Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 691
Filter
1.
Chemosphere ; 358: 142225, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705415

ABSTRACT

Short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) have garnered significant attention because they have persistence and potential toxicity, and can undergo long-distance transport. Chlorinated paraffins (CPs) inhaled in the size-fractionated particulate phase and gas phase can carry different risks to human health due to their ability to accumulate in different regions of the respiratory tract and exhibit varying deposition efficiencies. In our study, large-volume ambient air samples in both the size-fractionated particulate phase (Dp < 1.0 µm, 1.0-2.5 µm, 2.5-10 µm, and Dp ≥ 10 µm) and gas phase were collected simultaneously in Beijing using an active sampler. The overall levels of SCCPs and MCCPs were relatively high, the ranges being 57-881 and 30-385 ng/m3, respectively. SCCPs tended to be partitioned in the gas phase (on average 75% of the ΣSCCP concentration), while MCCPs tended to be partitioned in the particulate phase (on average 62% of the ΣMCCP concentration). Significant correlations were discovered between the logarithm-transformed gas-particle partition coefficients (KP) and predicted subcooled vapor pressures (PL0) (p < 0.01 for SCCPs and MCCPs) and between the logarithm-transformed KP values and octanol-air partition coefficients (KOA) (p < 0.01 for SCCPs and MCCPs). Thus, the slopes indicated that organic matter absorption was the dominant process involved in gas-particle partitioning. We used the ICRP model to calculate deposition concentrations for particulate-associated CPs in head airways region (15.6-71.4 ng/m³), tracheobronchial region (0.8-4.8 ng/m³), and alveolar region (5.1-21.9 ng/m³), then combined these concentrations with the CP concentrations in the gas phase to calculate estimated daily intakes (EDIs) for inhalation. The EDIs for SCCPs and MCCPs through inhalation of ambient air for the all-ages group were 67.5-184.2 ng/kg/day and 19.7-53.7 ng/kg/day, respectively. The results indicated that SCCPs and MCCPs in ambient air do not currently pose strong risks to human health in the study area.


Subject(s)
Air Pollutants , Environmental Monitoring , Hydrocarbons, Chlorinated , Paraffin , Particle Size , Particulate Matter , Paraffin/analysis , Air Pollutants/analysis , Humans , Particulate Matter/analysis , Hydrocarbons, Chlorinated/analysis , Risk Assessment , Inhalation Exposure/analysis , Inhalation Exposure/statistics & numerical data , Beijing , Halogenation , Gases/analysis
2.
Front Public Health ; 12: 1368112, 2024.
Article in English | MEDLINE | ID: mdl-38784567

ABSTRACT

Introduction: Little is known on the association between cross-shift changes in pulmonary function and personal inhalation exposure to particulate matter (PM) among informal electronic-waste (e-waste) recovery workers who have substantial occupational exposure to airborne pollutants from burning e-waste. Methods: Using a cross-shift design, pre- and post-shift pulmonary function assessments and accompanying personal inhalation exposure to PM (sizes <1, <2.5 µm, and the coarse fraction, 2.5-10 µm in aerodynamic diameter) were measured among e-waste workers (n = 142) at the Agbogbloshie e-waste site and a comparison population (n = 65) in Accra, Ghana during 2017 and 2018. Linear mixed models estimated associations between percent changes in pulmonary function and personal PM. Results: Declines in forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) per hour were not significantly associated with increases in PM (all sizes) among either study population, despite breathing zone concentrations of PM (all sizes) that exceeded health-based guidelines in both populations. E-waste workers who worked "yesterday" did, however, have larger cross-shift declines in FVC [-2.4% (95%CI: -4.04%, -0.81%)] in comparison to those who did not work "yesterday," suggesting a possible role of cumulative exposure. Discussion: Overall, short-term respiratory-related health effects related to PM exposure among e-waste workers were not seen in this sample. Selection bias due to the "healthy worker" effect, short shift duration, and inability to capture a true "pre-shift" pulmonary function test among workers who live at the worksite may explain results and suggest the need to adapt cross-shift studies for informal settings.


