Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 564
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000138

ABSTRACT

The ongoing battle against viral pandemics continues, with the possibility of future outbreaks. The search for effective antiviral compounds that can combat a diverse range of viruses continues to be a focal point of research. This study investigated the efficacy of two natural antimicrobial peptides (AMPs) (lactoferricin and LL-37), two synthetic AMPs (melimine and Mel4), and nine AMP mimics (758, 1091, 1096, 1083, 610, NAPL, 3-BIPL, 4-BIPL, and Sau-22) against influenza A virus strains H1N1 and H3N2, human adenovirus 5 (HAdV-5), and murine norovirus 1 (MNV-1). These compounds were tested using virus pre-treatment, cell pre-treatment, or post-cell entry treatment assays, electron microscopy, and circular dichroism (CD), alongside evaluations of cytotoxicity against the host cells. After virus pre-treatment, the AMP mimics 610 and Sau-22 had relatively low IC50 values for influenza strains H1N1 (2.35 and 6.93 µM, respectively) and H3N2 (3.7 and 5.34 µM, respectively). Conversely, natural and synthetic AMPs were not active against these strains. For the non-enveloped viruses, the AMP Mel4 and mimic 1083 had moderate activity against HAdV-5 (Mel4 IC50 = 47.4 µM; 1083 IC50 = 47.2 µM), whereas all AMPs, but none of the mimics, were active against norovirus (LL-37 IC50 = 4.2 µM; lactoferricin IC50 = 23.18 µM; melimine IC50 = 4.8 µM; Mel4 IC50 = 8.6 µM). Transmission electron microscopy demonstrated that the mimics targeted the outer envelope of influenza viruses, while the AMPs targeted the capsid of non-enveloped viruses. CD showed that Mel4 adopted an α-helical structure in a membrane mimetic environment, but mimic 758 remained unstructured. The diverse activity against different virus groups is probably influenced by charge, hydrophobicity, size, and, in the case of natural and synthetic AMPs, their secondary structure. These findings underscore the potential of peptides and mimics as promising candidates for antiviral therapeutics against both enveloped and non-enveloped viruses.


Subject(s)
Antiviral Agents , Norovirus , Norovirus/drug effects , Animals , Humans , Mice , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Influenza A virus/drug effects , Influenza A virus/physiology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Influenza A Virus, H3N2 Subtype/drug effects , Dogs , Adenoviridae/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Madin Darby Canine Kidney Cells , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry
2.
ACS Macro Lett ; 13(7): 874-881, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38949618

ABSTRACT

The frequent mutations of influenza A virus (IAV) have led to an urgent need for the development of innovative antiviral drugs. Glycopolymers offer significant advantages in biomedical applications owing to their biocompatibility and structural diversity. However, the primary challenge lies in the design and synthesis of well-defined glycopolymers to precisely control their biological functionalities. In this study, functional glycopolymers with sulfated fucose and 6'-sialyllactose were successfully synthesized through ring-opening metathesis polymerization and a postmodification strategy. The optimized heteropolymer exhibited simultaneous targeting of hemagglutinin and neuraminidase on the surface of IAV, as evidenced by MU-NANA assay and hemagglutination inhibition data. Antiviral experiments demonstrated that the glycopolymer displayed broad and efficient inhibitory activity against wild-type and mutant strains of H1N1 and H3N2 subtypes in vitro, thereby establishing its potential as a dual-targeted inhibitor for combating IAV resistance.


Subject(s)
Antiviral Agents , Fucose , Influenza A Virus, H1N1 Subtype , Lactose , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Lactose/analogs & derivatives , Lactose/chemistry , Lactose/pharmacology , Fucose/chemistry , Fucose/analogs & derivatives , Fucose/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Drug Resistance, Viral/drug effects , Humans , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Influenza A virus/drug effects , Madin Darby Canine Kidney Cells , Animals , Dogs , Polymers/pharmacology , Polymers/chemistry
3.
Antiviral Res ; 228: 105938, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897317

ABSTRACT

We compared the duration of fever in children infected with A(H1N1)pdm09, A(H3N2), or influenza B viruses following treatment with baloxavir marboxil (baloxavir) or neuraminidase inhibitors (NAIs) (oseltamivir, zanamivir, or laninamivir). This observational study was conducted at 10 outpatient clinics across 9 prefectures in Japan during the 2012-2013 and 2019-2020 influenza seasons. Patients with influenza rapid antigen test positive were treated with one of four anti-influenza drugs. The type/subtype of influenza viruses were identified from MDCK or MDCK SIAT1 cell-grown samples using two-step real-time PCR. Daily self-reported body temperature after treatment were used to evaluate the duration of fever by treatment group and various underlying factors. Among 1742 patients <19 years old analyzed, 452 (26.0%) were A(H1N1)pdm09, 827 (48.0%) A(H3N2), and 463 (26.0%) influenza B virus infections. Among fours treatment groups, baloxavir showed a shorter median duration of fever compared to oseltamivir in univariate analysis for A(H1N1)pdm09 virus infections (baloxavir, 22.0 h versus oseltamivir, 26.7 h, P < 0.05; laninamivir, 25.5 h, and zanamivir, 25.0 h). However, this difference was not significant in multivariable analyses. For A(H3N2) virus infections, there were no statistically significant differences observed (20.3, 21.0, 22.0, and 19.0 h) uni- and multivariable analyses. For influenza B, baloxavir shortened the fever duration by approximately 15 h than NAIs (20.3, 35.0, 34.3, and 34.1 h), as supported by uni- and multivariable analyses. Baloxavir seems to have comparable clinical effectiveness with NAIs on influenza A but can be more effective for treating pediatric influenza B virus infections than NAIs.


