Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.601
Filter
1.
Chemosphere ; 358: 142225, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705415

ABSTRACT

Short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) have garnered significant attention because they have persistence and potential toxicity, and can undergo long-distance transport. Chlorinated paraffins (CPs) inhaled in the size-fractionated particulate phase and gas phase can carry different risks to human health due to their ability to accumulate in different regions of the respiratory tract and exhibit varying deposition efficiencies. In our study, large-volume ambient air samples in both the size-fractionated particulate phase (Dp < 1.0 µm, 1.0-2.5 µm, 2.5-10 µm, and Dp ≥ 10 µm) and gas phase were collected simultaneously in Beijing using an active sampler. The overall levels of SCCPs and MCCPs were relatively high, the ranges being 57-881 and 30-385 ng/m3, respectively. SCCPs tended to be partitioned in the gas phase (on average 75% of the ΣSCCP concentration), while MCCPs tended to be partitioned in the particulate phase (on average 62% of the ΣMCCP concentration). Significant correlations were discovered between the logarithm-transformed gas-particle partition coefficients (KP) and predicted subcooled vapor pressures (PL0) (p < 0.01 for SCCPs and MCCPs) and between the logarithm-transformed KP values and octanol-air partition coefficients (KOA) (p < 0.01 for SCCPs and MCCPs). Thus, the slopes indicated that organic matter absorption was the dominant process involved in gas-particle partitioning. We used the ICRP model to calculate deposition concentrations for particulate-associated CPs in head airways region (15.6-71.4 ng/m³), tracheobronchial region (0.8-4.8 ng/m³), and alveolar region (5.1-21.9 ng/m³), then combined these concentrations with the CP concentrations in the gas phase to calculate estimated daily intakes (EDIs) for inhalation. The EDIs for SCCPs and MCCPs through inhalation of ambient air for the all-ages group were 67.5-184.2 ng/kg/day and 19.7-53.7 ng/kg/day, respectively. The results indicated that SCCPs and MCCPs in ambient air do not currently pose strong risks to human health in the study area.


Subject(s)
Air Pollutants , Environmental Monitoring , Hydrocarbons, Chlorinated , Paraffin , Particle Size , Particulate Matter , Paraffin/analysis , Air Pollutants/analysis , Humans , Particulate Matter/analysis , Hydrocarbons, Chlorinated/analysis , Risk Assessment , Inhalation Exposure/analysis , Inhalation Exposure/statistics & numerical data , Beijing , Halogenation , Gases/analysis
2.
Sci Total Environ ; 927: 171997, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38565357

ABSTRACT

Marathon running significantly increases breathing volumes and, consequently, air pollution inhalation doses. This is of special concern for elite athletes who ventilate at very high rates. However, race organizers and sport governing bodies have little guidance to support events scheduling to protect runners. A key limitation is the lack of hyper-local, high temporal resolution air quality data representative of exposure along the racecourse. This work aimed to understand the air pollution exposures and dose inhaled by athletes, by means of a dynamic monitoring methodology designed for road races. Air quality monitors were deployed during three marathons, monitoring nitrogen dioxide (NO2), ozone (O3), particulate matter (PMx), air temperature, and relative humidity. One fixed monitor was installed at the Start/Finish line and one mobile monitor followed the women elite runner pack. The data from the fixed monitors, deployed prior the race, described daily air pollution trends. Mobile monitors in combination with heatmap analysis facilitated the hyper-local characterization of athletes' exposures and helped identify local hotspots (e.g., areas prone to PM resuspension) which should be preferably bypassed. The estimation of inhaled doses disaggregated by gender and ventilation showed that doses inhaled by last finishers may be equal or higher than those inhaled by first finishers for O3 and PMx, due to longer exposures as well as the increase of these pollutants over time (e.g., 58.2 ± 9.6 and 72.1 ± 23.7 µg of PM2.5 for first and last man during Rome marathon). Similarly, men received significantly higher doses than women due to their higher ventilation rate, with differences of 31-114 µg for NO2, 79-232 µg for O3, and 6-41 µg for PMx. Finally, the aggregated data obtained during the 4 week- period prior the marathon can support better race scheduling by the organizers and provide actionable information to mitigate air pollution impacts on athletes' health and performance.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Particulate Matter , Humans , Air Pollutants/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Female , Air Pollution/statistics & numerical data , Male , Running/physiology , Ozone/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Inhalation Exposure/statistics & numerical data , Inhalation Exposure/analysis , Nitrogen Dioxide/analysis , Athletes
3.
J Hazard Mater ; 471: 134307, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678702

