Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.562
Filter
1.
PeerJ ; 12: e17523, 2024.
Article in English | MEDLINE | ID: mdl-38846750

ABSTRACT

Background: Influenza A(H3N2) virus evolves continuously. Its hemagglutinin (HA) and neuraminidase (NA) genes have high genetic variation due to the antigenic drift. This study aimed to investigate the characteristics and evolution of HA and NA genes of the influenza A(H3N2) virus in Thailand. Methods: Influenza A positive respiratory samples from 2015 to 2018 were subtyped by multiplex real-time RT-PCR. Full-length HA and NA genes from the positive samples of influenza A(H3N2) were amplified and sequenced. Phylogenetic analysis with the maximum likelihood method was used to investigate the evolution of the virus compared with the WHO-recommended influenza vaccine strain. Homology modeling and N-glycosylation site prediction were also performed. Results: Out of 443 samples, 147 (33.18%) were A(H1N1)pdm09 and 296 (66.82%) were A(H3N2). The A(H3N2) viruses circulating in 2015 were clade 3C.2a whereas sub-clade 3C.2a1 and 3C.2a2 dominated in 2016-2017 and 2018, respectively. Amino acid substitutions were found in all antigenic sites A, B, C, D, and E of HA but the majority of the substitutions were located at antigenic sites A and B. The S245N and N329S substitutions in the NA gene affect the N-glycosylation. None of the mutations associated with resistance to NA inhibitors were observed. Mean evolutionary rates of the HA and NA genes were 3.47 × 10 -3 and 2.98 × 10-3 substitutions per site per year. Conclusion: The influenza A(H3N2) virus is very genetically diverse and is always evolving to evade host defenses. The HA and NA gene features including the evolutionary rate of the influenza A(H3N2) viruses that were circulating in Thailand between 2015 and 2018 are described. This information is useful for monitoring the genetic characteristics and evolution in HA and NA genes of influenza A(H3N2) virus in Thailand which is crucial for predicting the influenza vaccine strains resulting in high vaccine effectiveness.


Subject(s)
Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H3N2 Subtype , Influenza, Human , Neuraminidase , Phylogeny , Thailand/epidemiology , Neuraminidase/genetics , Influenza A Virus, H3N2 Subtype/genetics , Humans , Influenza, Human/virology , Influenza, Human/epidemiology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Amino Acid Substitution
2.
MSMR ; 31(5): 9-15, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38847656

ABSTRACT

In the last week of September 2023, a surge of influenza-like illness was observed among students of the Armed Forces of the Philippines (AFP) Health Service Education and Training Center, where 48 (27 males and 21 females; age in years: mean 33, range 27-41) of 247 military students at the Center presented with respiratory symptoms. Between September 25 and October 10, 2023, all 48 symptomatic students were evaluated with real-time reverse transcription polymerase chain reaction and sequencing for both influenza and SARS-CoV-2. Thirteen (27%) students were found positive for influenza A/H3 only, 6 (13%) for SARS-CoV-2 only, and 4 (8%) were co-infected with influenza A/H3 and SARS-CoV-2. Seventeen influenza A/ H3N2 viruses belonged to the same clade, 3C.2a1b.2a.2a.3a, and 4 SARSCoV-2 sequences belonged to the JE1.1 lineage, indicating a common source outbreak for both. The influenza A/H3N2 circulating virus belonged to a different clade than the vaccine strain for 2023 (3C.2a1b.2a.2a). Only 4 students had received the influenza vaccine for 2023. In response, the AFP Surgeon General issued a memorandum to all military health institutions on October 19, 2023 that mandated influenza vaccination as a prerequisite for enrollment of students at all education and training centers, along with implementation of non-pharmaceutical interventions and early notification and testing of students exhibiting influenza-like-illness.


