Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.944
Filter
1.
Aerosp Med Hum Perform ; 95(6): 297-304, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38790119

ABSTRACT

INTRODUCTION: Negative pressure breathing is breathing with decreased pressure in the respiratory tract without lowering pressure acting on the torso. We lowered air pressure only during inspiration (NPBin). NPBin, used to increase venous return to the heart, is considered a countermeasure against redistribution of body fluids toward the head during spaceflight. We studied NPBin effects on circulation in healthy humans with an emphasis on NPBin-induced oscillations of hemodynamic parameters synchronous with breathing. We propose an approach to analyze the oscillations based on coherent averaging.METHODS: Eight men ages 24-42 yr participated in the NPBin and control series. During the series, to reproduce fluids shift observed under microgravity, subjects were supine and head down (-8°). Duration of NPBin was 20 min, rarefaction -20 cm H2O. Hemodynamic parameters were measured by Finometer. Electrical impedance measurements were used to estimate changes in blood filling of cerebral vessels.RESULTS: Mean values of hemodynamic parameters virtually did not change under NPBin, but NPBin induced oscillations of the parameters synchronous with respiration. Peak-to-peak amplitude under NPBin were: mean arterial pressure, 4 ± 1 (mmHg); stroke volume, 7 ± 3 (mL); and heart rate, 4 ± 1 (bpm). Electrical impedance of the head increased during inspiration. The increase under NPBin was three times greater than under normal breathing.DISCUSSION: Analysis of oscillations gives more information than analysis of mean values. NPBin induces short-term decrease in left ventricle stroke volume and arterial blood pressure during each inspiration; the decrease is compensated by increase after inspiration. NPBin facilitates redistribution of body fluids away from the head.Semenov YS, Melnikov IS, Luzhnov PV, Dyachenko AI. Oscillations of hemodynamic parameters induced by negative pressure breathing in healthy humans. Aerosp Med Hum Perform. 2024; 95(6):297-304.


Subject(s)
Hemodynamics , Humans , Male , Adult , Hemodynamics/physiology , Young Adult , Heart Rate/physiology , Stroke Volume/physiology , Fluid Shifts/physiology , Weightlessness , Healthy Volunteers , Respiration , Head-Down Tilt/physiology , Inhalation/physiology
2.
PLoS One ; 19(5): e0302735, 2024.
Article in English | MEDLINE | ID: mdl-38787839

ABSTRACT

OBJECTIVES: To analyze diaphragmatic thickness, at end-inspiration and end-expiration, diaphragmatic thickening index and mobility via US under two different modalities of inspiratory muscle loading, in two different modalities of inspiratory muscle loading and different load intensities at full-vital capacity maneuvers and the relationship between diaphragmatic thickness with pulmonary function tests in participants with HF. METHODS: This randomized crossover trial, enrolled with 17 HF subjects, evaluated diaphragm thickness (Tdi, mm), fractional thickness (TFdi, %), and mobility (mm) US during low and high intensities (30% and 60% of maximal inspiratory pressure-MIP) with two modalities of inspiratory muscle loading mechanical threshold loading (MTL) and tapered flow-resistive loading (TFRL). RESULTS: Both MTL and TFRL produced a increase in Tdi, but only with high intensity loading compared to baseline-2.21 (0.26) vs. 2.68 (0.33) and 2.73 (0.44) mm; p = .01. TFdi was greater than baseline under all conditions, except during low intensity of TFRL. Diaphragm mobility was greater than baseline under all conditions, and high intensity of TFRL elicited greater mobility compared to all other conditions. Additionally, baseline Tdi was moderately correlated with pulmonary function tests. CONCLUSIONS: MTL and TFRL modalities elicit similar increases in diaphragm thickness at loads, but only during high intensity loading it was greater than baseline. Diaphragm mobility was significantly greater than baseline under both loads and devices, and at high intensity compared to low intensity, although TFRL produced greater mobility compared to modalities of inspiratory muscle loading. There is an association between diaphragm thickness and pulmonary function tests.