ABSTRACT

This systematic review and meta-analysis investigated studies on formaldehyde (FA) inhalation exposure in indoor environments and related carcinogenic (CR) and non-carcinogenic (HQ) risk. Studies were obtained from Scopus, PubMed, Web of Science, Medline, and Embase databases without time limitation until November 21, 2023. Studies not meeting the criteria of Population, Exposure, Comparator, and Outcomes (PECO) were excluded. The 45 articles included belonged to the 5 types of sites: dwelling environments, educational centers, kindergartens, vehicle cabins, and other indoor environments. A meta-analysis determined the average effect size (ES) between indoor FA concentrations, CR, and HQ values in each type of indoor environment. FA concentrations ranged from 0.01 to 1620 µg/m3. The highest FA concentrations were stated in water pipe cafés and the lowest in residential environments. In more than 90% of the studies uncertain (1.00 ×10-6 1.00 ×10-4) due to FA inhalation exposure was reported and non-carcinogenic risk was stated acceptable. The meta-analysis revealed the highest CR values due to inhalation of indoor FA in high-income countries. As 90% of the time is spent indoors, it is crucial to adopt effective strategies to reduce FA concentrations, especially in kindergartens and schools, with regular monitoring of indoor air quality.


Subject(s)
Air Pollution, Indoor , Formaldehyde , Inhalation Exposure , Formaldehyde/analysis , Formaldehyde/toxicity , Air Pollution, Indoor/analysis , Inhalation Exposure/analysis , Risk Assessment , Humans
4.
Regul Toxicol Pharmacol ; 149: 105627, 2024 May.
Article in English | MEDLINE | ID: mdl-38621522

ABSTRACT

CropLife Europe collected literature values from monitoring studies measuring air concentrations of Plant Protection Products (PPPs) that may be inhaled by humans located in rural areas but not immediately adjacent to PPP applications. The resulting "Combined Air Concentration Database" (CACD) was used to determine whether air concentrations of PPPs reported by the French "Agency for Food, Environmental and Occupational Health & Safety" (ANSES) are consistent with those measured by others to increase confidence in values of exposure to humans. The results were put into risk assessment context. Results show that 25-90% of samples do not contain measurable PPP concentrations. Measured respirable fractions were below EU default air concentrations used for risk assessment for resident exposure by the European Food Safety Authority. All measured exposures in the CACD were also below established toxicological endpoints, even when considering the highest maximum average reported concentrations and very conservative inhalation rates. The highest recorded air concentration was for prosulfocarb (0.696 µg/m³ measured over 48 h) which is below the EFSA default limit of 1 µg/m³ for low volatility substances. In conclusion, based on the CACD, measured air concentrations of PPPs are significantly lower than EFSA default limits and relevant toxicological reference values.


Subject(s)
Air Pollutants , Databases, Factual , Environmental Monitoring , Risk Assessment , Humans , Air Pollutants/analysis , Environmental Monitoring/methods , Inhalation Exposure/analysis , Inhalation Exposure/adverse effects
5.
Environ Sci Process Impacts ; 26(5): 843-857, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38597352

ABSTRACT

Inhalation of welding fumes (WFs) containing high levels of transition metals (Cr, Cu, Fe, Mn, Ni…) is associated with numerous health effects including oxidative stress. However, the measurements of the oxidative potential (OP) and bioaccessibility of WF transition metals depend on several physicochemical parameters and may be subject to several experimental artifacts. In this work, we investigated the influence of the experimental conditions that may affect the bioaccessibility of transition metals and their OP on stainless-steel WF extracts. WFs were produced using a generation bench and sampled on filters. The soluble fraction of the metals was analysed. Two different extraction fluids mimicking physiological pulmonary conditions were studied: phosphate buffer and Hatch's solution. Three extraction times were tested to determine the optimal time for a significant OPDTT using the dithiothreitol (DTT) method. The storage conditions of WFs after filter sampling such as duration, temperature and atmospheric conditions were investigated. The results indicate that experimental conditions can significantly affect the OPDTT and metal bioaccessibility analyses. Cr, Cu and Ni show higher solubility in Hatch's solution than in the phosphate buffer. Mn is highly sensitive to DTT and shows close solubility in the two fluids. An extraction time of 0.5 h in phosphate buffer allows a better sensitivity to OPDTT, probably by limiting complexations, interactions between metals and precipitation. Storage time and temperature can influence the physical or chemical evolution of the WFs, which can affect their OPDTT and Mn solubility. However, storage under N2(g) limits these changes. On-line measurements of OPDTT could provide an alternative to filter sampling to overcome these artifacts.