Subject(s)
COVID-19 , Disease Outbreaks , Influenza, Human , Military Personnel , SARS-CoV-2 , Humans , Philippines/epidemiology , Female , Male , Military Personnel/statistics & numerical data , Adult , COVID-19/epidemiology , Influenza, Human/epidemiology , Influenza, Human/virology , SARS-CoV-2/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics
3.
Nat Commun ; 15(1): 3833, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714654

ABSTRACT

Antigenic characterization of circulating influenza A virus (IAV) isolates is routinely assessed by using the hemagglutination inhibition (HI) assays for surveillance purposes. It is also used to determine the need for annual influenza vaccine updates as well as for pandemic preparedness. Performing antigenic characterization of IAV on a global scale is confronted with high costs, animal availability, and other practical challenges. Here we present a machine learning model that accurately predicts (normalized) outputs of HI assays involving circulating human IAV H3N2 viruses, using their hemagglutinin subunit 1 (HA1) sequences and associated metadata. Each season, the model learns an updated nonlinear mapping of genetic to antigenic changes using data from past seasons only. The model accurately distinguishes antigenic variants from non-variants and adaptively characterizes seasonal dynamics of HA1 sites having the strongest influence on antigenic change. Antigenic predictions produced by the model can aid influenza surveillance, public health management, and vaccine strain selection activities.


Subject(s)
Antigens, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H3N2 Subtype , Influenza, Human , Machine Learning , Seasons , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Humans , Influenza, Human/immunology , Influenza, Human/virology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antigens, Viral/immunology , Antigens, Viral/genetics , Hemagglutination Inhibition Tests , Antigenic Variation/genetics , Influenza Vaccines/immunology
4.
Sci Rep ; 14(1): 10436, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714669

ABSTRACT

Influenza (sometimes referred to as "flu") is a contagious viral infection of the airways in the lungs that affects a significant portion of the world's population. Clinical symptoms of influenza virus infections can range widely, from severe pneumonia to moderate or even asymptomatic sickness. If left untreated, influenza can have more severe effects on the heart, brain, and lungs than on the respiratory tract and can necessitate hospitalization. This study was aimed to investigate and characterize all types of influenza cases prevailing in Nepal and to analyze seasonal occurrence of Influenza in Nepal in the year 2019. A cross sectional, retrospective and descriptive study was carried out at National Influenza Center (NIC), National Public Health Laboratory Kathmandu Nepal for the period of one year (Jan-Dec 2019). A total of 3606 throat swab samples from various age groups and sexes were processed at the NIC. The specimens were primarily stored at 4 °C and processed using ABI 7500 RT PCR system for the identification of Influenza virus types and subtypes. Data accessed for research purpose were retrieved from National Influenza Centre (NIC) on 1st Jan 2020. Of the total 3606 patients suspected of having influenza infection, influenza viruses were isolated from 1213 (33.6%) patients with male predominance. The highest number of infection was caused by Influenza A/Pdm09 strain 739 (60.9%) followed by Influenza B 304 (25.1%) and Influenza A/H3 169 (13.9%) and most remarkable finding of this study was the detection of H5N1 in human which is the first ever case of such infection in human from Nepal. Similar to other tropical nations, influenza viruses were detected year-round in various geographical locations of Nepal. The influenza virus type and subtypes that were in circulation in Nepal were comparable to vaccine candidate viruses, which the currently available influenza vaccine may prevent.


Subject(s)
Influenza, Human , Humans , Nepal/epidemiology , Influenza, Human/epidemiology , Influenza, Human/virology , Female , Male , Child , Adult , Adolescent , Middle Aged , Child, Preschool , Infant , Retrospective Studies , Young Adult , Cross-Sectional Studies , Aged , Influenza B virus/genetics , Influenza B virus/isolation & purification , Seasons , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification
5.
Influenza Other Respir Viruses ; 18(5): e13284, 2024 May.
Article in English | MEDLINE | ID: mdl-38773753

