Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.110
Filter
1.
Anal Chim Acta ; 1309: 342677, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772666

ABSTRACT

BACKGROUND: Rapid and sensitive detection for acetamiprid, a kind of widely used neonicotinoid insecticide, is very meaningful for the development of modern agriculture and the protection of human health. Highly stable electrochemiluminescence (ECL) materials are one of the key factors in ECL sensing technology. ECL materials prepared by porous materials (e.g., MOFs) coated with chromophores have been used for ECL sensing detection, but these materials have poor stability because the chromophores escape when they are in aqueous solution. Therefore, the development of highly stable ECL materials is of great significance to improve the sensitivity of ECL sensing technology. RESULTS: In this work, by combining etched metal-organic frameworks (E-UIO-66-NH2) as carrier with Tris(4,4'-dicarboxylic acid-2,2'-bipyridine)Ru(II) chloride (Ru(dcbpy)32+) as signal probe via amide bonds, highly stable nanocomposites (E-UIO-66-NH2-Ru) with excellent ECL performance were firstly prepared. Then, using MoS2 loaded with AuNPs as substrate material and co-reactant promoter, a signal off-on-off ECL aptamer sensor was prepared for sensitive detection of acetamiprid. Due to the excellent catalytic activity of E-UIO-66-NH2-Ru and MoS2@Au towards K2S2O8, the ECL signals can be enhanced by multiple signal enhancement pathways, the prepared ECL aptamer sensor could achieve sensitive detection of acetamiprid in the linear range of 10-13 to10-7 mol L-1, with the limit of detection (LOD) of 2.78ⅹ10-15 mol L-1 (S/N = 3). After the evaluation of actual sample testing, this sensing platform was proven to be an effective method for the detection of acetamiprid in food and agricultural products. SIGNIFICANCE AND NOVELTY: The E-UIO-66-NH2-Ru prepared by linking Ru(dcbpy)32+ to E-UIO-66-NH2 via amide bonding has very high stability. The synergistic catalytic effect of MoS2 and AuNPs enhanced the ECL signal. By exploring the sensing mechanism and evaluating the actual sample tests, the proposed signal "on-off" ECL sensing strategy was proved to be an effective and excellent ECL sensing method for sensitive and stable detection of acetamiprid.


Subject(s)
Aptamers, Nucleotide , Electrochemical Techniques , Luminescent Measurements , Metal-Organic Frameworks , Neonicotinoids , Neonicotinoids/analysis , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Luminescent Measurements/methods , Metal-Organic Frameworks/chemistry , Ruthenium/chemistry , Biosensing Techniques/methods , Limit of Detection , Coordination Complexes/chemistry , Insecticides/analysis
2.
J Oleo Sci ; 73(5): 761-772, 2024.
Article in English | MEDLINE | ID: mdl-38692898

ABSTRACT

Volatile secondary metabolites of plants interact with environments heavily. In this work, characteristic components of Michelia yunnanensis essential oils (EOs) were isolated, purified and identified by column chromatography, GC-MS and NMR. Leaves of M. yunnanensis were collected monthly and extracted for EOs to investigate chemical and insecticidal activity variations as well as potential influencing environments. Different organs were employed to reveal distribution strategies of characteristic components. Results of insecticidal activities showed that all EOs samples exerted stronger contact activity to Lasioderma serricorne, but repellent effect was more efficient on Tribolium castaneum. One oxygenated sesquiterpene was isolated from EOs, basically it could be confirmed as (+)-cyclocolorenone (1). It exerted contact toxicity to L. serricorne (LD 50 = 28.8 µg/adult). Chemical analysis showed that M. yunnanensis leaves in reproductive period would produce and accumulate more 1 than in vegetative period. Moreover, reproductive organs (flowers and fruits) contained more 1 than vegetative organs (leaves and twigs). Partial correlation analysis indicated that temperature-related elements positively correlated with the relative content of 1.