Subject(s)
Cross-Over Studies , Diaphragm , Heart Failure , Inhalation , Humans , Diaphragm/physiopathology , Diaphragm/diagnostic imaging , Diaphragm/physiology , Male , Middle Aged , Female , Heart Failure/physiopathology , Heart Failure/diagnostic imaging , Inhalation/physiology , Aged , Respiratory Function Tests , Respiratory Muscles/physiopathology
3.
Emerg Radiol ; 31(3): 331-340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38632154

ABSTRACT

PURPOSE: To investigate the effects of mid-inspiratory respiration commands and other factors on transient interruption of contrast (TIC) incidence on CT pulmonary angiography. METHODS: In this retrospective study, 824 patients (mean age, 66.1 ± 15.3 years; 342 males) who had undergone CT pulmonary angiography between January 2021 and February 2023 were included. Among them, 545 and 279 patients were scanned at end- and mid-inspiratory levels, respectively. By placing a circular region of interest, CT attenuation of the main pulmonary artery (CTMPA) was recorded. Associations between several factors, including patient age, body weight, sex, respiratory command vs. TIC and severe TIC incidence (defined as CTMPA < 200 and 150 HU, respectively), were assessed using logistic regression analyses with stepwise regression selection based on Akaike's information criterion. RESULTS: Mid-inspiratory respiration command, in addition to patient age and lighter body weight, had negative association with the incidence of TIC. Only patient age, lighter body weight, female sex, and larger cardiothoracic ratio were negatively associated with severe TIC incidence. Mid-inspiratory respiration commands helped reduce TIC incidence among patients aged < 65 years (p = 0.039) and those with body weight ≥ 75 kg (p = 0.005) who were at high TIC risk. CONCLUSION: Changing the respiratory command from end- to mid-inspiratory levels, as well as patient age and body weight, was significantly associated with TIC incidence.


Subject(s)
Computed Tomography Angiography , Contrast Media , Humans , Male , Female , Retrospective Studies , Computed Tomography Angiography/methods , Aged , Pulmonary Artery/diagnostic imaging , Inhalation/physiology , Middle Aged , Pulmonary Embolism/diagnostic imaging
5.
Br J Radiol ; 97(1157): 980-992, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38547402

ABSTRACT

OBJECTIVES: To develop a mapping model between skin surface motion and internal tumour motion and deformation using end-of-exhalation (EOE) and end-of-inhalation (EOI) 3D CT images for tracking lung tumours during respiration. METHODS: Before treatment, skin and tumour surfaces were segmented and reconstructed from the EOE and the EOI 3D CT images. A non-rigid registration algorithm was used to register the EOE skin and tumour surfaces to the EOI, resulting in a displacement vector field that was then used to construct a mapping model. During treatment, the EOE skin surface was registered to the real-time, yielding a real-time skin surface displacement vector field. Using the mapping model generated, the input of a real-time skin surface can be used to calculate the real-time tumour surface. The proposed method was validated with and without simulated noise on 4D CT images from 15 patients at Léon Bérard Cancer Center and the 4D-lung dataset. RESULTS: The average centre position error, dice similarity coefficient (DSC), 95%-Hausdorff distance and mean distance to agreement of the tumour surfaces were 1.29 mm, 0.924, 2.76 mm, and 1.13 mm without simulated noise, respectively. With simulated noise, these values were 1.33 mm, 0.920, 2.79 mm, and 1.15 mm, respectively. CONCLUSIONS: A patient-specific model was proposed and validated that was constructed using only EOE and EOI 3D CT images and real-time skin surface images to predict internal tumour motion and deformation during respiratory motion. ADVANCES IN KNOWLEDGE: The proposed method achieves comparable accuracy to state-of-the-art methods with fewer pre-treatment planning CT images, which holds potential for application in precise image-guided radiation therapy.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms , Skin , Humans , Lung Neoplasms/diagnostic imaging , Four-Dimensional Computed Tomography/methods , Skin/diagnostic imaging , Inhalation , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Exhalation/physiology , Imaging, Three-Dimensional/methods , Respiration , Tomography, X-Ray Computed/methods
6.
Trop Med Int Health ; 29(5): 405-413, 2024 May.
Article in English | MEDLINE | ID: mdl-38503276

