Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Avian Dis ; 68(1): 72-79, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38687111

ABSTRACT

We isolated a high pathogenicity avian influenza (HPAI) virus from a common pochard (Aythya ferina) that was being attacked by a bird of prey in South Korea in December 2020. Genetic analyses indicated that the isolate was closely related to the clade 2.3.4.4b H5N8 HPAI viruses found in South Korea and Japan during the winter season of 2020-2021. The histopathological examination revealed multifocal necrotizing inflammation in the liver, kidney, and spleen. Viral antigens were detected in the liver, kidney, spleen, trachea, intestine, and pancreas, indicating the HPAI virus caused a systemic infection. The presence of immunoreactivity for the viral antigen was observed in the cells involved in multifocal necrotic inflammation. Notably, epitheliotropic-positive patterns were identified in the epithelial cells of the trachea, mucosal epithelium of the intestine, and ductular epithelium of the pancreas. These findings provide direct evidence supporting the possibility of HPAI transmission from infected waterfowl to predators.


Detectado en el acto: Aislamiento y caracterización de un virus de la influenza aviar de alta patogenicidad del clado 2.3.4.4b H5N8 de un porrón común (Aythya ferina) atacado por un halcón peregrino (Falco peregrinus). Se aisló un virus de la influenza aviar (HPAI) de alta patogenicidad de un porrón común (Aythya ferina) que estaba siendo atacado por un ave rapaz en Corea del Sur en diciembre de 2020. Los análisis genéticos indicaron que el aislado estaba estrechamente relacionado con virus de influenza aviar de alta patogenicidad H5N8, clado 2.3.4.4 b encontrados en Corea del Sur y Japón durante la temporada de invierno de 2020­2021. El examen histopatológico reveló inflamación necrotizante multifocal en hígado, riñón y bazo. Se detectaron antígenos virales en el hígado, el riñón, el bazo, la tráquea, el intestino y el páncreas, lo que indica que este virus de alta patogenicidad causó una infección sistémica. Se observó la presencia de inmunorreactividad para el antígeno viral en las células involucradas en la inflamación necrótica multifocal. En particular, se identificaron patrones epiteliotrópicos positivos en las células epiteliales de la tráquea, el epitelio mucoso del intestino y el epitelio ductular del páncreas. Estos hallazgos proporcionan evidencia directa que respalda la posibilidad de transmisión de HPAI de aves acuáticas infectadas a especies depredadoras.


Subject(s)
Falconiformes , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Animals , Influenza in Birds/virology , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/physiology , Influenza A Virus, H5N8 Subtype/genetics , Falconiformes/virology , Republic of Korea , Phylogeny , Galliformes
2.
Comp Immunol Microbiol Infect Dis ; 109: 102182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640701

ABSTRACT

In the 2021/22 winter, one H5N1 and nine H5N8 high pathogenicity avian influenza viruses (HPAIVs) of clade 2.3.3.4b were isolated from the water in crane roosts on the Izumi plain, Japan. Additionally, we isolated low pathogenicity avian influenza viruses (LPAIVs) of five subtypes: H1N1, H4N2, H4N6, H7N7, and H10N4. H5N8 HPAIVs belonging to the G2a group were isolated throughout winter, whereas H5N1 HPAIV belonging to the G2b group were isolated only in early winter. These findings suggest co-circulation of both G2a and G2b HPAIVs in early winter. Although two H7N7 LPAIVs were isolated from cranes' roost water collected on the same day, the gene constellations of the two isolates were clearly different, indicating the contemporary invasion of at least two different genotypes of H7N7 LPAIVs in the Izumi plain. This study underscores the importance of monitoring both HPAIVs and LPAIVs to understand avian influenza virus ecology in migratory waterfowl populations.


