cultivating each of the aforementioned mAbs with the virus in chicken embryos, four amino acid substitution sites in HA (H138Q, G140R, A141E/V, and D187E) were identified in escape mutants, three in the antigenic site Ca2, and one in Sb. The identification of such mutations is pivotal, as it compels further investigation into how these alterations could undermine the binding efficacy and neutralization capacity of antibodies, thereby impacting the design and optimization of mAb therapies and influenza vaccines. This research highlights the necessity for continuous exploration into the dynamic interaction between viral evolution and antibody response, which is vital for the formulation of robust therapeutic and preventive strategies against influenza.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/immunology , Antibodies, Monoclonal/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral/immunology , Mice , Antibodies, Neutralizing/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Hemagglutination Inhibition Tests , Humans , Chick Embryo , Female , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/prevention & control
20.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792236

ABSTRACT

Influenza A (H1N1) viruses are prone to antigenic mutations and are more variable than other influenza viruses. Therefore, they have caused continuous harm to human public health since the pandemic in 2009 and in recent times. Influenza A (H1N1) can be prevented and treated in various ways, such as direct inhibition of the virus and regulation of human immunity. Among antiviral drugs, the use of natural products in treating influenza has a long history, and natural medicine has been widely considered the focus of development programs for new, safe anti-influenza drugs. In this paper, we focus on influenza A (H1N1) and summarize the natural product-derived phytochemicals for influenza A virus (H1N1) prevention and treatment, including marine natural products, flavonoids, alkaloids, terpenoids and their derivatives, phenols and their derivatives, polysaccharides, and derivatives of natural products for prevention and treatment of influenza A (H1N1) virus. We further discuss the toxicity and antiviral mechanism against influenza A (H1N1) as well as the druggability of natural products. We hope that this review will facilitate the study of the role of natural products against influenza A (H1N1) activity and provide a promising alternative for further anti-influenza A drug development.


Subject(s)
Antiviral Agents , Biological Products , Influenza A Virus, H1N1 Subtype , Influenza, Human , Phytochemicals , Influenza A Virus, H1N1 Subtype/drug effects , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/chemistry , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Animals , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...