Subject(s)
Air Pollutants, Occupational , Oxidation-Reduction , Welding , Air Pollutants, Occupational/analysis , Occupational Exposure/analysis , Humans , Inhalation Exposure/analysis , Metals/analysis , Metals/chemistry , Transition Elements/chemistry , Environmental Monitoring/methods
6.
Chemosphere ; 358: 142139, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688349

ABSTRACT

The widespread and increasing use of nanomaterials has resulted in a higher likelihood of exposure by inhalation for nanotechnology workers. However, tracking the internal dose of nanoparticles deposited at the airways level, is still challenging. To assess the suitability of particle number concentration determination as biomarker of internal dose, we carried out a cross sectional investigation involving 80 workers handling nanomaterials. External exposure was characterized by portable counters of particles DISCminiTM (Testo, DE), allowing to categorize 51 workers as exposed and 29 as non-exposed (NE) to nanoparticles. Each subject filled in a questionnaire reporting working practices and health status. Exhaled breath condensate was collected and analysed for the number of particles/ml as well as for inflammatory biomarkers. A clear-cut relationship between the number of airborne particles in the nano-size range determined by the particle counters and the particle concentration in exhaled breath condensate (EBC) was apparent. Moreover, inflammatory cytokines (IL-1ß, IL-10, and TNF-α) measured in EBC, were significantly higher in the exposed subjects as compared to not exposed. Finally, significant correlations were found between external exposure, the number concentration of particles measured by the nanoparticle tracking analysis (NTA) and inflammatory cytokines. As a whole, the present study, suggests that NTA can be regarded as a reliable tool to assess the inhaled dose of particles and that this dose can effectively elicit inflammatory effects.


Subject(s)
Biomarkers , Breath Tests , Cytokines , Inhalation Exposure , Nanoparticles , Nanostructures , Occupational Exposure , Humans , Biomarkers/analysis , Biomarkers/metabolism , Occupational Exposure/analysis , Adult , Inhalation Exposure/analysis , Inhalation Exposure/statistics & numerical data , Male , Cross-Sectional Studies , Cytokines/metabolism , Cytokines/analysis , Middle Aged , Exhalation , Female , Particle Size , Lung/metabolism , Air Pollutants, Occupational/analysis , Inflammation/chemically induced , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/analysis
7.
Environ Sci Technol ; 58(14): 6105-6116, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38547313

ABSTRACT

Inhalation of PCB-contaminated air is increasingly recognized as a route for PCB exposure. Because limited information about the disposition of PCBs following inhalation exposure is available, this study investigated the disposition of 2,2',5,5'-tetrachlorobiphenyl (PCB52) and its metabolites in rats following acute, nose-only inhalation of PCB52. Male and female Sprague-Dawley rats (50-58 days of age, 210 ± 27 g; n = 6) were exposed for 4 h by inhalation to approximately 14 or 23 µg/kg body weight of PCB52 using a nose-only exposure system. Sham animals (n = 6) were exposed to filtered lab air. Based on gas chromatography-tandem mass spectrometry (GC-MS/MS), PCB52 was present in adipose, brain, intestinal content, lung, liver, and serum. 2,2',5,5'-Tetrachlorobiphenyl-4-ol (4-OH-PCB52) and one unknown monohydroxylated metabolite were detected in these compartments except for the brain. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis identified several metabolites, including sulfated, methoxylated, and dechlorinated PCB52 metabolites. These metabolites were primarily found in the liver (7 metabolites), lung (9 metabolites), and serum (9 metabolites) due to the short exposure time. These results demonstrate for the first time that complex mixtures of sulfated, methoxylated, and dechlorinated PCB52 metabolites are formed in adolescent rats following PCB52 inhalation, laying the groundwork for future animal studies of the adverse effects of inhaled PCB52.


Subject(s)
Inhalation Exposure , Polychlorinated Biphenyls , Rats , Male , Female , Animals , Inhalation Exposure/analysis , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism
8.
Environ Toxicol Chem ; 43(6): 1364-1377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551298

ABSTRACT

Most current research focusing on the health risk assessments of particulate polycyclic aromatic hydrocarbons (PAHs) have not analyzed the size distributions and human respiratory deposition rates. In the present study, size-separated particulate matter (PM) was collected in the coastal area of Ningbo using an Anderson eight-stage air sampler over a 1-year period (2014-2015). The 16 US Environmental Protection Agency priority PAHs associated with PM were pretreated with rapid solvent extraction and analyzed by gas chromatography-mass spectrometry. The respiratory exposure assessment was determined using the multiple-path particle dosimetry (MPPD) model. The results show that all PAHs exhibited bimodal distribution with one mode peak in accumulation mode (0.43-0.65 µm) and another mode peak in coarse mode (4.7-5.8 µm). In addition, a low coefficient of divergence of PAHs between PM2.1 and PM2.1-10 indicated a high spatial heterogeneity in source factor contribution and formation mechanism. The deposition fluxes (tracheobronchial + pulmonary) of PM were highest for children in the size range of 3.3 µm < particle diameter (Dp) < 9 µm, while for males and females the highest fluxes occurred in the size range of 1.1 µm < Dp < 2.1 µm. The depositions of coarse PM in children were significantly higher than those in adults. The benzo[a]pyrene equivalent (BaPeq) depositions of dibenz[a,h]anthracene ranged from 1.4e-04 to 0.015 ng h-1, which were highest among the PAHs. The PAHs on particles with Dp >4.7 µm contributed approximately three times more to children than to males and females. Therefore, the toxicity of coarse PM to children needed attention. The incremental lifetime cancer risks (ILCR) for children, males, and females were estimated to be 2.92 × 10-7, 1.82 × 10-7, and 2.38 × 10-7, respectively, which were below the cancer risk guideline value (10-6). These ILCR values were much lower than the risks calculated without considering particle size distributions and respiratory depositions. The combination of the size-segregated sampling technique and the MPPD model can effectively avoid the overestimation of human respiratory exposure. Environ Toxicol Chem 2024;43:1364-1377. © 2024 SETAC.