Subject(s)
Birds , Genotype , Influenza in Birds , Phylogeny , Seasons , Japan , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Birds/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/classification , Water Microbiology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H7N7 Subtype/genetics , Influenza A Virus, H7N7 Subtype/pathogenicity , Influenza A Virus, H7N7 Subtype/isolation & purification
3.
J Virol ; 96(13): e0014922, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35670594

ABSTRACT

Waterfowl is the natural reservoir for avian influenza viruses (AIV), where the infection is mostly asymptomatic. In 2016, the panzootic high pathogenicity (HP) AIV H5N8 of clade 2.3.4.4B (designated H5N8-B) caused significant mortality in wild and domestic ducks, in stark contrast to the predecessor 2.3.4.4A virus from 2014 (designated H5N8-A). Here, we studied the genetic determinants for virulence and transmission of H5N8 clade 2.3.4.4 in Pekin ducks. While ducks inoculated with recombinant H5N8-A did not develop any clinical signs, H5N8-B-inoculated and cohoused ducks died after showing neurological signs. Swapping of the HA gene segments did not increase virulence of H5N8-A but abolished virulence and reduced systemic replication of H5N8-B. Only H5N8-A carrying H5N8-B HA, NP, and NS with or without NA exhibited high virulence in inoculated and contact ducks, similar to H5N8-B. Compared to H5N8-A, HA, NA, NS, and NP proteins of H5N8-B possess peculiar differences, which conferred increased receptor binding affinity, neuraminidase activity, efficiency to inhibit interferon-alpha induction, and replication in vitro, respectively. Taken together, this comprehensive study showed that HA is not the only virulence determinant of the panzootic H5N8-B in Pekin ducks, but NP, NS, and to a lesser extent NA were also necessary for the exhibition of high virulence in vivo. These proteins acted synergistically to increase receptor binding affinity, sialidase activity, interferon antagonism, and replication. This is the first ad-hoc study to investigate the mechanism underlying the high virulence of HPAIV in Pekin ducks. IMPORTANCE Since 2014, several waves of avian influenza virus (AIV) H5N8 of clade 2.3.4.4 occurred globally on unprecedented levels. Unlike viruses in the first wave in 2014-2015 (H5N8-A), viruses in 2015-2016 (H5N8-B) exhibited unusually high pathogenicity (HP) in wild and domestic ducks. Here, we found that the high virulence of H5N8-B in Pekin ducks could be attributed to multiple factors in combination, namely, hemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP), and nonstructural protein 1 (NS1). Compared to H5N8-A, H5N8-B possesses distinct genetic and biological properties including increased HA receptor-binding affinity and neuraminidase activity. Likewise, H5N8-B NS1 and NP were more efficient to inhibit interferon induction and enhance replication in primary duck cells, respectively. These results indicate the polygenic trait of virulence of HPAIV in domestic ducks and the altered biological properties of the HPAIV H5N8 clade 2.3.4.4B. These findings may explain the unusual high mortality in Pekin ducks during the panzootic H5N8 outbreaks.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Poultry Diseases , Viral Proteins , Virulence , Animals , Ducks , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/transmission , Interferons , Neuraminidase/genetics , Poultry Diseases/transmission , Poultry Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence/genetics
4.
Viruses ; 14(2)2022 01 28.
Article in English | MEDLINE | ID: mdl-35215873

ABSTRACT

Highly pathogenic avian influenza (HPAI) outbreaks have become increasingly frequent in wild bird populations and have caused mass mortality in many wild bird species. The 2020/2021 epizootic was the largest and most deadly ever reported in Europe, and many new bird species tested positive for HPAI virus for the first time. This study investigated the tropism of HPAI virus in wild birds. We tested the pattern of virus attachment of 2020 H5N8 virus to intestinal and respiratory tissues of key bird species; and characterized pathology of naturally infected Eurasian wigeons (Mareca penelope) and barnacle geese (Branta leucopsis). This study determined that 2020 H5N8 virus had a high level of attachment to the intestinal epithelium (enterotropism) of dabbling ducks and geese and retained attachment to airway epithelium (respirotropism). Natural HPAI 2020 H5 virus infection in Eurasian wigeons and barnacle geese also showed a high level of neurotropism, as both species presented with brain lesions that co-localized with virus antigen expression. We concluded that the combination of respirotropism, neurotropism, and possibly enterotropism, contributed to the successful adaptation of 2020/2021 HPAI H5 viruses to wild waterbird populations.