ABSTRACT

OBJECTIVE: Inspiratory muscle strength (IMS) appears to be reduced in subjects with chronic Chagas heart disease (CHD), especially in the presence of heart failure (HF). However, only one study about IMS and inspiratory muscle endurance (IME) in those with CHD without heart failure is available. This study aimed to compare IMS and IME in subjects with CHD in the presence and absence of HF. METHODS: This is a cross-sectional study in which 30 CHD adult patients were divided into CHD-CC group (initial phase of CHD, without HF; n = 15) and CHD-HF group (advanced phase of CHD, with HF; n = 15). We assessed IMS by maximum inspiratory pressure (MIP) and IME by incremental (Pthmax) and constant load (TLim) tests. Reduced IMS and IME were considered by predicted MIP values <70% and Pthmax/MIP <75%, respectively. RESULTS: Inspiratory muscle weakness (IMW) was more frequent in CHD-HF than in CHD-CC (46.7% vs. 13.3%; p = 0.05), and both groups had high frequencies of reduced IME (93.3% CHD-CC vs. 100.0% CHD-HF; p = 0.95). Age-adjusted logistic regression analysis using HF as a dependent variable showed that HF was associated with an increased chance of IMW compared with the CHD-CC group (OR = 7.47; p = 0.03; 95% CI 1.20-46.19). CONCLUSION: This study suggests that, in patients with CHD, HF is associated with IMW, and that reduction of IME is already present in the initial phase, similar to the advanced phase with HF.


Subject(s)
Chagas Cardiomyopathy , Respiratory Muscles , Humans , Cross-Sectional Studies , Male , Female , Middle Aged , Respiratory Muscles/physiopathology , Chagas Cardiomyopathy/physiopathology , Adult , Chronic Disease , Heart Failure/physiopathology , Muscle Strength/physiology , Inhalation/physiology , Muscle Weakness/physiopathology , Physical Endurance , Aged
7.
Respir Med ; 224: 107576, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403127

ABSTRACT

The deposition of dry powder aerosol drugs depends on the inhalation parameters of the patients through the inhaler. These data are not directly measured in clinical practice. Their prediction based on the routinely measured spirometric data could help in choosing the appropriate device and optimizing the therapy. The aim of this study was to perform inhalation experiments to find correlations between inhalation parameters of COPD patients through two DPI devices and their native spirometric data, gender, age and disease severity. Another goal was to establish relationships between peak inspiratory flows through NEXThaler® and Ellipta® inhalers and their statistical determinants. Breathing parameters of 113 COPD patients were measured by normal spirometry and while inhaling through the two DPIs. Statistical analysis of the measured data was performed. The average values of peak inspiratory flow through the devices (PIFdev) were 68.4 L/min and 78.0 L/min for NEXThaler® and Ellipta®, respectively. PIFdev values were significantly higher for males than for females, but differences upon age, BMI and disease severity group were not significant. PIFdev values correlated best with their native spirometric counterparts (PIF) and linear relationships between them were revealed. Current results may be used in the future to predict the success of inhalation of COPD patients through DPI devices, which may help in the inhaler choice. By choosing the appropriate device-drug pair for each patient the lung dose can be increased and the efficiency of the therapy improved. Further results of the clinical study will be the subject of a next publication.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Male , Female , Humans , Pulmonary Disease, Chronic Obstructive/drug therapy , Dry Powder Inhalers , Respiratory Aerosols and Droplets , Lung , Administration, Inhalation , Inhalation
8.
Pediatr Pulmonol ; 59(5): 1274-1280, 2024 May.
Article in English | MEDLINE | ID: mdl-38353341