ABSTRACT

BACKGROUND: We report 2023/2024 season interim influenza vaccine effectiveness for three studies, namely, primary care in Great Britain, hospital settings in Scotland and hospital settings in England. METHODS: A test negative design was used to estimate vaccine effectiveness. RESULTS: Estimated vaccine effectiveness against all influenzas ranged from 63% (95% confidence interval 46 to 75%) to 65% (41 to 79%) among children aged 2-17, from 36% (20 to 49%) to 55% (43 to 65%) among adults 18-64 and from 40% (29 to 50%) to 55% (32 to 70%) among adults aged 65 and over. CONCLUSIONS: During a period of co-circulation of influenza A(H1N1)pdm09 and A(H3N2) in the United Kingdom, evidence for effectiveness of the influenza vaccine in both children and adults was found.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Influenza, Human , Primary Health Care , Secondary Care , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Adolescent , Adult , Child , Child, Preschool , Middle Aged , Young Adult , United Kingdom , Aged , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Male , Female , Influenza A Virus, H1N1 Subtype/immunology , Seasons , Vaccine Efficacy , Vaccination/statistics & numerical data
6.
Elife ; 122024 May 28.
Article in English | MEDLINE | ID: mdl-38805550

ABSTRACT

Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody responses. However, antibodies directed against influenza neuraminidase (NA) also contribute to protection. Here, we analysed the antigenic diversity of a panel of N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. The antigenic breadth of these NAs was determined based on the NA inhibition (NAI) of a broad panel of ferret and mouse immune sera that were raised by infection and recombinant N2 NA immunisation. This assessment allowed us to distinguish at least four antigenic groups in the N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. Computational analysis further revealed that the amino acid residues in N2 NA that have a major impact on susceptibility to NAI by immune sera are in proximity of the catalytic site. Finally, a machine learning method was developed that allowed to accurately predict the impact of mutations that are present in our N2 NA panel on NAI. These findings have important implications for the renewed interest to develop improved influenza vaccines based on the inclusion of a protective NA antigen formulation.


Two proteins, the hemagglutinin and the neuraminidase, protrude from the surface of the influenza virus. Their detection by the immune system allows the host organism to mount defences against the viral threat. The virus evolves in response to this pressure, which manifests as changes in the appearance of its hemagglutinin and neuraminidase. This process, known as antigenic drift, leads to the proteins evading detection. It is also why flu vaccines require frequent updates, as they rely on 'training' the immune system to recognise the most important strains in circulation ­ primarily by exposing it to appropriate versions of hemagglutinin. While the antigenic drift of hemagglutinin has been extensively studied, much less is known about how the neuraminidase accumulates mutations, and how these affect the immune response. To investigate this question, Catani et al. selected 43 genetically distant neuraminidases from human viral samples isolated between 2009 and 2017. Statistical analyses were applied to define their relatedness, revealing that a group of closely related neuraminidases predominated from 2009 to 2015, before they were being taken over by a second group. A third group, which was identified in viruses isolated in 2013, was remarkably close to the neuraminidase of strains that circulated in the late 1990s. The fourth and final group of neuraminidases was derived from influenza viruses that normally circulate in pigs but can also occasionally infect humans. Next, Catani et al. examined the immune response that these 43 neuraminidases could elicit in mice, as well as in ferrets ­ the animal most traditionally used in influenza research. This allowed them to pinpoint which changes in the neuraminidase sequences were important to escape recognition by the host. Data obtained from the two model species were comparable, suggesting that these experiments could be conducted on mice going forward, which are easier to work with than ferrets. Finally, Catani et al. used machine learning to build a computational model that could predict how strongly the immune system would respond to a specific neuraminidase variant. These findings could help guide the development of new vaccines that include neuraminidases tailored to best prime and train the immune system against a larger variety of strains. This may aid the development of 'supra-seasonal' vaccines that protect against a broad range of influenza viruses, reducing the need for yearly updates.