Subject(s)
Antiviral Agents , Dibenzothiepins , Fever , Guanidines , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human , Morpholines , Oseltamivir , Pyrans , Pyridones , Sialic Acids , Triazines , Zanamivir , Humans , Influenza, Human/drug therapy , Influenza, Human/virology , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Influenza B virus/drug effects , Influenza B virus/genetics , Child , Zanamivir/therapeutic use , Zanamivir/analogs & derivatives , Zanamivir/pharmacology , Triazines/therapeutic use , Triazines/pharmacology , Guanidines/therapeutic use , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H1N1 Subtype/drug effects , Pyridones/therapeutic use , Dibenzothiepins/therapeutic use , Japan , Female , Male , Child, Preschool , Oseltamivir/therapeutic use , Fever/drug therapy , Fever/virology , Adolescent , Morpholines/therapeutic use , Infant , Seasons , Thiepins/therapeutic use , Thiepins/pharmacology , Oxazines/therapeutic use , Time Factors , Benzoxazines/therapeutic use
4.
Arch Virol ; 169(6): 130, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807015

ABSTRACT

Qingke Pingchuan granules (QPGs), which contain Houttuynia cordata Thunb, Fritillaria cirrhosa, fired licorice, and fired bitter almonds, among other components, can clear heat and ventilate the lungs, relieving cough and asthma. Clinically, QPGs are mainly used to treat cough, asthma, fever and other discomforts caused by acute or chronic bronchitis. In this study, the antiviral activity of QPGs against respiratory syncytial virus (RSV), influenza A virus A/FM/1/47 (H1N1), oseltamivir-resistant H1N1, A/Beijing/32/92 (H3N2), Sendai virus, and human adenovirus type 3 in Hep-2 or MDCK cells was evaluated using the CCK-8 method, and the cytotoxicity of QPGs to these two cell lines was tested. The effect of QPGs on mice infected with influenza A virus A/FM/1/47 (H1N1) was evaluated by measuring body weight, survival time, and survival rate, as well as virus titers and lesions in the lungs and levels of inflammatory factors in serum. In addition, the expression of TLR-7-My88-NF-κB signaling pathway-related proteins in lung tissues was analyzed by Western blotting and qRT-PCR. The results showed that QPGs had a potent inhibitory effect on the six viruses tested in vitro. Interestingly, QPGs also displayed particularly pronounced antiviral activity against H1N1-OC, similar to that of oseltamivir, a well-known antiviral drug. QPGs effectively protected mice from infection by H1N1, as indicated by significantly increased body weights, survival times, and survival rates and reduced lung virus titers of inflammatory factors and lung tissue injury. The levels of TLR-7-MyD88-NF-κB-pathway-related proteins in the lung tissue of infected mice were found to be decreased after QPG treatment, thereby alleviating lung injury caused by excessive release of inflammatory factors. Taken together, these findings indicate that QPGs have satisfactory activity against influenza virus infection.


Subject(s)
Antiviral Agents , Drugs, Chinese Herbal , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice , Drugs, Chinese Herbal/pharmacology , Humans , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Dogs , Madin Darby Canine Kidney Cells , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/physiology , Mice, Inbred BALB C , Lung/virology , Lung/drug effects , Lung/pathology , Cell Line , Houttuynia/chemistry , Influenza, Human/drug therapy , Influenza, Human/virology , NF-kappa B/metabolism , Female , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/physiology
5.
Antiviral Res ; 227: 105918, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795911

ABSTRACT

The most widely used class of antivirals available for Influenza treatment are the neuraminidase inhibitors (NAI) Oseltamivir and Zanamivir. However, amino acid (AA) substitutions in the neuraminidase may cause reduced inhibition or high antiviral resistance. In Mexico, the current state of knowledge about NAI susceptibility is scarce, in this study we report the results of 14 years of Influenza surveillance by phenotypic and genotypic methods. A total of 255 isolates were assessed with the NAI assay, including Influenza A(H1N1)pdm09, A(H3N2) and Influenza B (IBV). Furthermore, 827 sequences contained in the GISAID platform were analyzed in search of relevant mutations.Overall, five isolates showed highly reduced inhibition or reduced inhibition to Oseltamivir, and two showed reduced inhibition to Zanamivir in the NAI assays. Additionally, five A(H1N1)pdm09 sequences from the GISAID possessed AA substitutions associated to reduced inhibition to Oseltamivir and none to Zanamivir. Oseltamivir resistant A(H1N1)pdm09 harbored the H275Y mutation. No genetic mutations were identified in Influenza A(H3N2) and IBV. Overall, these results show that in Mexico the rate of NAI resistance is low (0.6%), but it is essential to continue the Influenza surveillance in order to understand the drug susceptibility of circulating strains.