Subject(s)
Air Pollutants , Particle Size , Particulate Matter , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , China , Particulate Matter/analysis , Humans , Air Pollutants/analysis , Air Pollutants/toxicity , Risk Assessment , Female , Male , Child , Adult , Environmental Monitoring , Adolescent , Young Adult , Inhalation Exposure/analysis , Child, Preschool , Middle Aged
9.
Environ Res ; 251(Pt 2): 118773, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38522742

ABSTRACT

An increasing number of silicosis cases have been reported related to the use of silica agglomerates. Many studies agree on the severity of this disease, which often presents with severe clinical forms in young workers and after a short latency period. Are there differences in the composition of dust generated by cutting and polishing with silica agglomerates versus granite and marble? Does the use of water injection reduce the risk associated with the use of these materials? We carried out a comparative observational-analytical study, measuring the concentration of dust generated during different machining operations on three different materials: granite, marble, and silica agglomerates. The effect of water injection on dust generation was evaluated. Personal sampling pumps were used, connected to a cyclone with polyvinyl chloride filters. The flow rate of the pumps was adjusted using a piston flowmeter. Measurements with a cascade impactor were made to assess the size distribution of respirable crystalline silica particles within the respirable fraction. In addition, environmental measurements with a spectrometer were made. 10 tests were carried out on granite and silica agglomerates for each procedure. In the case of marble, with very low silica content, only 2 tests of each type were carried out. Duration of each measurement was between 6 and 25 min. Cleaning times were set for each of the operations. The amount of dust collected in the respirable fraction was 70.85, 32.50 and 35.78 mg/m3 for dry cutting; 6.50, 3.75 and 3.95 mg/m3 for wet cutting; and 21.35, 13.68 and 17.50 mg/m3 for dry polishing, for granite, marble, and silica agglomerates respectively. Dry procedures in marble, silica agglomerates and granite showed higher dust concentration of particles smaller than 0.5 µm. Silica agglomerates showed higher concentrations of respirable crystalline silica particles than granite and marble, mainly with dry procedures. The greater production of small particles in dry and wet procedures with silica agglomerates shows that water injection is an insufficient preventive measure.


Subject(s)
Dust , Occupational Exposure , Silicon Dioxide , Silicosis , Silicon Dioxide/analysis , Silicon Dioxide/chemistry , Dust/analysis , Silicosis/prevention & control , Silicosis/etiology , Humans , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Water/chemistry , Risk Assessment , Particle Size , Primary Prevention/methods , Inhalation Exposure/analysis , Inhalation Exposure/prevention & control , Air Pollutants, Occupational/analysis
10.
J Occup Environ Hyg ; 21(4): 247-258, 2024.
Article in English | MEDLINE | ID: mdl-38451548

ABSTRACT

Exposure to respirable dust and crystalline silica (SiO2) has been linked to chronic obstructive pulmonary disease, silicosis, cancer, heart disease, and other respiratory diseases. Relatively few studies have measured respirable dust and SiO2 concentrations among workers at brick kilns in low- and middle-income countries. The purpose of this study was to measure personal breathing zone (PBZ) respirable dust and SiO2 concentrations among workers at one brick kiln in Bhaktapur, Nepal. A cross-sectional study was conducted among 49 workers in five job categories: administration, fire master, green (unfired) brick hand molder, green brick machine molder, and top loader. PBZ air samples were collected from each worker following Methods 0600 (respirable dust) and 7500 (respirable crystalline SiO2: cristobalite, quartz, tridymite) of the U.S. National Institute for Occupational Safety and Health. Eight-hour time-weighted average (TWA) respirable dust and quartz concentrations were also calculated. SiO2 percentage was measured in one bulk sample each of wet clay, the release agent used by green brick hand molders, and top coat soil at the brick kiln. The geometric mean (GM) sample and TWA respirable dust concentrations were 0.20 (95% confidence interval [CI]: 0.16, 0.27) and 0.12 (95% CI: 0.09, 0.16) mg/m3, respectively. GM sample and TWA quartz concentrations were 15.28 (95% CI: 11.11, 21.02) and 8.60 (95% CI: 5.99, 12.34) µg/m3, respectively. Job category was significantly associated with GM sample and TWA respirable dust and quartz concentrations (all p < 0.0001). Top loaders had the highest GM sample and TWA respirable dust concentrations of 1.49 and 0.99 mg/m3, respectively. Top loaders also had the highest GM sample and TWA quartz concentrations of 173.08 and 114.39 µg/m3, respectively. Quartz percentages in bulk samples were 16%-27%. Interventions including using wet methods to reduce dust generation, administrative controls, personal protective equipment, and education and training should be implemented to reduce brick kiln worker exposures to respirable dust and SiO2.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Humans , Silicon Dioxide/analysis , Occupational Exposure/analysis , Quartz/analysis , Dust/analysis , Air Pollutants, Occupational/analysis , Nepal , Cross-Sectional Studies , Inhalation Exposure/analysis
11.
Ann Work Expo Health ; 68(4): 437-441, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38412287