Subject(s)
Occupational Exposure , Particulate Matter , Respiratory Function Tests , Humans , Ghana , Male , Adult , Particulate Matter/analysis , Female , Electronic Waste/statistics & numerical data , Middle Aged , Inhalation Exposure/adverse effects , Inhalation Exposure/statistics & numerical data , Vital Capacity , Forced Expiratory Volume , Air Pollutants, Occupational/analysis
3.
Environ Pollut ; 351: 124105, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38710359

ABSTRACT

Micro- and nanoplastics (MNPs) can enter the atmosphere via sea spray aerosols (SSAs), but the effects of plastic characteristics on the aerosolization process are unclear. Furthermore, the importance of the transport of MNPs via these SSAs as a possible new exposure route for human health remains unknown. The aim of this study was two-fold: (1) to examine if a selection of factors affects aerosolization processes of MNPs, and (2) to estimate human exposure to MNPs via aerosols inhalation. A laboratory-based bubble bursting mechanism, simulating the aerosolization process at sea, was used to investigate the influence of MNP as well as seawater characteristics. To determine the potential human exposure to microplastics via inhalation of SSAs, the results of the laboratory experiments were extrapolated to the field based on sea surface microplastic concentrations and the volume of inhaled aerosols. Enrichment seemed to be influenced by MNP size, concentration and polymer type. With higher enrichment for smaller particles and denser polymers. Experiments with different concentrations showed a larger range of variability but nonetheless lower concentrations seemed to result in higher enrichment, presumably due to lower aggregation. In addition to the MNP characteristics, the type of seawater used seemed to influence the aerosolization process. Our human exposure estimate to microplastic via inhalation of sea spray aerosols shows that in comparison with reported inhaled concentrations in urban and indoor environments, this exposure route seems negligible for microplastics. Following the business-as-usual scenario on plastic production, the daily plastic inhalation in coastal areas in 2100 is estimated to increase but remain far below 1 particle per day. This study shows that aerosolization of MNPs is a new plastic transport pathway to be considered, but in terms of human exposure it seems negligible compared to other more important sources of MNPs, based on current reported environmental concentrations.


Subject(s)
Aerosols , Microplastics , Particle Size , Plastics , Seawater , Humans , Microplastics/analysis , Seawater/chemistry , Polymers/chemistry , Air Pollutants/analysis , Inhalation Exposure/statistics & numerical data , Environmental Monitoring/methods , Environmental Exposure , Nanoparticles
4.
Waste Manag ; 183: 290-301, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38788497

ABSTRACT

This study aims to investigate the microbiological working environment of biowaste workers, focusing on airborne fungal and bacterial species exposure, size distribution, and species on workers' hands. The research, conducted across six plants with 45 personal exposure assessments, revealed a total of 150 bacterial species and 47 fungal species on workers' hands, including 19 and 9 species classified in risk class 2 (RC2), respectively. Workers' exposure analysis identified 172 bacterial and 32 fungal species, with several in RC2. In work areas, 55 anaerobic bacterial species belonging to RC2 were found. Different species compositions were observed in various particle size fractions, with the highest species richness for anaerobic bacteria in the fraction potentially depositing in the secondary bronchi and for fungi in the pharynx fraction. The geometric mean aerodynamic diameter (DG) of RC2 anaerobic bacteria was 3.9 µm, <1.6 µm for Streptomyces, 3.4 µm for Aspergillus, and 2.0 µm for Penicillium. Overlapping species were identified on workers' hands, in their exposure, and in work areas, with Bacillus amyloliquefaciens, Leuconostoc mesenteroides, Bacillus cereus, Enterococcus casseliflavus, and Aspergillus niger consistently present. While the majority of RC2 bacterial species lacked documented associations with occupational health problems, certain bacteria and fungi, including Bacillus cereus, Escherichia coli, Enterobacter, Klebsiella pneumonia, Aspergillus fumigatus, Aspergillus niger, Aspergillus flavus, Lichtheimia corymbifera, Lichtheimia ramosa, and Paecilomyces variotii, have previously been linked to occupational health issues. In conclusion, biowaste workers were exposed to a wide range of microorganisms including RC2 species which would deposit in different parts of the airways.


Subject(s)
Air Microbiology , Bacteria , Fungi , Occupational Exposure , Humans , Fungi/classification , Fungi/isolation & purification , Bacteria/classification , Hand/microbiology , Environmental Monitoring , Inhalation Exposure/statistics & numerical data , Air Pollutants, Occupational/analysis
5.
Environ Int ; 188: 108743, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749121

ABSTRACT

Urban populations, especially women, are vunerable to exposure to airborne pollution, particularly inhalable particulates (PM10). Thus, more accurate measurement of PM10 levels and evaluating their health effects is critical for guiding policy to improve human health. Previous studies obtained personal PM10 with time-weighted average by air filter-based sampling (AFS), which ignores individual differences and behavioral patterns. Here, we used nasal filters instead of AFS to obtain actual inhaled PM10 under short-term exposure for urban dwelling women during a severe haze event in Beijing in 2016. The levels of six heavy metals such as As, Cd, Ni, Cr, Pb, and Co in PM10 were investigated, and carcinogenic and non-carcinogenic risks evaluated based on an adjusted US EPA health risk assessment model. The health endpoints for urban dwelling women were further assessed through an exposure-reponse model. We found that the hourly inhaled dose of PM10 obtained through the nasal filter was about 2.5-17.6 times that obtained by AFS, which also resulted in 4.41-11.30 times more morbidity than estimated by AFS (p < 0.05). Proximity to traffic emissions resulted in greater exposure to particulate matter (>18.8 µg/kg·h) and heavy metals (>2.2 ng/kg·h), and these populations are therefore at greatest risk of developing non-cancer (HI = 4.16) and cancer (Rt = 7.8 × 10-3) related morbities.