Subject(s)
Ducks/virology , Geese/virology , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/virology , Viral Tropism , Animals , Animals, Wild/virology , Brain/virology , Host Adaptation , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/physiology , Intestinal Mucosa/virology , RNA, Viral/analysis , Respiratory Mucosa/virology , Virus Attachment
5.
Sci Rep ; 11(1): 24163, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34921165

ABSTRACT

Highly pathogenic avian influenza (HPAI) in poultry holdings commonly spreads through animal trade, and poultry production and health-associated vehicle (PPHaV) movement. To effectively control the spread of disease, it is essential that the contact structure via those movements among farms is thoroughly explored. However, few attempts have been made to scrutinize PPHaV movement compared to poultry trade. Therefore, our study aimed to elucidate the role of PPHaV movement on HPAI transmission. We performed network analysis using PPHaV movement data based on a global positioning system, with phylogenetic information of the isolates during the 2016-2017 HPAI H5N6 epidemic in the Republic of Korea. Moreover, the contribution of PPHaV movement to the spread of HPAI was estimated by Bayesian modeling. The network analysis revealed that there was the relationship between phylogenetic clusters and the contact network via PPHaV movement. Furthermore, the similarity of farm poultry species and the shared integrators between inter-linked infected premises (IPs) were associated with ties within the same phylogenetic clusters. Additionally, PPHaV movement among phylogenetically clustered IPs was estimated to contribute to approximately 30% of HPAI H5N6 infections in IPs on average. This study provides insight into how HPAI spread via PPHaV movement and scientific basis for control strategies.


Subject(s)
Farms , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Models, Biological , Poultry Diseases , Poultry/virology , Animals , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/epidemiology , Influenza in Birds/genetics , Influenza in Birds/transmission , Influenza in Birds/virology , Poultry Diseases/epidemiology , Poultry Diseases/virology , Republic of Korea/epidemiology
6.
Vet Microbiol ; 263: 109268, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34781191

ABSTRACT

Low pathogenic avian influenza virus, H5 or H7 subtype, possesses the potential capability to change to highly pathogenic variant, which damages wild waterfowl, domestic poultry, and mammalian hosts. In regular active surveillance of avian influenza virus from wild birds in China in 2020, we isolated six H5 avian influenza viruses, including one H5N2, two H5N3, and three H5N8. Phylogenetic analysis indicated that the H5N2 and H5N3 isolates clustered into Eurasian lineage, whereas the H5N8 viruses were originated in North America. The HA proteins of six viruses carried the cleavage-site motif PQRETR↓GLF, which indicated low pathogenicity of the viruses in chickens. However, the N30D, I43M, and T215A mutations in M1 protein and the P42S, I106M, and C138F residues changed in NS1 protein, implying all viruses could exhibit increased virulence in mice. Viral replication kinetics in mammalian cells demonstrated that the three representative viruses had the ability to replicate in both MDCK cells and A549 cells with low titers. Even though two of three representatives, WS/SX/S3-620/2020(H5N3) and ML/AH/A3-770/2020(H5N8), did not replicate and transmit efficiently in poultry (chickens), they did replicate and transmit efficiently in waterfowl (ducks). Viral pathogenicity in mice indicated that both H5N2 and H5N3 viruses are able to replicate in the nasal turbinates and lungs of mice without prior adaptation, while the H5N8 virus could not. The intercontinental and cross-species transmission of viruses may continuously exist in China, thereby providing constant opportunities for virus reassortment with local resident AIVs. Thus, it is crucial to continuously monitor migration routes for AIVs by systematic surveillance.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Animals, Wild , Chickens , China , Influenza A Virus, H5N2 Subtype/classification , Influenza A Virus, H5N2 Subtype/genetics , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza in Birds/virology , Mice , Phylogeny
7.
Sci Rep ; 11(1): 22553, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799568

ABSTRACT

The development of visual tools for the timely identification of spatio-temporal clusters will assist in implementing control measures to prevent further damage. From January 2015 to June 2020, a total number of 1463 avian influenza outbreak farms were detected in Taiwan and further confirmed to be affected by highly pathogenic avian influenza subtype H5Nx. In this study, we adopted two common concepts of spatio-temporal clustering methods, the Knox test and scan statistics, with visual tools to explore the dynamic changes of clustering patterns. Since most (68.6%) of the outbreak farms were detected in 2015, only the data from 2015 was used in this study. The first two-stage algorithm performs the Knox test, which established a threshold of 7 days and identified 11 major clusters in the six counties of southwestern Taiwan, followed by the standard deviational ellipse (SDE) method implemented on each cluster to reveal the transmission direction. The second algorithm applies scan likelihood ratio statistics followed by AGC index to visualize the dynamic changes of the local aggregation pattern of disease clusters at the regional level. Compared to the one-stage aggregation approach, Knox-based and AGC mapping were more sensitive in small-scale spatio-temporal clustering.