ABSTRACT

Personal air monitoring using a TSI SidePak AM520 personal aerosol monitor was performed on a northern Colorado construction site during five tasks from the OSHA Table 1: Specified Exposure Control Methods When Working With Materials Containing Crystalline Silica to estimate silica dust concentrations in real time. Photometric measurements were modified using a gravimetric correction factor and a % respirable crystalline silica adjustment. Each task was sampled once; sample time ranged from 14 min to 40 min, with a mean sample time of 27 min. The mean silica dust concentration estimates (µg/m3) (standard deviation [SD]) for the five tasks computed from the TSI SidePak AM520 respirable dust measurements were core drilling 12 µg/m3 [2.46], grinding 918 µg/m3 [1134.08], cutting with a walk-behind saw 36 µg/m3 [79.67], jackhammering 27 µg/m3 [23.24], and dowel drilling 66 µg/m3 [77.65]. Silica exposure estimates from real-time monitoring can be used to identify exposures that may be related to inadequate controls or worker behaviors that contribute to peak exposures. Respirable crystalline silica exposure estimates presented here are likely not generalizable to other construction sites or tasks.


Subject(s)
Air Pollutants, Occupational , Dust , Environmental Monitoring , Inhalation Exposure , Occupational Exposure , Silicon Dioxide , Occupational Exposure/analysis , Silicon Dioxide/analysis , Air Pollutants, Occupational/analysis , Inhalation Exposure/analysis , Humans , Dust/analysis , Environmental Monitoring/methods , Construction Industry , Colorado , Construction Materials/analysis , Aerosols/analysis , Time Factors
12.
J Environ Manage ; 355: 120438, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422853

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are of significant public concern because of their toxicity and long-range transport potential. Extensive studies have been conducted to explore the source-receptor relationships of PAHs via atmospheric transport. However, the transfer of trade-driven regional and global PAHs is poorly understood. This study estimated the virtual PAHs emission transfer embodied in global trade from 2004 to 2014 and simulated the impact of international trade on global contamination and associated human inhalation exposure risk of PAHs. Results show that trade-driven PAHs flowed primarily from developed to less-developed regions, particularly in those regions with intensive heavy industries and transportation. As the result, international trade resulted in an increasing risk of lung cancer induced by exposure to PAHs (27.8% in China, 14.7% in India, and 11.3% in Southeast Asia). In contrast, we found decreasing risks of PAHs-induced lung cancer in Western Europe (63.2%) and the United States (45.9%) in 2004. Our findings indicate that final demand and emission intensity are the key driving factors contributing to rising and falling consumption-based PAHs emissions and related health risk respectively. The results could provide a useful reference for global collaboration in the reduction of PAHs pollution and related health risks.


Subject(s)
Air Pollutants , Lung Neoplasms , Polycyclic Aromatic Hydrocarbons , Humans , Air Pollutants/analysis , Inhalation Exposure/analysis , Commerce , Internationality , China , Environmental Monitoring/methods , Risk Assessment
13.
Inhal Toxicol ; 36(2): 90-99, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38407183

ABSTRACT

OBJECTIVE: Nail salons offer a developing and diverse occupation for many women, especially the new generation. Due to the increasing apprehension surrounding heavy metals in dust caused by filing nails containing dried nail polish, the present study was designed aimed to health risk assessment of heavy metals in breathing zone of nail salon technicians (NSTs). METHODS: This is a cross-sectional study that was conducted in NSTs. The concentration of Cadmium (Cd), Lead (Pb), Nickel (Ni), Chromium (Cr) and Manganese (Mn)in breathing zone of 20 NSTs was determined using ICP-OES. RESULTS: The metal concentrations were in the following order: Mn > Pb > Ni > Cr > Cd with corresponding arithmetic mean values of0.008, 0.0023, 0.0021, 0.001 and 0.0006 mg m-3, respectively, which are exceeded the recommended levels stated in the indoor air guidelines. The average lifetime carcinogenic risk (LCR) for Cr, Cd, Ni and Pb was calculated 0.0084, 0.00054, 0.00026 and 1.44 E - 05, respectively. The LCR values of all metals (except Pb) exceeded the acceptable level set by the USEPA. The mean of Hazard quotients (HQ) for Mn, Cd, Cr, Ni and Pb were calculated to be23.7, 4.74, 2.19, 0.51 and 0.0.24, respectively. The sensitivity analysis showed that, the exposure frequency (EF) for Cr and Ni had the strong effects on generation of both LCR and HQ. Furthermore, the concentrations of Mn, Cd and Pb had strong impacts on the HQ generation and the concentration of Cd and Pb had main effects on LCR generation. CONCLUSION: To effectively reduce pollutant concentration, it is recommended to install a ventilation system near nail salon work tables and conduct continuous monitoring and quality control of nail products.