ABSTRACT

PURPOSE: We aimed to assess diaphragmatic function in term and preterm infants with and without history of bronchopulmonary dysplasia (BPD), before and after the application of inspiratory flow resistive loading. METHODS: Forty infants of a median (range) gestational age of 34 (25-40) weeks were studied. BPD was defined as supplemental oxygen requirement for >28 days of life. Seventeen infants were term, 17 preterm without history of BPD, and six preterm with a history of BPD. The diaphragmatic pressure-time index (PTIdi) was calculated as the mean to maximum trans-diaphragmatic pressure ratio times the inspiratory duty cycle. The PTIdi was calculated before and after the application of an inspiratory-flow resistance for 120 s. Airflow was measured by a pneumotachograph and the transdiaphragmatic pressure by a dual pressure catheter. RESULTS: The median (interquartile range [IQR]) pre-resistance PTIdi was higher in preterm infants without BPD (0.064 [0.050-0.077]) compared with term infants (0.052 [0.044-0.062], p = .029) and was higher in preterm infants with BPD (0.119 [0.086-0.132]) compared with a subgroup of preterm infants without BPD (0.062 [0.056-0.072], p = .004). The median (IQR) postresistance PTIdi was higher in preterm infants without BPD (0.101 [0.084-0.132]) compared with term infants (0.067 [0.055-0.083], p < .001) and was higher in preterm infants with BPD [0.201(0.172-0.272)] compared with the preterm subgroup without BPD (0.091 [0.081-0.108],p = .004). The median (IQR) percentage change of the PTIdi after the application of the resistance was higher in preterm infants without BPD (65 [51-92] %) compared with term infants (34 [20-39] %, p < .001). CONCLUSIONS: Preterm infants, especially those recovering from BPD, are at increased risk of diaphragmatic muscle fatigue under conditions of increased inspiratory loading.


Subject(s)
Bronchopulmonary Dysplasia , Diaphragm , Infant, Premature , Humans , Diaphragm/physiopathology , Infant, Newborn , Male , Bronchopulmonary Dysplasia/physiopathology , Female , Gestational Age , Inhalation/physiology
9.
Med Biol Eng Comput ; 62(6): 1733-1749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38363487

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a common lung disease that can lead to restricted airflow and respiratory problems, causing a significant health, economic, and social burden. Detecting the COPD stage can provide a timely warning for prompt intervention in COPD patients. However, existing methods based on inspiratory (IN) and expiratory (EX) chest CT images are not sufficiently accurate and efficient in COPD stage detection. The lung region images are autonomously segmented from IN and EX chest CT images to extract the 1 , 781 × 2 lung radiomics and 13 , 824 × 2 3D CNN features. Furthermore, a strategy for concatenating and selecting features was employed in COPD stage detection based on radiomics and 3D CNN features. Finally, we combine all the radiomics, 3D CNN features, and factor risks (age, gender, and smoking history) to detect the COPD stage based on the Auto-Metric Graph Neural Network (AMGNN). The AMGNN with radiomics and 3D CNN features achieves the best performance at 89.7 % of accuracy, 90.9 % of precision, 89.5 % of F1-score, and 95.8 % of AUC compared to six classic machine learning (ML) classifiers. Our proposed approach demonstrates high accuracy in detecting the stage of COPD using both IN and EX chest CT images. This method can potentially establish an efficient diagnostic tool for patients with COPD. Additionally, we have identified radiomics and 3D CNN as more appropriate biomarkers than Parametric Response Mapping (PRM). Moreover, our findings indicate that expiration yields better results than inspiration in detecting the stage of COPD.


Subject(s)
Neural Networks, Computer , Pulmonary Disease, Chronic Obstructive , Tomography, X-Ray Computed , Humans , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/physiopathology , Tomography, X-Ray Computed/methods , Male , Female , Aged , Middle Aged , Inhalation/physiology , Exhalation/physiology , Lung/diagnostic imaging , Lung/physiopathology , Machine Learning
10.
Int J Clin Pract ; 2024: 4136457, 2024.
Article in English | MEDLINE | ID: mdl-38344141