Subject(s)
Algorithms , Animal Husbandry , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/transmission , Poultry Diseases/transmission , Poultry/virology , Space-Time Clustering , Animals , Influenza in Birds/diagnosis , Influenza in Birds/virology , Poultry Diseases/diagnosis , Poultry Diseases/virology , Taiwan , Time Factors
8.
Vet Microbiol ; 263: 109251, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34656859

ABSTRACT

Infection dynamics data for influenza A virus in a species is important for understanding host-pathogen interactions and developing effective control strategies. Seven-week-old ostriches challenged with H7N1 low pathogenic viruses (LPAIV) or clade 2.3.4.4B H5N8 high pathogenic viruses (HPAIV) were co- housed with non-challenged contacts. Clinical signs, virus shed in the trachea, cloaca, and feather pulp, and antibody responses were quantified over 14 days. H7N1 LPAIV-infected ostriches remained generally healthy with some showing signs of mild conjunctivitis and rhinitis attributed to Mycoplasma co-infection. Mean tracheal virus shedding titres in contact birds peaked 3 days (106.2 EID50 equivalents / ml) and 9 days (105.28 EID50 equivalents / ml) after introduction, lasting for at least 13 days post infection. Cloacal shedding was substantially lower and ceased within 10 days of onset, and low virus levels were detected in wing feather pulp up until day 14. H5N8 HPAIV -infected ostriches showed various degrees of morbidity, with 2/3 mortalities in the in-contact group. Mean tracheal shedding in contact birds peaked 8 days after introduction (106.32 EID50 equivalents/ ml) and lasted beyond 14 days in survivors. Cloacal shedding and virus in feather pulp was generally higher and more consistently positive compared to H7N1 LPAIV, and was also detectable at least until 14 days post infection in survivors. Antibodies against H5N8 HPAIV and H7N1 LPAIV only appeared after day 7 post exposure, with higher titres induced by the HPAIV compared to the LPAIV, and neuraminidase treatment was essential to remove non-specific inhibitors from the H5N8-positive antisera.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza A Virus, H7N1 Subtype , Influenza in Birds , Struthioniformes , Animals , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H7N1 Subtype/pathogenicity , Influenza in Birds/virology
9.
Viruses ; 13(10)2021 09 23.
Article in English | MEDLINE | ID: mdl-34696333

ABSTRACT

During the 2020-2021 winter season, an outbreak of clade 2.3.4.4b H5N8 high pathogenicity avian influenza (HPAI) virus occurred in South Korea. Here, we evaluated the pathogenicity and transmissibility of A/mandarin duck/Korea/H242/2020 (H5N8) (H242/20(H5N8)) first isolated from this outbreak in specific pathogen-free (SPF) chickens and commercial ducks in comparison with those of A/duck/Korea/HD1/2017(H5N6) (HD1/17(H5N6)) from a previous HPAI outbreak in 2017-2018. In chickens, the 50% chicken lethal dose and mean death time of H242/20(H5N8) group were 104.5 EID50 and 4.3 days, respectively, which indicate less virulent than those of HD1/17(H5N6) (103.6 EID50 and 2.2 days). Whereas, chickens inoculated with H242/20(H5N8) survived longer and had a higher titer of viral shedding than those inoculated with HD1/17(H5N6), which may increase the risk of viral contamination on farms. All ducks infected with either HPAI virus survived without clinical symptoms. In addition, they exhibited a longer virus shedding period and a higher transmission rate, indicating that ducks may play an important role as a silent carrier of both HPAI viruses. These results suggest that the pathogenic characteristics of HPAI viruses in chickens and ducks need to be considered to effectively control HPAI outbreaks in the field.