Subject(s)
Cadmium , Metals, Heavy , Humans , Female , Cadmium/analysis , Inhalation Exposure/adverse effects , Inhalation Exposure/analysis , Environmental Monitoring , Monte Carlo Method , Cross-Sectional Studies , Lead/analysis , Nails/chemistry , Metals, Heavy/toxicity , Metals, Heavy/analysis , Chromium/toxicity , Nickel/toxicity , Manganese , Risk Assessment , China
14.
Part Fibre Toxicol ; 21(1): 7, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368385

ABSTRACT

BACKGROUND: Airborne environmental and engineered nanoparticles (NPs) are inhaled and deposited in the respiratory system. The inhaled dose of such NPs and their deposition location in the lung determines their impact on health. When calculating NP deposition using particle inhalation models, a common approach is to use the bulk material density, ρb, rather than the effective density, ρeff. This neglects though the porous agglomerate structure of NPs and may result in a significant error of their lung-deposited dose and location. RESULTS: Here, the deposition of various environmental NPs (aircraft and diesel black carbon, wood smoke) and engineered NPs (silica, zirconia) in the respiratory system of humans and mice is calculated using the Multiple-Path Particle Dosimetry model accounting for their realistic structure and effective density. This is done by measuring the NP ρeff which was found to be up to one order of magnitude smaller than ρb. Accounting for the realistic ρeff of NPs reduces their deposited mass in the pulmonary region of the respiratory system up to a factor of two in both human and mouse models. Neglecting the ρeff of NPs does not alter significantly the distribution of the deposited mass fractions in the human or mouse respiratory tract that are obtained by normalizing the mass deposited at the head, tracheobronchial and pulmonary regions by the total deposited mass. Finally, the total deposited mass fraction derived this way is in excellent agreement with those measured in human studies for diesel black carbon. CONCLUSIONS: The doses of inhaled NPs are overestimated by inhalation particle deposition models when the ρb is used instead of the real-world effective density which can vary significantly due to the porous agglomerate structure of NPs. So the use of realistic ρeff, which can be measured as described here, is essential to determine the lung deposition and dosimetry of inhaled NPs and their impact on public health.


Subject(s)
Inhalation Exposure , Nanoparticles , Humans , Mice , Animals , Particle Size , Inhalation Exposure/analysis , Lung , Soot , Nanoparticles/chemistry , Carbon
15.
Environ Res ; 248: 118242, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38242419

ABSTRACT

Exposure to ultrafine particles (UFPs) has been associated with multiple adverse health effects. Inhaled UFPs could reach the gastrointestinal tract and influence the composition of the gut microbiome. We have previously shown that oral ingestion of UFPs alters the gut microbiome and promotes intestinal inflammation in hyperlipidemic Ldlr-/- mice. Particulate matter (PM)2.5 inhalation studies have also demonstrated microbiome shifts in normolipidemic C57BL/6 mice. However, it is not known whether changes in microbiome precede or follow inflammatory effects in the intestinal mucosa. We hypothesized that inhaled UFPs modulate the gut microbiome prior to the development of intestinal inflammation. We studied the effects of UFP inhalation on the gut microbiome and intestinal mucosa in two hyperlipidemic mouse models (ApoE-/- mice and Ldlr-/- mice) and normolipidemic C57BL/6 mice. Mice were exposed to PM in the ultrafine-size range by inhalation for 6 h a day, 3 times a week for 10 weeks at a concentration of 300-350 µg/m3.16S rRNA gene sequencing was performed to characterize sequential changes in the fecal microbiome during exposures, and changes in the intestinal microbiome at the end. PM exposure led to progressive differentiation of the microbiota over time, associated with increased fecal microbial richness and evenness, altered microbial composition, and differentially abundant microbes by week 10 depending on the mouse model. Cross-sectional analysis of the small intestinal microbiome at week 10 showed significant changes in α-diversity, ß-diversity, and abundances of individual microbial taxa in the two hyperlipidemic models. These alterations of the intestinal microbiome were not accompanied, and therefore could not be caused, by increased intestinal inflammation as determined by histological analysis of small and large intestine, cytokine gene expression, and levels of fecal lipocalin. In conclusion, 10-week inhalation exposures to UFPs induced taxonomic changes in the microbiome of various animal models in the absence of intestinal inflammation.