Subject(s)
Antiviral Agents , Drug Resistance, Viral , Influenza B virus , Influenza, Human , Neuraminidase , Oseltamivir , Zanamivir , Drug Resistance, Viral/genetics , Antiviral Agents/pharmacology , Mexico/epidemiology , Humans , Influenza B virus/drug effects , Influenza B virus/genetics , Influenza, Human/virology , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Oseltamivir/pharmacology , Zanamivir/pharmacology , Neuraminidase/genetics , Neuraminidase/antagonists & inhibitors , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Mutation , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/genetics , Adult , Influenza A virus/drug effects , Influenza A virus/genetics , Adolescent , Child , Amino Acid Substitution , Young Adult , Middle Aged , Female , Child, Preschool , Genotype , Male , Aged , Microbial Sensitivity Tests , Viral Proteins/genetics
6.
Respir Res ; 25(1): 186, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678295

ABSTRACT

BACKGROUND: Influenza A viruses (IAV) are extremely common respiratory viruses for the acute exacerbation of chronic obstructive pulmonary disease (AECOPD), in which IAV infection may further evoke abnormal macrophage polarization, amplify cytokine storms. Melatonin exerts potential effects of anti-inflammation and anti-IAV infection, while its effects on IAV infection-induced AECOPD are poorly understood. METHODS: COPD mice models were established through cigarette smoke exposure for consecutive 24 weeks, evaluated by the detection of lung function. AECOPD mice models were established through the intratracheal atomization of influenza A/H3N2 stocks in COPD mice, and were injected intraperitoneally with melatonin (Mel). Then, The polarization of alveolar macrophages (AMs) was assayed by flow cytometry of bronchoalveolar lavage (BAL) cells. In vitro, the effects of melatonin on macrophage polarization were analyzed in IAV-infected Cigarette smoking extract (CSE)-stimulated Raw264.7 macrophages. Moreover, the roles of the melatonin receptors (MTs) in regulating macrophage polarization and apoptosis were determined using MTs antagonist luzindole. RESULTS: The present results demonstrated that IAV/H3N2 infection deteriorated lung function (reduced FEV20,50/FVC), exacerbated lung damages in COPD mice with higher dual polarization of AMs. Melatonin therapy improved airflow limitation and lung damages of AECOPD mice by decreasing IAV nucleoprotein (IAV-NP) protein levels and the M1 polarization of pulmonary macrophages. Furthermore, in CSE-stimulated Raw264.7 cells, IAV infection further promoted the dual polarization of macrophages accompanied with decreased MT1 expression. Melatonin decreased STAT1 phosphorylation, the levels of M1 markers and IAV-NP via MTs reflected by the addition of luzindole. Recombinant IL-1ß attenuated the inhibitory effects of melatonin on IAV infection and STAT1-driven M1 polarization, while its converting enzyme inhibitor VX765 potentiated the inhibitory effects of melatonin on them. Moreover, melatonin inhibited IAV infection-induced apoptosis by suppressing IL-1ß/STAT1 signaling via MTs. CONCLUSIONS: These findings suggested that melatonin inhibited IAV infection, improved lung function and lung damages of AECOPD via suppressing IL-1ß/STAT1-driven macrophage M1 polarization and apoptosis in a MTs-dependent manner. Melatonin may be considered as a potential therapeutic agent for influenza virus infection-induced AECOPD.


Subject(s)
Apoptosis , Influenza A Virus, H3N2 Subtype , Melatonin , Pulmonary Disease, Chronic Obstructive , Animals , Melatonin/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/virology , Pulmonary Disease, Chronic Obstructive/physiopathology , Mice , Apoptosis/drug effects , RAW 264.7 Cells , Influenza A Virus, H3N2 Subtype/drug effects , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/immunology , Mice, Inbred C57BL , Male , Macrophages/drug effects , Macrophages/metabolism , Disease Progression , Cell Polarity/drug effects , Disease Models, Animal , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology
7.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673930

ABSTRACT

Marine algal lectins specific for high-mannose N-glycans have attracted attention because they strongly inhibit the entry of enveloped viruses, including influenza viruses and SARS-CoV-2, into host cells by binding to high-mannose-type N-glycans on viral surfaces. Here, we report a novel anti-influenza virus lectin (named HBL40), specific for complex-type N-glycans, which was isolated from a marine green alga, Halimeda borneensis. The hemagglutination activity of HBL40 was inhibited with both complex-type N-glycan and O-glycan-linked glycoproteins but not with high-mannose-type N-glycan-linked glycoproteins or any of the monosaccharides examined. In the oligosaccharide-binding experiment using 26 pyridylaminated oligosaccharides, HBL40 only bound to complex-type N-glycans with bi- and triantennary-branched sugar chains. The sialylation, core fucosylation, and the increased number of branched antennae of the N-glycans lowered the binding activity with HBL40. Interestingly, the lectin potently inhibited the infection of influenza virus (A/H3N2/Udorn/72) into NCI-H292 cells at IC50 of 8.02 nM by binding to glycosylated viral hemagglutinin (KD of 1.21 × 10-6 M). HBL40 consisted of two isolectins with slightly different molecular masses to each other that could be separated by reverse-phase HPLC. Both isolectins shared the same 16 N-terminal amino acid sequences. Thus, HBL40 could be useful as an antivirus lectin specific for complex-type N-glycans.