Subject(s)
Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/epidemiology , Influenza in Birds/virology , Poultry Diseases/epidemiology , Poultry Diseases/virology , Animals , Chickens/virology , Disease Outbreaks/veterinary , Ducks/virology , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza A virus/classification , Influenza in Birds/transmission , Poultry Diseases/transmission , Republic of Korea/epidemiology , Specific Pathogen-Free Organisms , Virulence , Virus Shedding
10.
Viruses ; 13(10)2021 10 16.
Article in English | MEDLINE | ID: mdl-34696516

ABSTRACT

The first detection of a Highly Pathogenic Avian Influenza (HPAI) H5N8 virus in Bulgaria dates back to December 2016. Since then, many outbreaks caused by HPAI H5 viruses from clade 2.3.4.4B have been reported in both domestic and wild birds in different regions of the country. In this study, we characterized the complete genome of sixteen H5 viruses collected in Bulgaria between 2019 and 2021. Phylogenetic analyses revealed a persistent circulation of the H5N8 strain for four consecutive years (December 2016-June 2020) and the emergence in 2020 of a novel reassortant H5N2 subtype, likely in a duck farm. Estimation of the time to the most recent common ancestor indicates that this reassortment event may have occurred between May 2019 and January 2020. At the beginning of 2021, Bulgaria experienced a new virus introduction in the poultry sector, namely a HPAI H5N8 that had been circulating in Europe since October 2020. The periodical identification in domestic birds of H5 viruses related to the 2016 epidemic as well as a reassortant strain might indicate undetected circulation of the virus in resident wild birds or in the poultry sector. To avoid the concealed circulation and evolution of viruses, and the risk of emergence of strains with pandemic potential, the implementation of control measures is of utmost importance, particularly in duck farms where birds display no clinical signs.


Subject(s)
Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/epidemiology , Animals , Animals, Wild/virology , Birds/virology , Bulgaria/epidemiology , Disease Outbreaks/veterinary , Ducks/virology , History, 21st Century , Influenza A Virus, H5N2 Subtype/genetics , Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza A virus/pathogenicity , Influenza in Birds/history , Phylogeny , Poultry/virology , Poultry Diseases/virology
11.
Emerg Microbes Infect ; 10(1): 1760-1776, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34420477

ABSTRACT

Avian influenza viruses (AIV) H5N8 clade 2.3.4.4 pose a public health threat but the viral factors relevant for its potential adaptation to mammals are largely unknown. The non-structural protein 1 (NS1) of influenza viruses is an essential interferon antagonist. It commonly consists of 230 amino acids, but variations in the disordered C-terminus resulted in truncation or extension of NS1 with a possible impact on virus fitness in mammals. Here, we analysed NS1 sequences from 1902 to 2020 representing human influenza viruses (hIAV) as well as AIV in birds, humans and other mammals and with an emphasis on the panzootic AIV subtype H5N8 clade 2.3.4.4A (H5N8-A) from 2013 to 2015 and clade 2.3.4.4B (H5N8-B) since 2016. We found a high degree of prevalence for short NS1 sequences among hIAV, zoonotic AIV and H5N8-B, while AIV and H5N8-A had longer NS1 sequences. We assessed the fitness of recombinant H5N8-A and H5N8-B viruses carrying NS1 proteins with different lengths in human cells and in mice. H5N8-B with a short NS1, similar to hIAV or AIV from a human or other mammal-origins, was more efficient at blocking apoptosis and interferon-induction without a significant impact on virus replication in human cells. In mice, shortening of the NS1 of H5N8-A increased virus virulence, while the extension of NS1 of H5N8-B reduced virus virulence and replication. Taken together, we have described the biological impact of variation in the NS1 C-terminus in hIAV and AIV and shown that this affects virus fitness in vitro and in vivo.


Subject(s)
Genetic Fitness , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/immunology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , A549 Cells , Animals , Cells, Cultured , Chickens , Dogs , Ducks/virology , Female , HEK293 Cells , Humans , Influenza A Virus, H5N8 Subtype/chemistry , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A virus/chemistry , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza in Birds/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Reassortant Viruses/pathogenicity , Turkey , Viral Nonstructural Proteins/chemistry , Virus Replication
12.
Emerg Microbes Infect ; 10(1): 1819-1823, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34392820

ABSTRACT

In mid-November 2020, deaths of whooper swan were reported in the Yellow River Reservoir Area, China. In the present study, we describe the genetic characterizations and phylogenetic relationships of four clade 2.3.4.4b H5N8 highly avian influenza viruses (HPAIVs) identified from a sick whooper swan and environmental samples collected in the Yellow River Reservoir Area in late November 2020. They were closely related to recent H5Nx HPAIVs causing outbreaks in Eurasia in the 2020-2021 influenza season, suggesting these isolates might be imported into China via migratory birds. The newly identified H5N8 HPAIVs possessed Q226 and G228 (H3 numbering), indicating that they prefer to avian-like receptors. However, they had three mutations falling within known antigenic regions, including T144A in antigenic region A, T192I in antigenic region B, and N240D in antigenic region D. Our study highlights the risk of the rapid global spread of H5N8 HPAIVs and the necessity for continuous monitoring of avian influenza viruses in wild birds.