Subject(s)
Antigens, Viral , Ferrets , Influenza A Virus, H3N2 Subtype , Influenza, Human , Neuraminidase , Neuraminidase/immunology , Neuraminidase/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/enzymology , Humans , Animals , Antigens, Viral/immunology , Antigens, Viral/genetics , Mice , Influenza, Human/prevention & control , Influenza, Human/immunology , Influenza, Human/virology , Antibodies, Viral/immunology , Influenza Vaccines/immunology , Antigenic Variation , Viral Proteins/immunology , Viral Proteins/genetics , Viral Proteins/chemistry , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology
7.
J Infect ; 88(6): 106164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692359

ABSTRACT

OBJECTIVES: We evaluated Nanopore sequencing for influenza surveillance. METHODS: Influenza A and B PCR-positive samples from hospital patients in Oxfordshire, UK, and a UK-wide population survey from winter 2022-23 underwent Nanopore sequencing following targeted rt-PCR amplification. RESULTS: From 941 infections, successful sequencing was achieved in 292/388 (75 %) available Oxfordshire samples: 231 (79 %) A/H3N2, 53 (18 %) A/H1N1, and 8 (3 %) B/Victoria and in 53/113 (47 %) UK-wide samples. Sequencing was more successful at lower Ct values. Most same-sample replicate sequences had identical haemagglutinin segments (124/141, 88 %); 36/39 (92 %) Illumina vs. Nanopore comparisons were identical, and 3 (8 %) differed by 1 variant. Comparison of Oxfordshire and UK-wide sequences showed frequent inter-regional transmission. Infections were closely-related to 2022-23 vaccine strains. Only one sample had a neuraminidase inhibitor resistance mutation. 849/941 (90 %) Oxfordshire infections were community-acquired. 63/88 (72 %) potentially healthcare-associated cases shared a hospital ward with ≥ 1 known infectious case. 33 epidemiologically-plausible transmission links had sequencing data for both source and recipient: 8 were within ≤ 5 SNPs, of these, 5 (63 %) involved potential sources that were also hospital-acquired. CONCLUSIONS: Nanopore influenza sequencing was reproducible and antiviral resistance rare. Inter-regional transmission was common; most infections were genomically similar. Hospital-acquired infections are likely an important source of nosocomial transmission and should be prioritised for infection prevention and control.


Subject(s)
Influenza B virus , Influenza, Human , Nanopore Sequencing , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , United Kingdom/epidemiology , Nanopore Sequencing/methods , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/classification , Female , Male , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Adult , Middle Aged , Adolescent , Aged , Young Adult , Child , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/classification
8.
Vaccine ; 42(15): 3505-3513, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38714444

ABSTRACT

It is necessary to develop universal vaccines that act broadly and continuously to combat regular seasonal epidemics of influenza and rare pandemics. The aim of this study was to find the optimal dose regimen for the efficacy and safety of a mixture of previously developed recombinant adenovirus-based vaccines that expressed influenza nucleoprotein, hemagglutinin, and ectodomain of matrix protein 2 (rAd/NP and rAd/HA-M2e). The vaccine efficacy and safety were measured in the immunized mice with the mixture of rAd/NP and rAd/HA-M2e intranasally or intramuscularly. The minimum dose that would be efficacious in a single intranasal administration of the vaccine mixture and cross-protective efficacy against various influenza strains were examined. In addition, the immune responses that may affect the cross-protective efficacy were measured. We found that intranasal administration is an optimal route for 107 pfu of vaccine mixture, which is effective against pre-existing immunity against adenovirus. In a study to find the minimum dose with vaccine efficacy, the 106 pfu of vaccine mixture showed higher antibody titers to the nucleoprotein than did the same dose of rAd/NP alone in the serum of immunized mice. The 106 pfu of vaccine mixture overcame the morbidity and mortality of mice against the lethal dose of pH1N1, H3N2, and H5N1 influenza infections. No noticeable side effects were observed in single and repeated toxicity studies. We found that the mucosal administration of adenovirus-based universal influenza vaccine has both efficacy and safety, and can provide cross-protection against various influenza infections even at doses lower than those previously known to be effective.