Subject(s)
Antiviral Agents , Chlorophyta , Lectins , Polysaccharides , Animals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorophyta/chemistry , Influenza A Virus, H3N2 Subtype/drug effects , Lectins/pharmacology , Lectins/chemistry , Lectins/metabolism , Lectins/isolation & purification , Polysaccharides/pharmacology , Polysaccharides/chemistry
8.
Lancet Infect Dis ; 24(5): 535-545, 2024 May.
Article in English | MEDLINE | ID: mdl-38330975

ABSTRACT

BACKGROUND: Onradivir (ZSP1273) is a novel anti-influenza A virus inhibitor. Preclinical studies show that onradivir can inhibit influenza A H1N1 and H3N2 replication and increase the survival rate of infected animals. In this study, we aimed to evaluate the safety and efficacy of three onradivir dosing regimens versus placebo in outpatients with acute uncomplicated influenza A virus infection. METHODS: We did a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial at 20 clinical sites in China. Eligible participants were adults (18-65 years) with an influenza-like illness screened by rapid antigen testing at the first clinical visit, had the presence of a fever (axillary temperature ≥38·0°C), and had the presence of at least one moderate systemic and one respiratory symptom within 48 h of symptom onset. Patients were excluded if they were pregnant, allergic to onradivir, or had received any influenza antiviral medication within 7 days before enrolment. Participants were randomly assigned (1:1:1:1) into four groups by an interactive web response system: onradivir 200 mg twice per day group, onradivir 400 mg twice per day group, onradivir 600 mg once per day group, and a matching placebo group. A 5-day oral treatment course was initiated within 48 h after symptoms onset. The primary outcome was the time to alleviate influenza symptoms in the modified intention-to-treat population. Safety was a secondary outcome. We evaluated the patients' self-assessed severity of seven influenza symptoms on a 4-point ordinal scale, and the treatment-emergent adverse events in all patients. This trial is registered with ClinicalTrials.gov, number NCT04024137. FINDINGS: Between Dec 7, 2019, and May 18, 2020, a total of 205 patients were screened; of whom, 172 (84%) were randomly assigned to receive onradivir (n=43 in the 200 mg twice per day group; n=43 in the 400 mg twice per day group; and n=43 in the 600 mg once per day group), or placebo (n=42). Median age was 22 years (IQR 20-26). All three onradivir groups showed decreased median time to alleviate influenza symptoms (46·92 h [IQR 24·00-81·38] in the 200 mg twice per day group, 54·87 h [23·67-110·62] in the 400 mg twice per day group, and 40·05 h [17·70-65·82] in the 600 mg once per day) compared with the placebo group (62·87 h [36·40-113·25]). The median difference between the onradivir 600 mg once per day group and the placebo group was -22·82 h (p=0·0330). The most frequently reported treatment-emergent adverse event was diarrhoea (71 [42%] of 171), ranging from 33-65% of the patients in onradivir-treated groups compared with 10% in the placebo group; no serious adverse events were observed. INTERPRETATION: Onradivir showed a safety profile comparable to placebo, as well as higher efficacy than placebo in ameliorating influenza symptoms and lowering the viral load in adult patients with uncomplicated influenza infection, especially the onradivir 600 mg once per day regimen. FUNDING: National Multidisciplinary Innovation Team Project of Traditional Chinese Medicine, National Natural Science Foundation of China, Guangdong Science and Technology Foundation, Guangzhou Science and Technology Planning Project, Emergency Key Program of Guangzhou Laboratory, Macao Science and Technology Development Fund, and Guangdong Raynovent Biotech.


Subject(s)
Antiviral Agents , Influenza, Human , Humans , Influenza, Human/drug therapy , Adult , Male , Double-Blind Method , Female , Middle Aged , Antiviral Agents/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Young Adult , Adolescent , Aged , Treatment Outcome , China , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects
9.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35216485

ABSTRACT

The rapid development in the field of transcriptomics provides remarkable biomedical insights for drug discovery. In this study, a transcriptome signature reversal approach was conducted to identify the agents against influenza A virus (IAV) infection through dissecting gene expression changes in response to disease or compounds' perturbations. Two compounds, nifurtimox and chrysin, were identified by a modified Kolmogorov-Smirnov test statistic based on the transcriptional signatures from 81 IAV-infected patients and the gene expression profiles of 1309 compounds. Their activities were verified in vitro with half maximal effective concentrations (EC50s) from 9.1 to 19.1 µM against H1N1 or H3N2. It also suggested that the two compounds interfered with multiple sessions in IAV infection by reversing the expression of 28 IAV informative genes. Through network-based analysis of the 28 reversed IAV informative genes, a strong synergistic effect of the two compounds was revealed, which was confirmed in vitro. By using the transcriptome signature reversion (TSR) on clinical datasets, this study provides an efficient scheme for the discovery of drugs targeting multiple host factors regarding clinical signs and symptoms, which may also confer an opportunity for decelerating drug-resistant variant emergence.