Subject(s)
Air Pollutants , Metals, Heavy , Particulate Matter , Urban Population , Humans , Metals, Heavy/analysis , Female , Particulate Matter/analysis , Air Pollutants/analysis , Urban Population/statistics & numerical data , Air Filters , Beijing , Environmental Exposure/statistics & numerical data , Risk Assessment , Air Pollution/statistics & numerical data , Adult , Inhalation Exposure/statistics & numerical data , Inhalation Exposure/analysis , Environmental Monitoring , Middle Aged
6.
Sci Total Environ ; 927: 171997, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38565357

ABSTRACT

Marathon running significantly increases breathing volumes and, consequently, air pollution inhalation doses. This is of special concern for elite athletes who ventilate at very high rates. However, race organizers and sport governing bodies have little guidance to support events scheduling to protect runners. A key limitation is the lack of hyper-local, high temporal resolution air quality data representative of exposure along the racecourse. This work aimed to understand the air pollution exposures and dose inhaled by athletes, by means of a dynamic monitoring methodology designed for road races. Air quality monitors were deployed during three marathons, monitoring nitrogen dioxide (NO2), ozone (O3), particulate matter (PMx), air temperature, and relative humidity. One fixed monitor was installed at the Start/Finish line and one mobile monitor followed the women elite runner pack. The data from the fixed monitors, deployed prior the race, described daily air pollution trends. Mobile monitors in combination with heatmap analysis facilitated the hyper-local characterization of athletes' exposures and helped identify local hotspots (e.g., areas prone to PM resuspension) which should be preferably bypassed. The estimation of inhaled doses disaggregated by gender and ventilation showed that doses inhaled by last finishers may be equal or higher than those inhaled by first finishers for O3 and PMx, due to longer exposures as well as the increase of these pollutants over time (e.g., 58.2 ± 9.6 and 72.1 ± 23.7 µg of PM2.5 for first and last man during Rome marathon). Similarly, men received significantly higher doses than women due to their higher ventilation rate, with differences of 31-114 µg for NO2, 79-232 µg for O3, and 6-41 µg for PMx. Finally, the aggregated data obtained during the 4 week- period prior the marathon can support better race scheduling by the organizers and provide actionable information to mitigate air pollution impacts on athletes' health and performance.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Particulate Matter , Humans , Air Pollutants/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Female , Air Pollution/statistics & numerical data , Male , Running/physiology , Ozone/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Inhalation Exposure/statistics & numerical data , Inhalation Exposure/analysis , Nitrogen Dioxide/analysis , Athletes
7.
Chemosphere ; 358: 142139, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688349

ABSTRACT

The widespread and increasing use of nanomaterials has resulted in a higher likelihood of exposure by inhalation for nanotechnology workers. However, tracking the internal dose of nanoparticles deposited at the airways level, is still challenging. To assess the suitability of particle number concentration determination as biomarker of internal dose, we carried out a cross sectional investigation involving 80 workers handling nanomaterials. External exposure was characterized by portable counters of particles DISCminiTM (Testo, DE), allowing to categorize 51 workers as exposed and 29 as non-exposed (NE) to nanoparticles. Each subject filled in a questionnaire reporting working practices and health status. Exhaled breath condensate was collected and analysed for the number of particles/ml as well as for inflammatory biomarkers. A clear-cut relationship between the number of airborne particles in the nano-size range determined by the particle counters and the particle concentration in exhaled breath condensate (EBC) was apparent. Moreover, inflammatory cytokines (IL-1ß, IL-10, and TNF-α) measured in EBC, were significantly higher in the exposed subjects as compared to not exposed. Finally, significant correlations were found between external exposure, the number concentration of particles measured by the nanoparticle tracking analysis (NTA) and inflammatory cytokines. As a whole, the present study, suggests that NTA can be regarded as a reliable tool to assess the inhaled dose of particles and that this dose can effectively elicit inflammatory effects.