ABSTRACT

Aim: This study aimed to explore how varying inspiratory muscle training workloads affect exercise capacity, health-related quality of life (HrQoL), depression, peripheral and respiratory muscle strength, pulmonary function, dyspnea, fatigue, and physical activity levels in hypertension (HT) patients. Methods: A randomized, controlled three-arm study. Forty-five patients (58.37 ± 8.53 y, 7F/38M) with HT received IMT (7 days/8 weeks) by POWERbreathe® Classic LR device and were randomized to control group (CG, 10% maximal inspiratory pressure (MIP), n: 15), low-load group (LLG, 30% MIP), and high-load group (HLG, %50 MIP). Exercise capacity, HrQoL, depression, peripheral and respiratory muscle strength, pulmonary function, fatigue, physical activity level, dyspnea, and sleep quality were evaluated before and after the training. Results: Exercise capacity, physical functioning, peripheral muscle strength, and resting dyspnea were statistically significantly improved in HLG and LLG after the training compared to CG (p < 0.05). Similar improvements in perception of depression, fatigue, and sleep quality were seen within and between the groups (p > 0.05). Statistically significant differences were found within all the groups in terms of MIP and PEF values of respiratory functions (p < 0.05). The superior improvement in the physical activity level was found in the HLG (p < 0.05). Discussion. High-load IMT was particularly effective in increasing physical activity level, peripheral muscle strength, exercise capacity, and improved HrQoL. Low-load IMT was effective in reducing dyspnea and improving respiratory function. Device-guided breathing exercises decreased blood pressure, improved sleep quality, and strengthened respiratory muscles. IMT, an efficient method, is suggested for inclusion in rehabilitation programs due to its capacity to increase physical activity, exercise capacity, and peripheral muscle strength, enhance HrQoL and respiratory function, and alleviate dyspnea. Also, the efficacy of IMT should be investigated with different training protocols such as endurance IMT or functional IMT in HT patients.


Subject(s)
Exercise Tolerance , Quality of Life , Humans , Exercise Tolerance/physiology , Inhalation/physiology , Respiratory Muscles/physiology , Dyspnea , Muscle Strength , Fatigue , Randomized Controlled Trials as Topic
12.
Facial Plast Surg ; 40(3): 310-313, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38158212

ABSTRACT

Measuring nasal airflow and nasal breathing has been a major goal of rhinology. Many objective methods for measuring nasal airflow or nasal airway resistance or dimensions provide valuable data but are time-consuming and require expensive equipment and trained technicians, thus making these methods less practical for clinical practice. Peak nasal inspiratory flow (PNIF) measurement is fast, unexpensive, noninvasive, and able to provide an objective evaluation of nasal airflow in real-time. Unilateral PNIF measurements allow separated evaluation of each side of the nasal airway and may prove particularly useful when clinical assessment detects significant asymmetry between both nasal cavities.PNIF measurements are most useful for assessing changes in nasal airflow achieved by any form of therapy, including surgical treatment of the nasal airway. These measurements generally correlate with other objective methods for nasal airway evaluation, but not unequivocally with patient-reported evaluation of nasal breathing. Nevertheless, as low PNIF values prevent the sensation of a suitable nasal breathing, PNIF measurement may also prove useful to optimize the decision of how to best address patients with complaints of nasal airway obstruction.


Subject(s)
Nasal Obstruction , Humans , Nasal Obstruction/physiopathology , Nasal Obstruction/surgery , Nasal Obstruction/diagnosis , Airway Resistance/physiology , Rhinomanometry/methods , Nasal Cavity/physiopathology , Nasal Cavity/physiology , Inhalation/physiology , Respiration , Nose/anatomy & histology , Nose/physiopathology , Nose/physiology , Inspiratory Capacity/physiology
13.
Respir Res ; 24(1): 250, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853472