Subject(s)
Air Pollutants , Gastrointestinal Microbiome , Mice , Animals , Particulate Matter/analysis , Air Pollutants/toxicity , Inhalation Exposure/analysis , RNA, Ribosomal, 16S , Cross-Sectional Studies , Mice, Inbred C57BL , Disease Models, Animal , Inflammation/chemically induced
16.
Environ Sci Pollut Res Int ; 31(6): 8963-8973, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182960

ABSTRACT

Much dust is generated in underground coal mining processes, posing threats to workers' health and safety production. Dust enters the human body mainly through inhalation, primarily determined by the dust concentration around workers. In this study, the airflow field and dust distribution in the tunnel are simulated with FLUENT software. The breathing zone for a worker was defined to clarify the extent of external dust distribution influencing dust inhalation. The effects of human respiration, dust production rates, air supply velocities, and workers' positions on dust concentration in the breathing zone were investigated. The results show that there is upward airflow around the worker standing in the center of the air circulation. Human breath barely influences the airflow distribution and respirable dust concentrations in the breathing zone. Reducing the dust production rate in the tunnel can decrease the respirable dust concentration in the breathing zone by almost the same proportion. While increasing the air supply velocity by 50% would reduce only 20% of dust in the breathing zone. The dust concentrations vary along the roadway, in which the low concentration zone is located in the middle, more than 1.0 m away from the dust-producing surface and the wind surface. The research contributes to reducing workers' dust exposure with suggestions regarding ventilation optimization and working position selection.


Subject(s)
Air Pollutants, Occupational , Coal Mining , Lung Diseases , Occupational Exposure , Humans , Dust/analysis , Occupational Exposure/analysis , Respiration , Air Pollutants, Occupational/analysis , Inhalation Exposure/analysis
17.
J Expo Sci Environ Epidemiol ; 34(2): 185-196, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184724

ABSTRACT

BACKGROUND: Humans are likely exposed to microplastics (MPs) in a variety of places including indoor and outdoor air. Research to better understand how exposure to MPs correlates to health is growing. To fully understand the possible impacts of MPs on human health, it is necessary to quantify MP exposure and identify what critical data gaps exist. OBJECTIVES: The current paper provides a human exposure assessment of microplastics in the air using systematically reviewed literature that provided concentration of MPs in air as well as doses used in toxicology studies to calculate inhalation exposure dose. METHODS: All published peer-reviewed journal articles, non-published papers, and grey literature that focused on micro- or nano-plastics in indoor and outdoor air were systematically searched using PRISMA guidelines. Literature that defined specific concentrations and size of MPs in air or exposed to human lung cells, animals, or humans with measurable health impacts were included in data extraction. Inhalational exposures were calculated for different age groups using published MP concentrations from the included literature using exposure dose equations and values from U.S. ATSDR and EPA. RESULTS: Calculated mean indoor inhalational exposures from passive sampling methods were higher than those calculated from active sampling methods. When comparing indoor and outdoor sampling, calculated inhalation exposures from indoor samples were greater than those from outdoor samples. Inhalation exposures of MPs differed between age groups with infants having the highest calculated dose values for all locations followed by preschool age children, middle-school aged children, pregnant women, adolescents, and non-pregnant adults. MP doses used in toxicology studies produced higher calculated mean inhalational exposures than those from environmental samples. IMPACT: This study is the first known systematic review of inhalational MP exposure from indoor and outdoor air. It also provides inhalational exposures calculated from previously published environmental samples of MPs as well as from toxicology studies.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Inhalation Exposure , Microplastics , Adolescent , Adult , Animals , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Inhalation Exposure/analysis , Microplastics/analysis , Risk Assessment
18.
N Engl J Med ; 390(1): 32-43, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38169488

ABSTRACT

BACKGROUND: Exposure to household air pollution is a risk factor for severe pneumonia. The effect of replacing biomass cookstoves with liquefied petroleum gas (LPG) cookstoves on the incidence of severe infant pneumonia is uncertain. METHODS: We conducted a randomized, controlled trial involving pregnant women 18 to 34 years of age and between 9 to less than 20 weeks' gestation in India, Guatemala, Peru, and Rwanda from May 2018 through September 2021. The women were assigned to cook with unvented LPG stoves and fuel (intervention group) or to continue cooking with biomass fuel (control group). In each trial group, we monitored adherence to the use of the assigned cookstove and measured 24-hour personal exposure to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) in the women and their offspring. The trial had four primary outcomes; the primary outcome for which data are presented in the current report was severe pneumonia in the first year of life, as identified through facility surveillance or on verbal autopsy. RESULTS: Among 3200 pregnant women who had undergone randomization, 3195 remained eligible and gave birth to 3061 infants (1536 in the intervention group and 1525 in the control group). High uptake of the intervention led to a reduction in personal exposure to PM2.5 among the children, with a median exposure of 24.2 µg per cubic meter (interquartile range, 17.8 to 36.4) in the intervention group and 66.0 µg per cubic meter (interquartile range, 35.2 to 132.0) in the control group. A total of 175 episodes of severe pneumonia were identified during the first year of life, with an incidence of 5.67 cases per 100 child-years (95% confidence interval [CI], 4.55 to 7.07) in the intervention group and 6.06 cases per 100 child-years (95% CI, 4.81 to 7.62) in the control group (incidence rate ratio, 0.96; 98.75% CI, 0.64 to 1.44; P = 0.81). No severe adverse events were reported to be associated with the intervention, as determined by the trial investigators. CONCLUSIONS: The incidence of severe pneumonia among infants did not differ significantly between those whose mothers were assigned to cook with LPG stoves and fuel and those whose mothers were assigned to continue cooking with biomass stoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Subject(s)
Air Pollution, Indoor , Biomass , Cooking , Inhalation Exposure , Petroleum , Pneumonia , Female , Humans , Infant , Pregnancy , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Cooking/methods , Particulate Matter/adverse effects , Particulate Matter/analysis , Petroleum/adverse effects , Pneumonia/etiology , Adolescent , Young Adult , Adult , Internationality , Inhalation Exposure/adverse effects , Inhalation Exposure/analysis , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/etiology
19.
Environ Int ; 183: 108420, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38199131