Subject(s)
Animals, Wild/virology , Birds/virology , Communicable Diseases, Emerging/virology , Disease Outbreaks/veterinary , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/epidemiology , Phylogeny , Poultry Diseases/epidemiology , Animals , China/epidemiology , Communicable Diseases, Emerging/epidemiology , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/genetics , Poultry/virology , Poultry Diseases/virology , Reassortant Viruses
13.
Viruses ; 13(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-34452430

ABSTRACT

Highly pathogenic avian influenza (HPAI) viruses continue to circulate worldwide, causing numerous outbreaks among bird species and severe public health concerns. H5N1 and H5N8 are the two most fundamental HPAI subtypes detected in birds in the last two decades. The two viruses may compete with each other while sharing the same host population and, thus, suppress the spread of one of the viruses. In this study, we performed a statistical analysis to investigate the temporal correlation of the HPAI H5N1 and HPAI H5N8 subtypes using globally reported data in 2015-2020. This was joined with an in-depth analysis using data generated via our national surveillance program in Egypt. A total of 6412 outbreaks were reported worldwide during this period, with 39% (2529) as H5N1 and 61% (3883) as H5N8. In Egypt, 65% of positive cases were found in backyards, while only 12% were found in farms and 23% in live bird markets. Overall, our findings depict a trade-off between the number of positive H5N1 and H5N8 samples around early 2017, which is suggestive of the potential replacement between the two subtypes. Further research is still required to elucidate the underpinning mechanisms of this competitive dynamic. This, in turn, will implicate the design of effective strategies for disease control.


Subject(s)
Chickens/virology , Disease Outbreaks/veterinary , Epidemiological Monitoring/veterinary , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N8 Subtype/genetics , Influenza in Birds/epidemiology , Influenza in Birds/virology , Animals , Animals, Wild/virology , Disease Outbreaks/prevention & control , Egypt/epidemiology , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/prevention & control , Phylogeny , Poultry Diseases/epidemiology , Poultry Diseases/virology
14.
J Virol ; 95(18): e0095521, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34232725

ABSTRACT

Highly pathogenic avian influenza (HPAI) viruses from the H5Nx Goose/Guangdong/96 lineage continue to cause outbreaks in domestic and wild bird populations. Two distinct genetic groups of H5N8 HPAI viruses, hemagglutinin (HA) clades 2.3.4.4A and 2.3.4.4B, caused intercontinental outbreaks in 2014 to 2015 and 2016 to 2017, respectively. Experimental infections using viruses from these outbreaks demonstrated a marked difference in virulence in mallards, with the H5N8 virus from 2014 causing mild clinical disease and the 2016 H5N8 virus causing high mortality. To assess which gene segments are associated with enhanced virulence of H5N8 HPAI viruses in mallards, we generated reassortant viruses with 2014 and 2016 viruses. For single-segment reassortants in the genetic backbone of the 2016 virus, pathogenesis experiments in mallards revealed that morbidity and mortality were reduced for all eight single-segment reassortants compared to the parental 2016 virus, with significant reductions in mortality observed with the polymerase basic protein 2 (PB2), nucleoprotein (NP), and matrix (M) reassortants. No differences in morbidity and mortality were observed with reassortants that either have the polymerase complex segments or the HA and neuraminidase (NA) segments of the 2016 virus in the genetic backbone of the 2014 virus. In vitro assays showed that the NP and polymerase acidic (PA) segments of the 2014 virus lowered polymerase activity when combined with the polymerase complex segments of the 2016 virus. Furthermore, the M segment of the 2016 H5N8 virus was linked to filamentous virion morphology. Phylogenetic analyses demonstrated that gene segments related to the more virulent 2016 H5N8 virus have persisted in the contemporary H5Nx HPAI gene pool until 2020. IMPORTANCE Outbreaks of H5Nx HPAI viruses from the goose/Guangdong/96 lineage continue to occur in many countries and have resulted in substantial impact on wild birds and poultry. Epidemiological evidence has shown that wild waterfowl play a major role in the spread of these viruses. While HPAI virus infection in gallinaceous species causes high mortality, a wide range of disease outcomes has been observed in waterfowl species. In this study, we examined which gene segments contribute to severe disease in mallards infected with H5N8 HPAI viruses. No virus gene was solely responsible for attenuating the high virulence of a 2016 H5N8 virus, but the PB2, NP, and M segments significantly reduced mortality. The findings herein advance our knowledge on the pathobiology of avian influenza viruses in waterfowl and have potential implications on the ecology and epidemiology of H5Nx HPAI in wild bird populations.