Subject(s)
Adenoviridae , Administration, Intranasal , Antibodies, Viral , Cross Protection , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Viral Matrix Proteins , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Adenoviridae/genetics , Adenoviridae/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Vaccine Efficacy , Nucleoproteins/immunology , Nucleoproteins/genetics , Viral Core Proteins/immunology , Viral Core Proteins/genetics , Injections, Intramuscular , Viroporin Proteins
9.
Virus Res ; 345: 199387, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38719025

ABSTRACT

Influenza A virus can infect respiratory tracts and may cause severe illness in humans. Proteins encoded by influenza A virus can interact with cellular factors and dysregulate host biological processes to support viral replication and cause pathogenicity. The influenza viral PA protein is not only a subunit of influenza viral polymerase but also a virulence factor involved in pathogenicity during infection. To explore the role of the influenza virus PA protein in regulating host biological processes, we performed immunoprecipitation and LC‒MS/MS to globally identify cellular factors that interact with the PA proteins of the influenza A H1N1, 2009 pandemic H1N1, and H3N2 viruses. The results demonstrated that proteins located in the mitochondrion, proteasome, and nucleus are associated with the PA protein. We further discovered that the PA protein is partly located in mitochondria by immunofluorescence and mitochondrial fractionation and that overexpression of the PA protein reduces mitochondrial respiration. In addition, our results revealed the interaction between PA and the mitochondrial matrix protein PYCR2 and the antiviral role of PYCR2 during influenza A virus replication. Moreover, we found that the PA protein could also trigger autophagy and disrupt mitochondrial homeostasis. Overall, our research revealed the impacts of the influenza A virus PA protein on mitochondrial function and autophagy.


Subject(s)
Mitochondria , Viral Proteins , Virus Replication , Humans , Mitochondria/metabolism , Mitochondria/virology , Viral Proteins/metabolism , Viral Proteins/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Influenza A virus/physiology , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza A virus/metabolism , Host-Pathogen Interactions , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H3N2 Subtype/metabolism , Autophagy , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H1N1 Subtype/pathogenicity , HEK293 Cells , Influenza, Human/virology , Influenza, Human/metabolism , A549 Cells , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Tandem Mass Spectrometry
10.
Nat Commun ; 15(1): 2979, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582892

ABSTRACT

Prototypic receptors for human influenza viruses are N-glycans carrying α2,6-linked sialosides. Due to immune pressure, A/H3N2 influenza viruses have emerged with altered receptor specificities that bind α2,6-linked sialosides presented on extended N-acetyl-lactosamine (LacNAc) chains. Here, binding modes of such drifted hemagglutinin's (HAs) are examined by chemoenzymatic synthesis of N-glycans having 13C-labeled monosaccharides at strategic positions. The labeled glycans are employed in 2D STD-1H by 13C-HSQC NMR experiments to pinpoint which monosaccharides of the extended LacNAc chain engage with evolutionarily distinct HAs. The NMR data in combination with computation and mutagenesis demonstrate that mutations distal to the receptor binding domain of recent HAs create an extended binding site that accommodates with the extended LacNAc chain. A fluorine containing sialoside is used as NMR probe to derive relative binding affinities and confirms the contribution of the extended LacNAc chain for binding.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype/genetics , Polysaccharides/metabolism , Monosaccharides/metabolism
12.
Influenza Other Respir Viruses ; 18(4): e13286, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38594827