ABSTRACT

BACKGROUND: Deep inspiration (DI) has been shown to induce bronchodilation and bronchoprotection in bronchochallenged healthy subjects, but not in asthmatics. Strain-induced relaxation of airway smooth muscle (ASM) is considered one of the factors responsible for these effects. Other factors include the release or redistribution of pulmonary surfactant, alteration in mucus plugs, and changes in airway heterogeneity. MAIN BODY: The present review is focused on the DI effect on ASM function, based on recent findings from ex vivo sheep lung experiments showing a large change in airway diameter during a DI. The amount of stretch on the airways, when applied to isolated airway rings in vitro, caused a substantial decrease in ASM contractility that takes many minutes to recover. When challenged with a bronchoconstrictor, the increase in pulmonary resistance in the ex vivo ovine lungs is mostly due to the increase in airway resistance. CONCLUSIONS: Although non-ASM related factors cannot be excluded, the large strain on the airways associated with a DI substantially reduces ASM contractility and thus can account for most of the bronchodilatory and bronchoprotective effects of DI.


Subject(s)
Asthma , Bronchi , Humans , Animals , Sheep , Lung , Inhalation/physiology , Muscle, Smooth
14.
Int J Chron Obstruct Pulmon Dis ; 18: 1047-1055, 2023.
Article in English | MEDLINE | ID: mdl-37304764

ABSTRACT

Purpose: Disease probability measure (DPM) is a useful voxel-wise imaging assessment of gas-trapping and emphysematous lesions in patients with chronic obstructive pulmonary disease (COPD). To elucidate the progression of COPD, we performed a cluster analysis using the following DPM parameters: normal (DPMNormal), gas-trapping (DPMGasTrap), and emphysematous lesions (DPMEmph). Our findings revealed the characteristics of each cluster and the 3-year disease progression using imaging parameters. Patients and Methods: Inspiratory and expiratory chest computed tomography (CT) images of 131 patients with COPD were examined, of which 84 were followed up for 3 years. The percentage of low attenuation volume (LAV%) and the square root of the wall area of a hypothetical airway with an internal perimeter of 10 mm (√Aaw at Pi10) were quantitatively measured using inspiratory chest CT. A hierarchical cluster analysis was performed using the DPM parameters at baseline. Five clusters were named according to the dominant DPM parameters: normal (NL), normal-GasTrap (NL-GT), GasTrap (GT), GasTrap-Emphysema (GT-EM), and Emphysema (EM). Results: Women were predominantly diagnosed with GT. Forced expiratory volume in 1 s gradually decreased in the following order: NL, NL-GT, GT, GT-EM, and EM. DPMEmph correlated well with LAV%. Four clusters other than NL showed significantly higher values of √Aaw at Pi10 than NL; however, no significant differences were observed among them. In all clusters, DPMEmph increased after 3 years. DPMNormal only increased in the GT cluster. Conclusion: Clusters using DPM parameters may reflect the characteristics of COPD and help understand the pathophysiology of the disease.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Cluster Analysis , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/physiopathology , Tomography, X-Ray Computed/methods , Inhalation , Exhalation
15.
Rev. toxicol ; 40(1): 67-71, ene.-jun. 2023. ilus, tab
Article in Spanish | IBECS | ID: ibc-222869

ABSTRACT

El uso de inhalantes como drogas de abuso es una práctica de fácil acceso en menores y jóvenes tanto en países de bajos ingresos como en los de altos ingresos. Dentro de las complicaciones que se pueden presentar se encuentra el neumotórax espontáneo, que se ha relacionado tanto con el daño en el parénquima pulmonar producido por la sustancia y con la técnica de inhalación y/o exposición generando barotrauma. Se presenta un reporte de caso de un hombre joven que inhaló pegante y desarrolló un neumotórax espontáneo completo del pulmón izquierdo. Requirió intervención quirúrgica con colocación de sonda a tórax y su evolución fue satisfactoria. Esta complicación se ha reportado en la literatura con mayor frecuencia en hombres y con el uso de cocaína. Sólo se identificó otro caso similar en el contexto de inhalación de pegante con tolueno en sus componentes. Debido a los pocos reportes encontrados respecto al uso de sustancias inhalantes y al tolueno, es importante resaltar el hallazgo a fin de contribuir al inicio de futuras investigaciones a mayor escala. (AU)