Subject(s)
Biomarkers , Breath Tests , Cytokines , Inhalation Exposure , Nanoparticles , Nanostructures , Occupational Exposure , Humans , Biomarkers/analysis , Biomarkers/metabolism , Occupational Exposure/analysis , Adult , Inhalation Exposure/analysis , Inhalation Exposure/statistics & numerical data , Male , Cross-Sectional Studies , Cytokines/metabolism , Cytokines/analysis , Middle Aged , Exhalation , Female , Particle Size , Lung/metabolism , Air Pollutants, Occupational/analysis , Inflammation/chemically induced , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/analysis
8.
Sci Total Environ ; 929: 172488, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38631625

ABSTRACT

Quarantine work is widely recognized as an indispensable endeavor in curbing the propagation of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Furthermore, the heavy workload places workers at a heightened risk of chemical exposure and respiratory damage. Consequently, it is paramount to systematically perform health risk assessments and meticulously oversee the work by wearing personal protective equipment to minimize these risks. To assess the inhalation exposure, this study examined data on disinfectant exposure from quarantine professional users who utilized disinfectants containing quaternary ammonium compounds. Through a survey of 6,199 cases conducted by 300 quarantine professional users who actively engaged in quarantine work, we assembled a database of exposure factors derived from their utilization of spray-type disinfectants for quarantine purposes. Based on these data, we formulated an inhalation exposure algorithm, which considers the time-weighted average (TWA) air concentrations. The test results demonstrated that the industrial-grade respirator mask could prevent a minimum of 68.3 % of particles, reducing respiratory exposure. Consequently, the hazard quotient (HQ) due to disinfectant exposure also decreased. This research is essential in safeguarding the safety and health of professional users engaged in quarantine-related tasks. By implementing strict measures like health risk assessments and personal protective equipment, individuals with quarantine experience can safely carry out their quarantine work. The results of this study are expected to serve as a framework for improving policies and regulations concerning quarantine work and safeguarding the health of professional users.


Subject(s)
COVID-19 , Disinfectants , Inhalation Exposure , Occupational Exposure , Quarantine , Quaternary Ammonium Compounds , Disinfectants/analysis , Humans , Inhalation Exposure/statistics & numerical data , COVID-19/prevention & control , Risk Assessment , SARS-CoV-2 , Personal Protective Equipment
9.
Sci Total Environ ; 932: 172556, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38679085

ABSTRACT

This study reviewed scientific literature on inhalation exposure to heavy metals (HMs) in various indoor and outdoor environments and related carcinogenic and non-carcinogenic risk. A systematic search in Web of Science, Scopus, PubMed, Embase, and Medline databases yielded 712 results and 43 articles met the requirements of the Population, Exposure, Comparator, and Outcomes (PECO) criteria. Results revealed that HM concentrations in most households exceeded the World Health Organization (WHO) guideline values, indicating moderate pollution and dominant anthropogenic emission sources of HMs. In the analyzed schools, universities, and offices low to moderate levels of air pollution with HMs were revealed, while in commercial environments high levels of air pollution were stated. The non-carcinogenic risk due to inhalation HM exposure exceeded the acceptable level of 1 in households, cafes, hospitals, restaurants, and metros. The carcinogenic risk for As and Cr in households, for Cd, Cr, Ni, As, and Co in educational environments, for Pb, Cd, Cr, and Co in offices and commercial environments, and for Ni in metros exceeded the acceptable level of 1 × 10-4. Carcinogenic risk was revealed to be higher indoors than outdoors. This review advocates for fast and effective actions to reduce HM exposure for safer breathing.


Subject(s)
Air Pollutants , Inhalation Exposure , Metals, Heavy , Metals, Heavy/analysis , Humans , Inhalation Exposure/statistics & numerical data , Air Pollutants/analysis , Risk Assessment , Air Pollution, Indoor/statistics & numerical data , Air Pollution, Indoor/adverse effects , Air Pollution/statistics & numerical data
10.
Chemosphere ; 357: 141975, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615960