Subject(s)
Antiviral Agents/pharmacology , Flavonoids/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Influenza, Human/drug therapy , Nifurtimox/pharmacology , Transcriptome/drug effects , A549 Cells , Cell Line, Tumor , Humans , Influenza, Human/genetics
10.
Viruses ; 14(2)2022 02 10.
Article in English | MEDLINE | ID: mdl-35215953

ABSTRACT

To discover sources for novel anti-influenza drugs, we evaluated the antiviral potential of nine extracts from eight medicinal plants and one mushroom (Avena sativa L., Hordeum vulgare Linn. var. nudum Hook. f., Hippophae rhamnoides Linn., Lycium ruthenicum Murr., Nitraria tangutorum Bobr., Nitraria tangutorum Bobr. by-products, Potentilla anserina L., Cladina rangiferina (L.) Nyl., and Armillaria luteo-virens) from the Qinghai-Tibetan plateau against the influenza A/H3N2 virus. Concentrations lower than 125 µg/mL of all extracts demonstrated no significant toxicity in MDCK cells. During screening, seven extracts (A. sativa, H. vulgare, H. rhamnoides, L. ruthenicum, N. tangutorum, C. rangiferina, and A. luteo-virens) exhibited antiviral activity, especially the water-soluble polysaccharide from the fruit body of the mushroom A. luteo-virens. These extracts significantly reduced the infectivity of the human influenza A/H3N2 virus in vitro when used at concentrations of 15.6-125 µg/mL. Two extracts (N. tangutorum by-products and P. anserina) had no A/H3N2 virus inhibitory activity. Notably, the extract obtained from the fruits of N. tangutorum and N. tangutorum by-products exhibited different anti-influenza effects. The results suggest that extracts of A. sativa, H. vulgare, H. rhamnoides, L. ruthenicum, N. tangutorum, C. rangiferina, and A. luteo-virens contain substances with antiviral activity, and may be promising sources of new antiviral drugs.


Subject(s)
Antiviral Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Influenza A Virus, H3N2 Subtype/drug effects , Animals , Antiviral Agents/chemistry , Armillaria/chemistry , Ascomycota/chemistry , Cell Survival/drug effects , China , Dogs , Drugs, Chinese Herbal/chemistry , Madin Darby Canine Kidney Cells , Magnoliopsida/chemistry , Magnoliopsida/classification , Plants, Medicinal/chemistry , Plants, Medicinal/classification
11.
Chem Biol Drug Des ; 99(3): 398-415, 2022 03.
Article in English | MEDLINE | ID: mdl-34873848

ABSTRACT

In previous investigations, we identified a class of 1,3,4-thiadiazole derivatives with antiviral activity. N-{3-(Methylsulfanyl)-1-[5-(phenylamino)-1,3,4-thiadiazole-2-yl]propyl}benzamide emerged as a relevant lead compound for designing novel influenza A virus inhibitors. In the present study, we elaborated on this initial lead by performing chemical synthesis and antiviral evaluation of a series of structural analogues. During this research, thirteen novel 1,3,4-thiadiazole derivatives were synthesized by the cyclization of the corresponding thiosemicarbazides as synthetic precursors. The structures and the purities of the synthesized compounds were confirmed through chromatographic and spectral data. Four L-methionine-based 1,3,4-thiadiazole derivatives displayed activity against influenza A virus, the two best compounds being 24 carrying a 5-(4-chlorophenylamino)-1,3,4-thiadiazole moiety and 30 possessing a 5-(benzoylamino)-1,3,4-thiadiazole structure [antiviral EC50 against influenza A/H3N2 virus: 4.8 and 7.4 µM, respectively]. The 1,3,4-thiadiazole derivatives were inactive against influenza B virus and a wide panel of unrelated DNA and RNA viruses. Compound 24 represents a new class of selective influenza A virus inhibitors acting during the virus entry process, as evidenced by our findings in a time-of-addition assay. Molecular descriptors and in silico prediction of ADMET properties of the active compounds were calculated. According to in silico ADMET and drug similarity studies, active compounds have been estimated to be good candidates for oral administration with no apparent toxicity considerations.


Subject(s)
Antiviral Agents/chemical synthesis , Methionine/chemistry , Thiadiazoles/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Design , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/physiology , Influenza B virus/drug effects , Influenza B virus/physiology , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/pharmacology , Virus Internalization/drug effects
12.
Antiviral Res ; 196: 105208, 2021 12.
Article in English | MEDLINE | ID: mdl-34793841