Subject(s)
Ducks/virology , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/transmission , Influenza in Birds/virology , Poultry Diseases/virology , Viral Proteins/genetics , Animals , Influenza A Virus, H5N8 Subtype/genetics , Phylogeny , Poultry Diseases/genetics , Virulence
16.
BMC Vet Res ; 17(1): 124, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33740981

ABSTRACT

BACKGROUND: Influenza viruses are a continuous threat to avian and mammalian species, causing epidemics and pandemics. After the circulation of H5N1 in 2006, 2015, and 2016 in Iraq, an H5N8 influenza virus emerged in domestic geese in Sulaymaniyah Province, Iraq. This study analyzed the genetic characteristics of the Iraqi H5N8 viruses. RESULTS: An HPAI virus subtype H5N8 was identified from domestic backyard geese in the Kurdistan Region, north Iraq. Phylogenic analyses of the hemagglutinin (HA) and neuraminidase (NA) genes indicated that Iraq H5N8 viruses belonged to clade 2.3.4.4 group B and clustered with isolates from Iran, Israel, and Belgium. Genetic analysis of the HA gene indicated molecular markers for avian-type receptors. Characterization of the NA gene showed that the virus had sensitive molecular markers for antiviral drugs. CONCLUSIONS: This is the first study ever on H5N8 in Iraq, and it is crucial to understand the epidemiology of the viruses in Iraq and the Middle East. The results suggest a possible role of migratory birds in the introduction of HPAI subtype H5N8 into Iraq.


Subject(s)
Geese/virology , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza in Birds/virology , Poultry Diseases/virology , Animals , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Neuraminidase/genetics , Phylogeny , Viral Proteins/genetics
17.
Viruses ; 13(2)2021 02 10.
Article in English | MEDLINE | ID: mdl-33579009

ABSTRACT

Highly pathogenic avian influenza (HPAI), a zoonotic disease, is a major threat to humans and poultry health worldwide. In January 2014, HPAI virus subtype H5N8 first infected poultry farms in South Korea, and 393 outbreaks, overall, were reported with enormous economic damage in the poultry industry. We analyzed the spatiotemporal distribution of HPAI H5N8 outbreaks in poultry farms using the global and local spatiotemporal interaction analyses in the first (January to July 2014) and second (September 2014 to June 2015) outbreak waves. The space-time K-function analyses revealed significant interactions within three days and in an over-40 km space-time window between the two study periods. The excess risk attributable value (D0) was maintained despite the distance in the case of HPAI H5N8 in South Korea. Eleven spatiotemporal clusters were identified, and the results showed that the HPAI introduction was from the southwestern region, and spread to the middle region, in South Korea. This spatiotemporal interaction indicates that the HPAI epidemic in South Korea was mostly characterized by short period transmission, regardless of the distance. This finding supports strict control strategies such as preemptive depopulation, and poultry movement tracking. Further studies are needed to understand HPAI disease transmission patterns.


Subject(s)
Disease Outbreaks/veterinary , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/transmission , Poultry Diseases/transmission , Animals , Cluster Analysis , Disease Outbreaks/prevention & control , Farms , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Poultry , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control , Republic of Korea/epidemiology , Spatio-Temporal Analysis
18.
Emerg Microbes Infect ; 10(1): 148-151, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33400615

ABSTRACT

Analyses of HPAI H5 viruses from poultry outbreaks across a wide Eurasian region since July 2020 including the Russian Federation, Republics of Iraq and Kazakhstan, and recent detections in migratory waterfowl in the Netherlands, revealed undetected maintenance of H5N8, likely in galliform poultry since 2017/18 and both H5N5 and H5N1. All viruses belong to A/H5 clade 2.3.4.4b with closely related HA genes. Heterogeneity in Eurasian H5Nx HPAI emerging variants threatens poultry production, food security and veterinary public health.