ABSTRACT

Antigenic drift is a major driver of viral evolution and a primary reason why influenza vaccines must be reformulated annually. Mismatch between vaccine and circulating viral strains negatively affects vaccine effectiveness and often contributes to higher rates of influenza-related hospitalizations and deaths, particularly in years dominated by A(H3N2). Several countries recommend enhanced influenza vaccines for older adults, who are at the highest risk of severe influenza complications and mortality. The immunogenicity of enhanced vaccines against heterologous A(H3N2) strains has been examined in nine studies to date. In six studies, an enhanced, licensed MF59-adjuvanted trivalent inactivated influenza vaccine (aIIV3) consistently increased heterologous antibody titers relative to standard influenza vaccine, with evidence of a broad heterologous immune response across multiple genetic clades. In one study, licensed high-dose trivalent inactivated influenza vaccine (HD-IIV3) also induced higher heterologous antibody titers than standard influenza vaccine. In a study comparing a higher dose licensed quadrivalent recombinant influenza vaccine (RIV4) with HD-IIV3 and aIIV3, no significant differences in antibody titers against a heterologous strain were observed, although seroconversion rates were higher with RIV4 versus comparators. With the unmet medical need for improved influenza vaccines, the paucity of studies especially with enhanced vaccines covering mismatched strains highlights a need for further investigation of cross-protection in older adults.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Aged , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype/genetics , Vaccines, Inactivated , Randomized Controlled Trials as Topic , Antibodies, Viral , Hemagglutination Inhibition Tests
13.
Emerg Microbes Infect ; 13(1): 2337673, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38572517

ABSTRACT

Influenza A viruses (IAVs) pose a persistent potential threat to human health because of the spillover from avian and swine infections. Extensive surveillance was performed in 12 cities of Guangxi, China, during 2018 and 2023. A total of 2540 samples (including 2353 nasal swabs and 187 lung tissues) were collected from 18 pig farms with outbreaks of respiratory disease. From these, 192 IAV-positive samples and 19 genomic sequences were obtained. We found that the H1 and H3 swine influenza A viruses (swIAVs) of multiple lineages and genotypes have continued to co-circulate during that time in this region. Genomic analysis revealed the Eurasian avian-like H1N1 swIAVs (G4) still remained predominant in pig populations. Strikingly, the novel multiple H3N2 genotypes were found to have been generated through the repeated introduction of the early H3N2 North American triple reassortant viruses (TR H3N2 lineage) that emerged in USA and Canada in 1998 and 2005, respectively. Notably, when the matrix gene segment derived from the H9N2 avian influenza virus was introduced into endemic swIAVs, this produced a novel quadruple reassortant H1N2 swIAV that could pose a potential risk for zoonotic infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Swine , Animals , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , China/epidemiology , Swine Diseases/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Influenza, Human/epidemiology , Reassortant Viruses/genetics , Phylogeny
14.
Analyst ; 149(9): 2556-2560, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38587837

ABSTRACT

Herein, we developed a gold nanoparticle (GNP)-mediated barcode qPCR strategy with a sensitivity for a single virus particle per reaction for the detection of influenza virus H3N2. The analysis of the results for pure virus and real virus samples show that GNP-mediated barcode qPCR is ∼16 times more sensitive than conventional qPCR, demonstrating the potential to reduce false negatives and improve early diagnosis of viral infections.


Subject(s)
Gold , Influenza A Virus, H3N2 Subtype , Metal Nanoparticles , Real-Time Polymerase Chain Reaction , Gold/chemistry , Metal Nanoparticles/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Humans
15.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(4): 574-578, 2024 Apr 10.
Article in Chinese | MEDLINE | ID: mdl-38678355

ABSTRACT

Objective: To identify a novel reassortant H3N2 avian influenza virus using nanopore sequencing technology and analyze its genetic characteristics. Methods: The positive samples of the H3N2 avian influenza virus, collected from the external environment in the farmers' market of Guangzhou, were cultured in chicken embryos. The whole genome was sequenced by targeted amplification and nanopore sequencing technology. The genetic characteristics were analyzed using bioinformatics software. Results: The phylogenetic trees showed that each gene fragment of the strain belonged to the Eurasian evolutionary branch, and the host source was of avian origin. The HA gene was closely related to the origin of the H3N6 virus. The NA gene was closely related to the H3N2 avian influenza virus from 2017 to 2020. The PB1 gene was closely related to the H5N6 avian influenza virus in Guangxi Zhuang Autonomous Region and Fujian Province from 2016 to 2022 and was not related to the PB1 gene of the H5N6 avian influenza epidemic strain in Guangzhou. The other internal gene fragments had complex sources with significant genetic diversity. Molecular characteristics indicated that the strain exhibited the molecular characteristics of a typical low pathogenic avian influenza virus and tended to bind to the receptors of avian origin. On important protein sites related to biological characteristics, this strain had mutations of PB2-L89V, PB1-L473V, NP-A184K, M1-N30D/T215A, and NS1-P42S/N205S. Conclusions: This study identified a novel reassortant H3N2 avian influenza virus by nanopore sequencing, with the PB1 gene derived from the H5N6 avian influenza virus. The virus had a low ability to spread across species, but further exploration was needed to determine whether its pathogenicity to the host was affected.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza in Birds , Nanopore Sequencing , Phylogeny , Reassortant Viruses , Animals , Reassortant Viruses/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza in Birds/virology , Influenza in Birds/epidemiology , Genome, Viral , Chick Embryo , Chickens/virology , Viral Proteins/genetics , Genetic Variation
16.
PLoS Pathog ; 20(4): e1012131, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626244