ABSTRACT

To suppress serious influenza infections in persons showing insufficient protection from the vaccines, antiviral drugs are of vital importance. There is a need for novel agents with broad activity against influenza A (IAV) and B (IBV) viruses and with targets that differ from those of the current antivirals. We here report a new small molecule influenza virus inhibitor referred to as CPD A (chemical name: N-(pyridin-3-yl)thiophene-2-carboxamide). In an influenza virus minigenome assay, this non-nucleoside compound inhibited RNA synthesis of IAV and IBV with EC50 values of 2.3 µM and 2.6 µM, respectively. Robust in vitro activity was noted against a broad panel of IAV (H1N1 and H3N2) and IBV strains, with a median EC50 value of 0.20 µM, which is 185-fold below the 50% cytotoxic concentration. The action point in the viral replication cycle was located between 1 and 5 h p.i., showing a similar profile as ribavirin. Like this nucleoside analogue, CPD A was shown to cause strong depletion of the cellular GTP pool and, accordingly, its antiviral activity was antagonized when this pool was restored with exogenous guanosine. This aligns with the observed inhibition in a cell-based IMP dehydrogenase (IMPDH) assay, which seems to require metabolic activation of CPD A since no direct inhibition was seen in an enzymatic IMPDH assay. The combination of CPD A with ribavirin, another IMPDH inhibitor, proved strongly synergistic. To conclude, we established CPD A as a new inhibitor of influenza A and B virus replication and RNA synthesis, and support the potential of IMPDH inhibitors for influenza therapy with acceptable safety profile.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , IMP Dehydrogenase/antagonists & inhibitors , Influenza A virus/drug effects , Influenza B virus/drug effects , Ribavirin/pharmacology , Cell Line , Drug Synergism , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A virus/classification , Influenza, Human/drug therapy
13.
Bioorg Med Chem ; 52: 116515, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34839161

ABSTRACT

Hierarchical virtual screening combined with ADME prediction and cluster analysis methods were used to identify influenza virus PB2 inhibitors with high activity, good druggability properties, and diverse structures. The 200,000 molecules in the ChemDiv core library were narrowed down to a final set of 97 molecules, of which six compounds were found to rescue cells from both H1N1 and H3N2 virus-induced CPE with EC50 values ranging from 5.81 µM to 42.77 µM, and could bind to the PB2 CBD of H1N1, with Kd values of 0.11 µM to 6.4 µM. The six compounds have novel structures and low molecular weight and are, thus, suitable serve as lead compounds for development as PB2 inhibitors. A receptor-based pharmacophore model was successfully constructed using key amino acid residues for the binding of inhibitors to PB2, provided by the MD simulations. This pharmacophore model suggested that to improve the activity of our active compounds, we should mainly focus on optimizing their existing structures with the aim of increasing their adaptability to the binding site, rather than adding chemical fragments to increase their binding to adjacent sites. This pharmacophore construction method facilitates the creation of a reasonable pharmacophore model without the need to fully understand the structure-activity relationships, and our descriptions provide a useful reference for similar research.


Subject(s)
Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Molecular Dynamics Simulation , Pyridines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Microbial Sensitivity Tests , Molecular Structure , Pyridines/chemistry , Pyrimidines/chemistry , Pyrroles/chemistry , Structure-Activity Relationship , Viral Proteins/metabolism
14.
J Gen Virol ; 102(10)2021 10.
Article in English | MEDLINE | ID: mdl-34661516

ABSTRACT

The polymerase acidic (PA) I38T substitution is a dominant marker of resistance to baloxavir. We evaluated the impact of I38T on the fitness of a contemporary influenza A(H3N2) virus. Influenza A/Switzerland/9715293/2013 (H3N2) wild-type (WT) virus and its I38T mutant were rescued by reverse genetics. Replication kinetics were compared using ST6GalI-MDCK and A549 cells and infectivity/contact transmissibility were evaluated in guinea pigs. Nasal wash (NW) viral titres were determined by TCID50 ml-1 in ST6GalI-MDCK cells. Competition experiments were performed and the evolution of viral population was assessed by droplet digital RT-PCR. I38T did not alter in vitro replication. I38T induced comparable titres vs the WT in guinea pigs NWs and the two viruses transmitted equally by direct contact. However, a 50 %:50 % mixture inoculum evolved to mean WT/I38T ratios of 71 %:29 % and 66.4 %:33.6 % on days 4 and 6 p.i., respectively. Contemporary influenza A(H3N2)-I38T PA variants may conserve a significant level of viral fitness.


Subject(s)
Influenza A Virus, H3N2 Subtype/physiology , Orthomyxoviridae Infections/virology , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , A549 Cells , Amino Acid Substitution , Animals , Antiviral Agents/pharmacology , Dibenzothiepins/pharmacology , Dogs , Drug Resistance, Viral , Guinea Pigs , Humans , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/pathogenicity , Madin Darby Canine Kidney Cells , Morpholines/pharmacology , Nose/virology , Orthomyxoviridae Infections/transmission , Pyridones/pharmacology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Reverse Genetics , Triazines/pharmacology , Viral Load , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication
15.
Bull Exp Biol Med ; 171(6): 736-740, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34705177

ABSTRACT

We studied the effect of tilorone on the dynamics of IFNα, IFNγ, and IL-1ß levels in the lung tissue and blood serum in relation to viral load in the lungs of BALB/c mice with pneumonia caused by influenza virus A/Aichi/2/68 (H3N2). Tilorone was administered per os in doses of 40, 150, and 540 µg per mouse 6, 30, and 78 h postinfection, which simulated the drug regimen used in the clinic for the treatment of influenza and acute respiratory viral infections in Russia and post-Soviet countries. Tilorone reduced viral load with the maximum amplitude (2-3 lg) after 1-2 administrations. The results of studying the dynamics of the cytokine levels in the infected animals in general support the previous hypothesis that, in repeated dosing, tilorone enhances the IFN response (compensates for its deficiency) at the early stages of acute respiratory viral infections and suppresses (damps) excessive production of IFN and proinflammatory cytokines at the later stages.