ABSTRACT

This study investigated the determinants of personal exposures (PE) to coarse (PM2.5-10) and fine particulate matter (PM2.5) for elderly communities in Hong Kong. The mean PE PM2.5 and PM2.5-10 were 23.6 ± 10.8 and 13.5 ± 22.1 µg/m3, respectively during the sampling period. Approximately 76% of study subjects presented statistically significant differences between PE and ambient origin for PM2.5 compared to approximately 56% for PM2.5-10, possibly due to the coarse-size particles being more influenced by similar sources (road dust and construction dust emissions) compared to the PM2.5 particles. Individual PE to ambient (P/A) ratios for PM2.5 all exceeded unity (≥1), suggesting the dominant influences of non-ambient particles contributed towards total PE values. There were about 80% individual P/A ratios (≤1) for PM2.5-10, implying possible effective infiltration prevention of larger size particulate matter particles leading to dominant influences from the outdoor sources. The higher concentration of NO3- and SO42- in PM2.5-10 compared to PM2.5 suggests possible heterogeneous reactions of alkaline minerals leading to the formation of NO3- and SO42- in PM2.5-10 particles. The PE and ambient OC/EC ratios in PM2.5 (8.8 ± 3.3 and 10.4 ± 22.4, respectively) and in PM2.5-10 (6.0 ± 1.9 and 3.0 ± 1.1, respectively) suggest possible secondary formed OC from surrounding rural areas. Heterogeneous distributions (COD >0.2) between the PE and ambient concentrations were found for both the PM2.5 and PM2.5-10 samples. The calibration coefficient as the association between personal and surrogate exposure measure of PE to PM2.5 (0.84) was higher than PM2.5-10 (0.52). The findings further confirm that local sources were the dominant contributor to the coarse particles and these coefficients can potentially be used to estimate different PE to PM2.5 and PM2.5-10 conditions. A comprehensive understanding of the PE to determinants in coarse particles is essential to further reduce potential exposure misclassification.


Subject(s)
Air Pollution , Inhalation Exposure , Particulate Matter , Humans , Middle Aged , Aged , Aged, 80 and over , Male , Female , Particulate Matter/analysis , Inhalation Exposure/statistics & numerical data , Air Pollution/statistics & numerical data , Hong Kong , Particle Size , Environmental Monitoring , Nitrates/analysis , Sulfates/analysis
12.
Environ Sci Technol ; 57(14): 5947-5956, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36995295

ABSTRACT

A growing list of chemicals are approved for production and use in the United States and elsewhere, and new approaches are needed to rapidly assess the potential exposure and health hazard posed by these substances. Here, we present a high-throughput, data-driven approach that will aid in estimating occupational exposure using a database of over 1.5 million observations of chemical concentrations in U.S. workplace air samples. We fit a Bayesian hierarchical model that uses industry type and the physicochemical properties of a substance to predict the distribution of workplace air concentrations. This model substantially outperforms a null model when predicting whether a substance will be detected in an air sample, and if so at what concentration, with 75.9% classification accuracy and a root-mean-square error (RMSE) of 1.00 log10 mg m-3 when applied to a held-out test set of substances. This modeling framework can be used to predict air concentration distributions for new substances, which we demonstrate by making predictions for 5587 new substance-by-workplace-type pairs reported in the US EPA's Toxic Substances Control Act (TSCA) Chemical Data Reporting (CDR) industrial use database. It also allows for improved consideration of occupational exposure within the context of high-throughput, risk-based chemical prioritization efforts.


Subject(s)
Air Pollutants, Occupational , Inhalation Exposure , Occupational Exposure , Bayes Theorem , Industry , Inhalation Exposure/statistics & numerical data , Occupational Exposure/statistics & numerical data , United States , Workplace
13.
Nicotine Tob Res ; 25(5): 1004-1013, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36567673

ABSTRACT

INTRODUCTION: We assessed tobacco smoke exposure (TSE) levels based on private and public locations of TSE according to race and ethnicity among US school-aged children ages 6-11 years and adolescents ages 12-17 years. AIMS AND METHODS: Data were from 5296 children and adolescents who participated in the National Health and Nutrition Examination Survey (NHANES) 2013-2018. Racial and ethnic groups were non-Hispanic white, black, other or multiracial, and Hispanic. NHANES assessed serum cotinine and the following TSE locations: homes and whether smokers did not smoke indoors (home thirdhand smoke [THS] exposure proxy) or smoked indoors (secondhand [SHS] and THS exposure proxy), cars, in other homes, restaurants, or any other indoor area. We used stratified weighted linear regression models by racial and ethnic groups and assessed the variance in cotinine levels explained by each location within each age group. RESULTS: Among 6-11-year-olds, exposure to home THS only and home SHS + THS predicted higher log-cotinine among all racial and ethnic groups. Non-Hispanic white children exposed to car TSE had higher log-cotinine (ß = 1.64, 95% confidence interval [CI] = 0.91% to 2.37%) compared to those unexposed. Non-Hispanic other/multiracial children exposed to restaurant TSE had higher log-cotinine (ß = 1.13, 95% CI = 0.23% to 2.03%) compared to those unexposed. Among 12-17-year-olds, home SHS + THS exposure predicted higher log-cotinine among all racial and ethnic groups, except for non-Hispanic black adolescents. Car TSE predicted higher log-cotinine among all racial and ethnic groups. Non-Hispanic black adolescents with TSE in another indoor area had higher log-cotinine (ß = 2.84, 95% CI = 0.85% to 4.83%) compared to those unexposed. CONCLUSIONS: TSE location was uniquely associated with cotinine levels by race and ethnicity. Smoke-free home and car legislation are needed to reduce TSE among children and adolescents of all racial and ethnic backgrounds. IMPLICATIONS: Racial and ethnic disparities in TSE trends have remained stable among US children and adolescents over time. This study's results indicate that TSE locations differentially contribute to biochemically measured TSE within racial and ethnic groups. Home TSE significantly contributed to cotinine levels among school-aged children 6-11 years old, and car TSE significantly contributed to cotinine levels among adolescents 12-17 years old. Racial and ethnic differences in locations of TSE were observed among each age group. Study findings provide unique insight into TSE sources, and indicate that home and car smoke-free legislation have great potential to reduce TSE among youth of all racial and ethnic backgrounds.