Subject(s)
Disease Outbreaks/veterinary , Influenza A virus/classification , Influenza A virus/pathogenicity , Influenza in Birds/epidemiology , Poultry/virology , Animals , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A virus/isolation & purification , Iraq/epidemiology , Kazakhstan/epidemiology , Netherlands/epidemiology , Phylogeny , Russia/epidemiology , Whole Genome Sequencing
19.
Emerg Microbes Infect ; 10(1): 97-108, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33350337

ABSTRACT

Strategies to control spread of highly pathogenic avian influenza (HPAI) viruses by wild birds appear limited, hence timely characterization of novel viruses is important to mitigate the risk for the poultry sector and human health. In this study we characterize three recent H5-clade 2.3.4.4 viruses, the H5N8-2014 group A virus and the H5N8-2016 and H5N6-2017 group B viruses. The pathogenicity of the three viruses for chickens, Pekin ducks and Eurasian wigeons was compared. The three viruses were highly pathogenic for chickens, but the two H5N8 viruses caused no to mild clinical symptoms in both duck species. The highest pathogenicity for duck species was observed for the most recent H5N6-2017 virus. For both duck species, virus shedding from the cloaca was higher after infection with group B viruses compared to the H5N8-2014 group A virus. Higher cloacal virus shedding of wild ducks may increase transmission between wild birds and poultry. Environmental transmission of H5N8-2016 virus to chickens was studied, which showed that chickens are efficiently infected by (fecal) contaminated water. These results suggest that pathogenicity of HPAI H5 viruses and virus shedding for ducks is evolving, which may have implications for the risk of introduction of these viruses into the poultry sector.


Subject(s)
Anseriformes/virology , Chickens/virology , Influenza A virus/pathogenicity , Influenza in Birds/transmission , Animals , Cloaca/virology , Feces/virology , Female , Genome, Viral , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A virus/classification , Influenza A virus/genetics , Male , Virus Shedding , Water Microbiology
20.
Avian Pathol ; 50(1): 98-106, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33034513

ABSTRACT

Avian influenza (AI) is one of the most important viral diseases in poultry, wildlife and humans. Available data indicate that pigeons play a minimum role in the epidemiology of AI. However, a degree of variation exists in the susceptibility of pigeons to highly pathogenic AI viruses (HPAIVs), especially since the emergence of the goose/Guangdong H5 lineage. Here, the pathogenesis of H5N8 HPAIV in comparison with a H7N1 HPAIV and the role of pigeons in the epidemiology of these viruses were evaluated. Local and urban pigeons (Columba livia var. domestica) were intranasally inoculated with 105 ELD50 of A/goose/Spain/IA17CR02699/2017 (H5N8) or A/Chicken/Italy/5093/1999 (H7N1) and monitored during 14 days. Several pigeons inoculated with H5N8 or H7N1 seroconverted. However, clinical signs, mortality, microscopic lesions and viral antigen were only detected in a local pigeon inoculated with H5N8 HPAIV. This pigeon presented prostration and neurological signs that correlated with the presence of large areas of necrosis and widespread AIV antigen in the central nervous system, indicating that the fatal outcome was associated with neurological dysfunction. Viral RNA in swabs was detected in some pigeons inoculated with H7N1 and H5N8, but it was inconsistent, short-term and at low titres. The present study demonstrates that the majority of pigeons were resistant to H5N8 and H7N1 HPAIVs, despite several pigeons developing asymptomatic infections. The limited viral shedding indicates a minimum role of pigeons as amplifiers of HPAIVs, regardless of the viral lineage, and suggests that this species may represent a low risk for environmental contamination. RESEARCH HIGHLIGHTS H7N1 and H5N8 HPAIVs can produce subclinical infections in pigeons. The mortality caused by H5N8 HPAIV in one pigeon was associated with neurological dysfunction. Pigeons represent a low risk for environmental contamination by HPAIVs.


Subject(s)
Columbidae/virology , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H7N1 Subtype/pathogenicity , Influenza in Birds/virology , Animals , Animals, Wild , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/immunology , Influenza A Virus, H7N1 Subtype/genetics , RNA, Viral/genetics , Virulence , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...