Subject(s)
Antiviral Agents/pharmacology , Influenza A Virus, H3N2 Subtype/drug effects , Interferon Inducers/pharmacology , Lung/drug effects , Orthomyxoviridae Infections/drug therapy , Tilorone/pharmacology , Animals , Drug Administration Schedule , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Influenza A Virus, H3N2 Subtype/growth & development , Influenza A Virus, H3N2 Subtype/pathogenicity , Interferon-alpha/blood , Interferon-alpha/immunology , Interferon-gamma/blood , Interferon-gamma/immunology , Interleukin-1beta/blood , Interleukin-1beta/immunology , Lung/immunology , Lung/virology , Male , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Viral Load/drug effects
16.
J Gen Virol ; 102(10)2021 10.
Article in English | MEDLINE | ID: mdl-34596510

ABSTRACT

Neuraminidase (NA) inhibitors (NAI), oseltamivir and zanamivir, are the main antiviral medications for influenza and monitoring of susceptibility to these antivirals is routinely done by determining 50 % inhibitory concentrations (IC50) with MUNANA substrate. During 2010-2019, levels of A(H3N2) viruses presenting reduced NAI inhibition (RI) were low (~0.75 %) but varied year-on-year. The highest proportions of viruses showing RI were observed during the 2013-2014, 2016-2017 and 2017-2018 Northern Hemisphere seasons. The majority of RI viruses were found to contain positively charged NA amino acid substitutions of N329K, K/S329R, S331R or S334R, being notably higher during the 2016-2017 season. Sialidase activity kinetics were determined for viruses of RI phenotype and contemporary wild-type (WT) viruses showing close genetic relatedness and displaying normal inhibition (NI). RI phenotypes resulted from reduced sialidase activity compared to relevant WT viruses. Those containing S329R or N329K or S331R showed markedly higher Km for the substrate and Ki values for NAIs, while those with S334R showed smaller effects. Substitutions at N329 and S331 disrupt a glycosylation sequon (NDS), confirmed to be utilised by mass spectrometry. However, gain of positive charge at all three positions was the major factor influencing the kinetic effects, not loss of glycosylation. Because of the altered enzyme characteristics NAs carrying these substitutions cannot be assessed reliably for susceptibility to NAIs using standard MUNANA-based assays due to reductions in the affinity of the enzyme for its substrate and the concentration of the substrate usually used.


Subject(s)
Influenza A Virus, H3N2 Subtype/enzymology , Neuraminidase/metabolism , Amino Acid Substitution , Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Genes, Viral , Glycosylation , High-Throughput Nucleotide Sequencing , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/genetics , Kinetics , Models, Molecular , Neuraminidase/antagonists & inhibitors , Neuraminidase/chemistry , Neuraminidase/genetics , Oseltamivir/pharmacology , Protein Conformation , Zanamivir/pharmacology
17.
Medicine (Baltimore) ; 100(31): e26744, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34397815

ABSTRACT

ABSTRACT: Cured leprosy patients have special physical conditions, which could pose challenges for safety and immunogenicity after immunization. We performed an observational clinical study aimed to identify the safety and immunogenicity of influenza vaccine in cured leprosy patients. A total of 65 participants from a leprosarium were recruited into leprosy cured group or control group, and received a 0.5 ml dose of the inactivated split-virion trivalent influenza vaccine and a follow-up 28 days proactive observation of any adverse events. Hemagglutination and hemagglutination inhibition test was performed to evaluate serum antibody titer, flow cytometry was conducted to screen of cytokines level. The total rate of reactogenicity was 0.0% [0/41] in leprosy cured group and 37.5% [9/24] in control group. The seroconversion rate for H1N1 was difference between leprosy cured group and control group (41.83% vs 79.17%, P = .0082), but not for H3N2 (34.25% vs 50.00%, P = .4468). At day 0, leprosy cured group have relatively high concentration of interleukin-6, interleukin-10, tumor necrosis factor, interferon-γ, and interleukin-17 compared to control group. The interleukin-2 concentration increased 2 weeks after vaccination compared to pre-vaccination in leprosy cured group, but declined in control group (0.92 pg/ml vs -0.02 pg/ml, P = .0147). Leprosy cured group showed a more rapid down-regulation of interleukin-6 when influenza virus was challenged compared to control group (-144.38 pg/ml vs -11.52 pg/ml, P < .0001). Subgroup analysis revealed that the immunization administration declined interleukin-17 concentration in Tuberculoid type subgroup, but not in Lepromatous type subgroup or control group. Clinically cured leprosy patients are relatively safe for influenza vaccine. Leprosy cured patient have immune deficit in producing antibody. Interleukin-6 and interleukin-17 were 2 sensitive indicators in immune response for leprosy affected patients. The identification of indicators might be help management of leprosy and used as predictive markers in leprosy early symptom monitoring.