Subject(s)
Cotinine , Inhalation Exposure , Tobacco Smoke Pollution , Adolescent , Child , Humans , Cotinine/blood , Hispanic or Latino/statistics & numerical data , Nutrition Surveys/statistics & numerical data , Tobacco Smoke Pollution/analysis , Tobacco Smoke Pollution/statistics & numerical data , United States/epidemiology , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Inhalation Exposure/analysis , Inhalation Exposure/statistics & numerical data , White/statistics & numerical data , Black or African American/statistics & numerical data , Automobiles/statistics & numerical data , Housing/statistics & numerical data , Housing Quality , Restaurants/statistics & numerical data
14.
Arch Toxicol ; 96(4): 969-985, 2022 04.
Article in English | MEDLINE | ID: mdl-35188583

ABSTRACT

Translating particle dose from in vitro systems to relevant human exposure remains a major challenge for the use of in vitro studies in assessing occupational hazard and risk of particle exposure. This study aimed to model the lung deposition and retention of welding fume particles following occupational scenarios and subsequently compare the lung doses to those used in vitro. We reviewed published welding fume concentrations and size distributions to identify input values simulating real-life exposure scenarios in the multiple path particle dosimetry (MPPD) model. The majority of the particles were reported to be below 0.1 µm and mass concentrations ranged between 0.05 and 45 mg/m3. Following 6-h exposure to 5 mg/m3 with a count median diameter of 50 nm, the tracheobronchial lung dose (0.89 µg/cm2) was found to exceed the in vitro cytotoxic cell dose (0.125 µg/cm2) previously assessed by us in human bronchial epithelial cells (HBEC-3kt). However, the tracheobronchial retention decreased rapidly when no exposure occurred, in contrast to the alveolar retention which builds-up over time and exceeded the in vitro cytotoxic cell dose after 1.5 working week. After 1 year, the tracheobronchial and alveolar retention was estimated to be 1.15 and 2.85 µg/cm2, respectively. Exposure to low-end aerosol concentrations resulted in alveolar retention comparable to cytotoxic in vitro dose in HBEC-3kt after 15-20 years of welding. This study demonstrates the potential of combining real-life exposure data with particle deposition modelling to improve the understanding of in vitro concentrations in the context of human occupational exposure.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Welding , Air Pollutants, Occupational/analysis , Air Pollutants, Occupational/toxicity , Humans , Inhalation Exposure/statistics & numerical data , Lung , Occupational Exposure/analysis , Occupational Exposure/statistics & numerical data , Particle Size
15.
Am J Respir Crit Care Med ; 205(3): 350-356, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34752730

ABSTRACT

Rationale: South African adolescents carry a high tuberculosis disease burden. It is not known if schools are high-risk settings for Mycobacterium tuberculosis (MTB) transmission. Objectives: To detect airborne MTB genomic DNA in classrooms. Methods: We studied 72 classrooms occupied by 2,262 students in two South African schools. High-volume air filtration was performed for median 40 (interquartile range [IQR], 35-54) minutes and assayed by droplet digital PCR (ddPCR)-targeting MTB region of difference 9 (RD9), with concurrent CO2 concentration measurement. Classroom data were benchmarked against public health clinics. Students who consented to individual tuberculosis screening completed a questionnaire and sputum collection (Xpert MTB/RIF Ultra) if symptom positive. Poisson statistics were used for MTB RD9 copy quantification. Measurements and Main Results: ddPCR assays were positive in 13/72 (18.1%) classrooms and 4/39 (10.3%) clinic measurements (P = 0.276). Median ambient CO2 concentration was 886 (IQR, 747-1223) ppm in classrooms versus 490 (IQR, 405-587) ppm in clinics (P < 0.001). Average airborne concentration of MTB RD9 was 3.61 copies per 180,000 liters in classrooms versus 1.74 copies per 180,000 liters in clinics (P = 0.280). Across all classrooms, the average risk of an occupant inhaling one MTB RD9 copy was estimated as 0.71% during one standard lesson of 35 minutes. Among 1,836/2,262 (81.2%) students who consented to screening, 21/90 (23.3%) symptomatic students produced a sputum sample, of which one was Xpert MTB/RIF Ultra positive. Conclusions: Airborne MTB genomic DNA was detected frequently in high school classrooms. Instantaneous risk of classroom exposure was similar to the risk in public health clinics.