Inhalants as drugs of abuse is an accessible practice in minors and young people in low-income countries as well as high-income ones. Spontaneous pneumothorax is a possible complication, which has been related both to damage of the lung parenchyma produced by the substance and inhalation and/or exposure technique making barotrauma. A case report of young man who inhaled glue with toluene and developed a complete spontaneous pneumothorax of the left lung is presented. He required surgical intervention with placement of a chest tube and his evolution was satisfactory. This complication has been reported in the literature more frequently in men and with the use of cocaine. Only one other similar case report was identified in the context of inhalation of glue with toluene in its components. Due to the few reports found regarding use of inhalant substances and toluene, it is important to highlight the finding to contribute to the initiation of future research on a larger scale. (AU)


Subject(s)
Humans , Male , Adult , Pneumothorax/diagnostic imaging , Solvents/toxicity , Inhalant Abuse/complications , Inhalation , Neoprene
16.
Future Oncol ; 19(2): 137-145, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36919855

ABSTRACT

Background: Deep inspiration breath-hold (DIBH) has been established to decrease normal tissue radiation dose in breast cancer. Methods: Forty-nine patients had two CT scans during DIBH or free breathing. Chest-wall position, setup verification and breath-hold monitoring were performed. Cone-beam CT and a surface image system were used for verification. Results: A total of 1617 breath-holds were analyzed in 401 fractions. The mean time bit was 6.01 min. The mean breaths-holds per fraction was 4.96. The median for intra-breath hold variability was 3 mm. No patient stopped treatment for intolerance. Clinical target volume margins were calculated as 0.36, 0.36 and 0.32 for the three translational positions. The mean saved volume was 26.3%. Conclusion: Voluntary DIBH is feasible, tolerable and easy to apply for children with Hodgkin lymphoma involving the mediastinum.


Deep inspiration breath-hold (DIBH) is a radiotherapy maneuver to decrease the exposure of normal tissues during the radiation of the target organ. It was developed for the treatment of breast cancer, both intact breast and chest wall, after mastectomy. For mediastinal Hodgkin lymphoma, especially in children and adolescents, DIBH will benefit in decreasing the radiation dose to the lungs and heart in this category of patients who still have normal growing tissues. We treated 49 pediatric and adolescent patients with DIBH and precise radiotherapy (volumetric modulated arc therapy) to augment the benefit of lowering the dose to normal tissues. All patients were trained and coached to breath-hold for more than 20 s. No patient stopped treatment due to poor tolerance or discomfort. Only one breath-hold was required for CT simulation in all populations (100%). The mean number of breath-holds per treatment fraction was 5.1 ± 1.8. The mean treatment time was 6 ± 1.8 min. DIBH is feasible, tolerable and easy to apply for children and adolescents with Hodgkin lymphoma involving the mediastinum. A considerable dose volume could be saved, hence decreasing the rate of side effects.


Subject(s)
Breath Holding , Hodgkin Disease , Inhalation , Mediastinal Neoplasms , Radiotherapy, Intensity-Modulated , Hodgkin Disease/diagnostic imaging , Hodgkin Disease/radiotherapy , Mediastinal Neoplasms/diagnostic imaging , Mediastinal Neoplasms/radiotherapy , Cone-Beam Computed Tomography , Humans , Male , Female , Child , Adolescent
18.
J Biomech ; 146: 111409, 2023 01.
Article in English | MEDLINE | ID: mdl-36521227

ABSTRACT

Inspiratory flow limitation means that when the flowrate reaches a certain value, it no longer increases, or even decreases, which is called negative effort dependence flow limitation, even if the inspiration effort is increased. This occurs often in obstructive sleep apnea patients, but its mechanism remains unclear. To reveal the mechanism of inspiratory flow limitation, we constructed a unique partially collapsible in-vitro upper airway model of obstructive sleep apnea patients to observe the change of airway resistance with inspiratory driving pressure. The important findings demonstrate that with the increase of inspiratory effort, the driving pressure increases faster than the airway resistance in the early stages, and then the reverse occurs as the airway becomes narrower. The airway collapse caused by the transmural pressure can lead to a rapid increase in downstream resistance with the increase of inspiratory effort, which is the key reason causing the flow reduction and the formation of typical negative effort dependence flow limitation. The mechanical mechanism revealed in this study will lead to fully new insights into the study and treatment of obstructive sleep apnea.