Subject(s)
Immunity/drug effects , Immunogenicity, Vaccine , Influenza Vaccines/standards , Leprosy/drug therapy , Antibody Formation/drug effects , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/therapeutic use , Leprosy/immunology , Mycobacterium/drug effects , Mycobacterium/pathogenicity , Mycobacterium leprae/drug effects , Mycobacterium leprae/pathogenicity
18.
PLoS One ; 16(8): e0256165, 2021.
Article in English | MEDLINE | ID: mdl-34450617

ABSTRACT

A test-negative case-control study was conducted to assess inactivated influenza vaccine effectiveness (VE) in children aged 6 months-17 years. The database was developed from the US Department of Defense Global Respiratory Pathogen Surveillance Program over four consecutive influenza seasons from 2016 to 2020. A total of 9,385 children including 4,063 medically attended, laboratory-confirmed influenza-positive cases were identified for VE analysis. A generalized linear mixed model with logit link and binomial distribution was used to estimate the VE. The adjusted VE for children was 42% [95% confidence interval (CI): 37-47%] overall, including 55% (95% CI: 47-61%) for influenza A(H1N1)pdm09, 37% (95% CI: 28-45%) for influenza A(H3N2), and 49% (95% CI: 41-55%) for influenza B. The analysis by age groups indicated that the adjusted VE in children aged 6 months-4 years was higher against influenza A(H1N1)pdm09 and influenza B, and comparable against influenza A(H3N2), compared to those in children aged 5-17 years. Further age-stratified analysis showed that the VE against any types of influenza was low and non-significant for children aged 6-11 months (33%; 95% CI:-2-56%), but it was high (54%; 95% CI: 34-67%) in children aged 12-23 months, and then declined linearly with increasing age. In conclusion, the inactivated influenza vaccination was moderately effective against influenza infection, based on the analysis from a large number of children aged 6 months-17 years over multiple influenza seasons.


Subject(s)
Influenza Vaccines/immunology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Vaccine Efficacy , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza Vaccines/therapeutic use , Influenza, Human/immunology , Influenza, Human/virology , Male , Seasons , Vaccination
19.
Bioorg Chem ; 112: 104916, 2021 07.
Article in English | MEDLINE | ID: mdl-33957537

ABSTRACT

Three unprecedented dimeric clerodane diterpenoids, dodovisdimers A-C (1-3), along with six known clerodane monomers (4-9), were isolated from Dodonaea viscosa. Compounds 1-3 may be biosynthetically formed via an intermolecular Diels-Alder [4+2] cycloaddition between the coexisting monomers 4-7. The structures of these clerodanes were characterized by spectroscopic techniques, X-ray crystallographic study, and ECD calculations. Some isolates exerted antiviral effects on human influenza A virus (H3N2) in vitro.


Subject(s)
Antiviral Agents/pharmacology , Diterpenes, Clerodane/pharmacology , Influenza A Virus, H3N2 Subtype/drug effects , Sapindaceae/chemistry , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Crystallography, X-Ray , Diterpenes, Clerodane/chemistry , Diterpenes, Clerodane/isolation & purification , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Structure-Activity Relationship
20.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33941704

ABSTRACT

Intranasal (i.n.) immunization is a promising vaccination route for infectious respiratory diseases such as influenza. Recombinant protein vaccines can overcome the safety concerns and long production phase of virus-based influenza vaccines. However, soluble protein vaccines are poorly immunogenic if administered by an i.n. route. Here, we report that polyethyleneimine-functionalized graphene oxide nanoparticles (GP nanoparticles) showed high antigen-loading capacities and superior immunoenhancing properties. Via a facile electrostatic adsorption approach, influenza hemagglutinin (HA) was incorporated into GP nanoparticles and maintained structural integrity and antigenicity. The resulting GP nanoparticles enhanced antigen internalization and promoted inflammatory cytokine production and JAWS II dendritic cell maturation. Compared with soluble HA, GP nanoparticle formulations induced significantly enhanced and cross-reactive immune responses at both systemic sites and mucosal surfaces in mice after i.n. immunization. In the absence of any additional adjuvant, the GP nanoparticle significantly boosted antigen-specific humoral and cellular immune responses, comparable to the acknowledged potent mucosal immunomodulator CpG. The robust immune responses conferred immune protection against challenges by homologous and heterologous viruses. Additionally, the solid self-adjuvant effect of GP nanoparticles may mask the role of CpG when coincorporated. In the absence of currently approved mucosal adjuvants, GP nanoparticles can be developed into potent i.n. influenza vaccines, providing broad protection. With versatility and flexibility, the GP nanoplatform can be easily adapted for constructing mucosal vaccines for different respiratory pathogens.


Subject(s)
Cross Reactions/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Nanoparticles/chemistry , Orthomyxoviridae Infections/immunology , Administration, Intranasal , Animals , Cell Line , Cytokines/immunology , Cytokines/metabolism , Female , Graphite/chemistry , Graphite/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Immunity, Mucosal/drug effects , Immunity, Mucosal/immunology , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/physiology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/prevention & control , Influenza, Human/virology , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Polyethyleneimine/chemistry , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...