Subject(s)
Air Microbiology , DNA, Bacterial/analysis , Inhalation Exposure/analysis , Mycobacterium tuberculosis/isolation & purification , Schools , Tuberculosis/transmission , Adolescent , Cross-Sectional Studies , Female , Humans , Inhalation Exposure/adverse effects , Inhalation Exposure/statistics & numerical data , Male , Mycobacterium tuberculosis/genetics , Risk , South Africa , Tuberculosis/diagnosis
16.
Article in English | MEDLINE | ID: mdl-34948903

ABSTRACT

The aim of this work was to estimate the share of selected significant risk factors for respiratory cancer in the overall incidence of this disease and their comparison in two environmentally different burdened regions. A combination of a longitudinal cross-sectional population study with a US EPA health risk assessment methodology was used. The result of this procedure is the expression of lifelong carcinogenic risks and their contribution in the overall incidence of the disease. Compared to exposures to benzo[a]pyrene in the air and fibrogenic dust in the working air, several orders of magnitude higher share of the total incidence of respiratory cancer was found in radon exposures, for women 60% in the industrial area, respectively 100% in the non-industrial area, for men 24%, respectively 15%. The share of risks in workers exposed to fibrogenic dust was found to be 0.35% in the industrial area. For benzo[a]pyrene, the share of risks was below 1% and the share of other risk factors was in the monitored areas was up to 85%. The most significant share in the development of respiratory cancer in both monitored areas is represented by radon for women and other risk factors for men.


Subject(s)
Inhalation Exposure , Occupational Exposure , Carcinogens , Cross-Sectional Studies , Dust , Female , Humans , Industry , Inhalation Exposure/statistics & numerical data , Male , Occupational Exposure/statistics & numerical data , Risk Assessment
17.
Sci Rep ; 11(1): 17180, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433846

ABSTRACT

Exhaled breath biomarkers are an important emerging field. The fractional concentration of exhaled nitric oxide (FeNO) is a marker of airway inflammation with clinical and epidemiological applications (e.g., air pollution health effects studies). Systems of differential equations describe FeNO-measured non-invasively at the mouth-as a function of exhalation flow rate and parameters representing airway and alveolar sources of NO in the airway. Traditionally, NO parameters have been estimated separately for each study participant (Stage I) and then related to covariates (Stage II). Statistical properties of these two-step approaches have not been investigated. In simulation studies, we evaluated finite sample properties of existing two-step methods as well as a novel Unified Hierarchical Bayesian (U-HB) model. The U-HB is a one-step estimation method developed with the goal of properly propagating uncertainty as well as increasing power and reducing type I error for estimating associations of covariates with NO parameters. We demonstrated the U-HB method in an analysis of data from the southern California Children's Health Study relating traffic-related air pollution exposure to airway and alveolar airway inflammation.


Subject(s)
Asthma/epidemiology , Exhalation , Models, Theoretical , Nitric Oxide/metabolism , Pulmonary Alveoli/metabolism , Respiratory Mucosa/metabolism , Asthma/etiology , Bayes Theorem , Biomarkers/metabolism , Breath Tests , Child , Data Interpretation, Statistical , Humans , Inhalation Exposure/statistics & numerical data , Vehicle Emissions/toxicity
18.
PLoS Comput Biol ; 17(7): e1009144, 2021 07.
Article in English | MEDLINE | ID: mdl-34288906