ABSTRACT

The production and use of nanomaterials (NMs) has increased over the last decades posing relevant questions on their risk after release and exposure of the population or sub-populations. In this context, the safe and sustainable by design (SSbD) approach framework requires to assess the potential hazard connected with intrinsic properties of the material along the whole life cycle of the NM and/or of the nano enabled products. Moreover, in the last years, the use of new advanced methodologies (NAMs) has increasingly gained attention for the use of alternative methods in obtaining relevant information on NMs hazard and risk. Considering the SSbD and the NAMs frameworks, within the ASINA H2020 project, we developed new NAMs devoted at improving the hazard and risk definition of different Ag and TiO2 NPs. The NAMs are developed considering two air liquid interface exposure systems, the Vitrocell Cloud-α and the Cultex Compact module and the relevant steps to obtain reproducible exposures are described. The new NAMs build on the integration of environmental monitoring campaigns at nano-coating production sites, allowing the quantification by the multiple-path particle dosimetry (MPPD) model of the expected lung deposited dose in occupational settings. Starting from this information, laboratory exposures to the aerosolized NPs are performed by using air liquid interface exposure equipment and human alveolar cells (epithelial cells and macrophages), replicating the doses of exposure estimated in workers by MPPD. Preliminary results on cell viability and inflammatory responses are reported. The proposed NAMs may represent possible future reference procedures for assessing the NPs inhalation toxicology, supporting risk assessment at real exposure doses.


Subject(s)
Inhalation Exposure , Nanostructures , Humans , Inhalation Exposure/analysis , Lung , Epithelial Cells , Risk Assessment
20.
Ann Work Expo Health ; 68(3): 269-279, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38206108

ABSTRACT

OBJECTIVES: Since the 1920s, Zambia's mining sector has experienced growth, which has increased the number of mine workers employed in the industry. Consequently, the potential for occupational exposure and prevalence of occupational diseases have also increased. Unfortunately, Zambia does not currently have legislative guidelines for workplace air monitoring and compliance. This study's objectives were to evaluate copper miners' personal exposure to respirable dust and respirable crystalline silica (RCS) and to assess workplace compliance using the European Standard for workplace air monitoring and measurement (EN689:2018). METHODS: This cross-sectional study collected 100 personal respirable dust exposure samples at a Zambian copper mine in 2023. These samples were weighed using NIOSH method 0600 and analyzed for crystalline silica using Fourier transform infrared spectroscopy (KBr pellet) (NIOSH method 7602). Additionally, 253 respirable dust exposure measurements collected at the mine between 2017 and 2022 were included for comparison. RESULTS: The median respirable dust exposure for the 2023 exposure measurements was 0.200 mg/m3 (95th percentile 2.871 mg/m3) compared to 0.400 mg/m3 (95th percentile 3.050 mg/m3) for the historic data. The median RCS exposure was 0.012 mg/m3 (95th percentile 0.163 mg/m3). Using EN689:2018, it was found that from 15 work areas, only six work areas complied with the standard for respirable dust exposure and only seven work areas complied with the standard for RCS exposure. CONCLUSIONS: At the mining site, several work areas had substantial exposure to respirable dust and RCS. Therefore, management needs to prioritize these areas when implementing control measures to reduce dust exposure. For the Zambia mining industry to manage exposure to respirable dust and RCS, it is necessary to implement standardized monitoring strategies. This study has demonstrated that EN689:2018 can be used successfully to determine compliance among Zambian mining work areas.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Humans , Occupational Exposure/analysis , Copper , Zambia , Air Pollutants, Occupational/analysis , Dust/analysis , Cross-Sectional Studies , Silicon Dioxide/analysis , Inhalation Exposure/analysis , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...