ABSTRACT

Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype swine IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intrahost Single Nucleotide Variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.


Subject(s)
Genetic Drift , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine , Orthomyxoviridae Infections/virology , Swine Diseases/virology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Genetic Variation , Evolution, Molecular , Selection, Genetic , Phylogeny
17.
Virology ; 595: 110097, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685171

ABSTRACT

Current influenza vaccine is not effective in providing cross-protection against variants. We evaluated the immunogenicity and efficacy of multi-subtype neuraminidase (NA) and M2 ectodomain virus-like particle (m-cNA-M2e VLP) and chimeric M2e-H3 stalk protein vaccines (M2e-H3 stalk) in ferrets. Our results showed that ferrets with recombinant m-cNA-M2e VLP or M2e-H3 stalk vaccination induced multi-vaccine antigen specific IgG antibodies (M2e, H3 stalk, NA), NA inhibition, antibody-secreting cells, and IFN-γ secreting cell responses. Ferrets immunized with either m-cNA-M2e VLP or M2e-H3 stalk vaccine were protected from H1N1 and H3N2 influenza viruses by lowering viral titers in nasal washes, trachea, and lungs after challenge. Vaccinated ferret antisera conferred broad humoral immunity in naïve mice. Our findings provide evidence that immunity to M2e and HA-stalk or M2e plus multi-subtype NA proteins induces cross-protection in ferrets.


Subject(s)
Antibodies, Viral , Cross Protection , Ferrets , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Neuraminidase , Orthomyxoviridae Infections , Vaccines, Virus-Like Particle , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Cross Protection/immunology , Antibodies, Viral/immunology , Neuraminidase/immunology , Neuraminidase/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Mice , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Female , Immunoglobulin G/blood , Immunoglobulin G/immunology , Viroporin Proteins , Viral Proteins
18.
Viruses ; 16(4)2024 04 18.
Article in English | MEDLINE | ID: mdl-38675967

ABSTRACT

Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV infections. Eight nasal swab collections were obtained from 135 two-week-old suckling piglets from four farms every other week from March to September 2013. Oral fluid samples were collected from the same group of nursery piglets. IAV RNA was detected in 1.64% and 31.01% of individual nasal swabs and oral fluids, respectively. H1N2 was detected most often, with sporadic detection of H1N1 and H3N2. Whole-genome sequences of IAV isolated from suckling piglets revealed an H1 hemagglutinin (HA) from the 1B.2.2.2 clade and N2 neuraminidase (NA) from the 2002A clade. The internal gene constellation of the endemic H1N2 was TTTTPT with a pandemic lineage matrix. The HA gene had 97.59% and 97.52% nucleotide and amino acid identities, respectively, to the H1 1B.2.2.2 used in the farm-specific vaccine. A similar H1 1B.2.2.2 was detected in the downstream nursery. These data demonstrate the low frequency of IAV detection in suckling piglets and downstream nurseries from farms with endemic infections in spite of using farm-specific IAV vaccines in sows.