ABSTRACT

Biomarkers predict World Trade Center-Lung Injury (WTC-LI); however, there remains unaddressed multicollinearity in our serum cytokines, chemokines, and high-throughput platform datasets used to phenotype WTC-disease. To address this concern, we used automated, machine-learning, high-dimensional data pruning, and validated identified biomarkers. The parent cohort consisted of male, never-smoking firefighters with WTC-LI (FEV1, %Pred< lower limit of normal (LLN); n = 100) and controls (n = 127) and had their biomarkers assessed. Cases and controls (n = 15/group) underwent untargeted metabolomics, then feature selection performed on metabolites, cytokines, chemokines, and clinical data. Cytokines, chemokines, and clinical biomarkers were validated in the non-overlapping parent-cohort via binary logistic regression with 5-fold cross validation. Random forests of metabolites (n = 580), clinical biomarkers (n = 5), and previously assayed cytokines, chemokines (n = 106) identified that the top 5% of biomarkers important to class separation included pigment epithelium-derived factor (PEDF), macrophage derived chemokine (MDC), systolic blood pressure, macrophage inflammatory protein-4 (MIP-4), growth-regulated oncogene protein (GRO), monocyte chemoattractant protein-1 (MCP-1), apolipoprotein-AII (Apo-AII), cell membrane metabolites (sphingolipids, phospholipids), and branched-chain amino acids. Validated models via confounder-adjusted (age on 9/11, BMI, exposure, and pre-9/11 FEV1, %Pred) binary logistic regression had AUCROC [0.90(0.84-0.96)]. Decreased PEDF and MIP-4, and increased Apo-AII were associated with increased odds of WTC-LI. Increased GRO, MCP-1, and simultaneously decreased MDC were associated with decreased odds of WTC-LI. In conclusion, automated data pruning identified novel WTC-LI biomarkers; performance was validated in an independent cohort. One biomarker-PEDF, an antiangiogenic agent-is a novel, predictive biomarker of particulate-matter-related lung disease. Other biomarkers-GRO, MCP-1, MDC, MIP-4-reveal immune cell involvement in WTC-LI pathogenesis. Findings of our automated biomarker identification warrant further investigation into these potential pharmacotherapy targets.


Subject(s)
Eye Proteins/blood , Lung Injury , Machine Learning , Nerve Growth Factors/blood , Occupational Diseases , September 11 Terrorist Attacks , Serpins/blood , Adult , Biomarkers/blood , Firefighters , Humans , Inhalation Exposure/statistics & numerical data , Longitudinal Studies , Lung Injury/blood , Lung Injury/diagnosis , Lung Injury/epidemiology , Lung Injury/etiology , Male , Middle Aged , Models, Statistical , Occupational Diseases/blood , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Reproducibility of Results , Sensitivity and Specificity
19.
Regul Toxicol Pharmacol ; 123: 104959, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34019963

ABSTRACT

ß-Glucans are abundant bacterial, yeast, and fungal cell wall polysaccharides that have been shown to activate the immune system. Establishment of an occupational exposure limit (OEL) for ß-glucan exposure is critical to the protection of worker health, as these exposures have been linked to immunosuppressive and inflammatory reactions and possibly the development of respiratory diseases. Detectable concentrations of ß-glucans have been identified in common occupational inhalation exposure scenarios, such as in the agricultural and waste management sectors. However, no published exposure benchmarks for inhalation of ß-glucans are available for workers or the general population. Thus, a health-based OEL for inhalation exposure of workers to ß-glucans was derived based on consideration of human and non-human effect data for this class of compounds and contemporary risk assessment methods. The weight of the evidence indicated that the available data in humans showed significant methodological limitations, such as lack of a representative study size, appropriate control population, and clear dose-response relationship. Thus, an OEL of 150 ng/m3 was derived for ß-glucans based on the most relevant nonclinical study. This OEL provides an input to the occupational risk assessment process, allows for comparisons to worker exposure, and can guide risk management and exposure control decisions.


Subject(s)
Air Pollutants, Occupational/toxicity , Occupational Exposure/statistics & numerical data , beta-Glucans , Dust , Humans , Inhalation Exposure/statistics & numerical data , Risk Assessment , Waste Management
20.
Health Phys ; 121(1): 73-76, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34002728

ABSTRACT

ABSTRACT: This work considers the implications of cloth masks due to the COVID-19 pandemic on suspected plutonium inhalations and dose assessment. In a plutonium inhalation scenario, the greater filtration efficiency for large particles exhibited by cloth masks can reduce early fecal excretion without a corresponding reduction in dose. For plutonium incidents in which cloth masks are worn, urinary excretion should be the preferred method of inferring dose immediately after the inhalation, and fecal excretion should be considered unreliable for up to 10 days.


Subject(s)
COVID-19/prevention & control , Feces/chemistry , Inhalation Exposure/statistics & numerical data , Masks , Occupational Exposure/statistics & numerical data , Plutonium/analysis , Radiation Exposure/statistics & numerical data , Radiation Monitoring , Humans , Inhalation Exposure/prevention & control , Occupational Exposure/prevention & control , Plutonium/pharmacokinetics , Radiation Exposure/prevention & control , Radiation Monitoring/methods , Respiratory System/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...