Subject(s)
Sleep Apnea, Obstructive , Humans , Inhalation , Airway Resistance , Lung
19.
J Magn Reson Imaging ; 57(2): 403-417, 2023 02.
Article in English | MEDLINE | ID: mdl-35762913

ABSTRACT

BACKGROUND: Although inspiratory muscle training (IMT) is an effective intervention for improving breath perception, brain mechanisms have not been studied yet. PURPOSE: To examine the effects of IMT on insula and default mode network (DMN) using resting-state functional MRI (RS-fMRI). STUDY TYPE: Prospective. POPULATION: A total of 26 healthy participants were randomly assigned to two groups as IMT group (n = 14) and sham IMT groups (n = 12). FIELD STRENGTH/SEQUENCE: A 3-T, three-dimensional T2* gradient-echo echo planar imaging sequence for RS-fMRI was obtained. ASSESSMENT: The intervention group received IMT at 60% and sham group received at 15% of maximal inspiratory pressure (MIP) for 8 weeks. Pulmonary and respiratory muscle function, and breathing patterns were measured. Groups underwent RS-fMRI before and after the treatment. STATISTICAL TESTS: Statistical tests were two-tailed P < 0.05 was considered statistically significant. Student's t test was used to compare the groups. One-sample t-test for each group was used to reveal pattern of functional connectivity. A statistical threshold of P < 0.001 uncorrected value was set at voxel level. We used False discovery rate (FDR)-corrected P < 0.05 cluster level. RESULTS: The IMT group showed more prominent alterations in insula and DMN connectivity than sham group. The MIP was significantly different after IMT. Respiratory rate (P = 0.344), inspiratory time (P = 0.222), expiratory time (P = 1.000), and inspiratory time/total breath time (P = 0.572) of respiratory patterns showed no significant change after IMT. All DMN components showed decreased, while insula showed increased activation significantly. DATA CONCLUSION: Differences in brain activity and connectivity may reflect improved ventilatory perception with IMT with a possible role in regulating breathing pattern by processing interoceptive signals. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 4.


Subject(s)
Inhalation , Muscle Strength , Humans , Healthy Volunteers , Inhalation/physiology , Prospective Studies , Muscle Strength/physiology , Breathing Exercises/methods
20.
J Burn Care Res ; 44(1): 140-145, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36309913

ABSTRACT

Chronic airway illness is a well-documented inhalation injury side effect. Many pulmonary function impairments persisted for several months after lung parenchymal injury. Thus, the purpose of this study was to investigate the effects of inspiratory muscle training on respiratory muscle strength and pulmonary function (PFT) in patients who had suffered an inhalation injury. This study included male patients with inhalation injuries aged 20-35 years. Patients were chosen at random and assigned to an exercise group, which received inspiratory muscle training and routine chest physiotherapy, including early ambulation, coughing, and deep breathing, three times weekly for 4 weeks, and the control group, which only received routine chest physiotherapy. All participants were assessed for PFT and respiratory muscle strength at enrollment and the end of the study. The statistical analysis for outcome variables between both groups revealed no significant differences before treatment (P > .05) of forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), maximal inspiratory pressure, and maximal expiratory pressure. According to the findings of this study, including IMT as part of a physical therapy program led to significant gains (P ˂ .05) in FVC and FEV1. However, after treatment, there was not a substantial difference found in either the MIP or the MEP between the groups. The exercise group performed better in terms of FVC, FEV1, MIP, and MEP after receiving treatment, according to these significant and non-significant differences.


Subject(s)
Breathing Exercises , Burns , Humans , Male , Inhalation/physiology , Lung , Muscle Strength , Physical Therapy Modalities , Respiratory Muscles
SELECTION OF CITATIONS
SEARCH DETAIL
...