Subject(s)
Farms , Influenza A virus , Influenza Vaccines , Orthomyxoviridae Infections , Phylogeny , Swine Diseases , Animals , Swine , Swine Diseases/virology , Swine Diseases/epidemiology , Swine Diseases/prevention & control , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/epidemiology , Influenza A virus/genetics , Influenza A virus/immunology , Influenza A virus/isolation & purification , Influenza A virus/classification , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Animals, Suckling , Vaccination/veterinary , Endemic Diseases/veterinary , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , RNA, Viral/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/isolation & purification , Influenza A Virus, H1N2 Subtype/immunology , Genome, Viral
19.
Int J Infect Dis ; 143: 107034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561041

ABSTRACT

OBJECTIVES: The aim of this study was to analyze the viral load (VL) using cycle threshold (Ct) in patients infected with influenza A (H3N2). METHODS: This prospective study was conducted during the 2022-2023 influenza season in sentinel, non-sentinel, and hospitalized patients of Castilla y León (Spain). Respiratory samples were obtained from nasopharyngeal swabs and analyzed by quantitative reverse transcription-polymerase chain reaction specific for influenza A (H3N2) to obtain the Ct value. RESULTS: A total of 1047 individuals were enrolled (174 [16.6%] sentinel, 200 [19.1%] non-sentinel, 673 [64.3%] hospitalized). The mean Ct value was lower in infants, young children, and in the elderly, with a sharp increase in the last from 65 years until 90 years. In addition, the lower Ct values were observed in non-sentinel patients and then in hospitalized patients, probably because non-sentinel are outpatients in the acute phase of the influenza infection. CONCLUSIONS: A higher VL (lower Ct value) is related to the extreme ages of life: children and the elderly. Furthermore, a higher VL is related with the care setting, being probably higher in outpatients because they are in the acute phase of the disease and slightly lower in hospitalized patients because they are attended during the post-acute phase.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza, Human , Viral Load , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Spain/epidemiology , Prospective Studies , Child, Preschool , Infant , Child , Male , Female , Aged , Aged, 80 and over , Adolescent , Adult , Middle Aged , Young Adult , Seasons , Age Factors , Hospitalization , Infant, Newborn , Nasopharynx/virology
20.
Public Health ; 230: 157-162, 2024 May.
Article in English | MEDLINE | ID: mdl-38554473

ABSTRACT

OBJECTIVES: To report epidemiological and virological results of an outbreak investigation of influenza-like illness (ILI) among refugees in Northern Italy. STUDY DESIGN: Outbreak investigation of ILI cases observed among nearly 100 refugees in Northern Italy unvaccinated for influenza. METHODS: An epidemiological investigation matched with a differential diagnosis was carried out for each sample collected from ILI cases to identify 10 viral pathogens (SARS-CoV-2, influenza virus type A and B, respiratory syncytial virus, metapneumovirus, parainfluenza viruses, rhinovirus, enterovirus, parechovirus, and adenovirus) by using specific real-time PCR assays according to the Centers for Disease Control and Prevention (CDC) protocols. In cases where the influenza virus type was identified, complete hemagglutinin (HA) gene sequencing and the related phylogenetic analysis were conducted. RESULTS: The outbreak was caused by influenza A(H3N2): the attack rate was 83.3% in children aged 9-14 years, 84.6% in those aged 15-24 years, and 28.6% in adults ≥25 years. Phylogenetic analyses uncovered that A(H3N2) strains were closely related since they segregated in the same cluster, showing both a high mean nucleotide identity (100%), all belonging to the genetic sub-group 3C.2a1b.2a.2, as those mainly circulating into the general population in the same period. CONCLUSIONS: The fact that influenza outbreak strains as well as the community strains were genetically related to the seasonal vaccine strain suggests that if an influenza prevention by vaccination strategy had been implemented, a lower attack rate of A(H3N2) and ILI cases might have been achieved.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Refugees , Virus Diseases , Adult , Child , Humans , Influenza, Human/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Phylogeny , Disease Outbreaks
SELECTION OF CITATIONS
SEARCH DETAIL
...