Subject(s)
Insecticides , Oils, Volatile , Plant Leaves , Tribolium , Animals , Insecticides/isolation & purification , Insecticides/analysis , Plant Leaves/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Tribolium/drug effects , Sesquiterpenes/isolation & purification , Sesquiterpenes/analysis , Insect Repellents/analysis , Insect Repellents/isolation & purification , Insect Repellents/pharmacology , Temperature
3.
PLoS One ; 19(5): e0298371, 2024.
Article in English | MEDLINE | ID: mdl-38758738

ABSTRACT

Malathion® is a persistent organophosphate pesticide used against biting and chewing insects on vegetables. It is a difficult-to-remove surface contaminant of vegetables and contaminates surface and ground water and soils. Malathion® is only partially water soluble, but use of detergent carriers makes adhering Malathion® residues difficult to subsequently remove. Magnetically treated water (MTW) successfully removed Malathion® from Chinese Kale (Brassica oleracea L.), meeting Maximum Residue Load (MRL) standards. Samples were soaked in MTW for 30 min prior to detection with GC/MS/MS, 98.5±3.02% of Malathion® was removed after washing by MTW. Removal by simple washing was only ≈42±1.2% which was not nearly sufficient to meet MRL criteria.


Subject(s)
Brassica , Malathion , Brassica/chemistry , Water Pollutants, Chemical/analysis , Water/chemistry , Insecticides/analysis , Pesticide Residues/analysis , Water Purification/methods , Food Contamination/analysis , Gas Chromatography-Mass Spectrometry
4.
Sci Total Environ ; 932: 172811, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38701918

ABSTRACT

Fipronil is a persistent insecticide known to transfer into hen eggs from exposure from animal drinking water and feed, but some questions remain regarding its transfer behavior and distribution characteristics. Therefore, the dynamic metabolism, residue distribution and transfer factor (TF) of fipronil were investigated in 11 edible tissues of laying hens and eggs over 21 days. After a continuous low-dose drinking water exposure scenario, the sum of fipronil and all its metabolites (defined as fipronilT) quickly transferred to each edible tissue and gradually increased with exposure time. FipronilT residue in eggs first appeared at 3 days and then gradually increased. After a single high-dose feed exposure scenario, fipronilT residue in edible tissues first appeared after 2 h, quickly peaked at 1 day, and then gradually decreased. In eggs, fipronilT residue first appeared at 2 days, peaked 6-7 days and then gradually decreased. The TF values followed the order of the skin (0.30-0.73) > egg yolk (0.30-0.71) > bottom (0.21-0.59) after drinking water exposure, and the order of the skin (1.01-1.59) > bottom (0.75-1.1) > egg yolk (0.58-1.10) for feed exposure. Fipronil sulfone, a more toxic compound, was the predominant metabolite with higher levels distributed in the skin and bottom for both exposure pathways. FipronilT was distributed in egg yolks rather than in albumen owing to its lipophilicity, and the ratio of egg yolk to albumen may potentially reflect the time of exposure. The distinction is that the residues after feed exposure were much higher than that after drinking water exposure in edible tissues and eggs. The study highlights the residual characteristics of two exposure pathways, which would contribute to the tracing of contamination sources and risk assessment.


Subject(s)
Chickens , Eggs , Insecticides , Pyrazoles , Animals , Pyrazoles/analysis , Insecticides/analysis , Eggs/analysis , Risk Assessment , Female , Animal Feed/analysis , Food Contamination/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring
5.
Chemosphere ; 358: 142244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705411

ABSTRACT

Neonicotinoids are a class of broad-spectrum insecticides that are dominant in the world market. They are widely distributed in the environment. Understanding the sources, distribution, and fate of these contaminants is critical to mitigating their effects and maintaining the health of aquatic ecosystems. Contamination of surface and groundwater by neonicotinoids has become a widespread problem worldwide, requiring comprehensive action to accurately determine the mechanisms behind the migration of these pesticides, their properties, and their adverse effects on the environment. A new approach to risk analysis for groundwater intake contamination with emerging contaminants was proposed. It was conducted on the example of four neonicotinoids (acetamiprid, clothianidin, thiamethoxam, and imidacloprid) in relation to groundwater accessed by a hypothetical groundwater intake, based on data obtained in laboratory tests using a dynamic method (column experiments). The results of the risk analysis conducted have shown that in this case study the use of acetamiprid and thiamethoxam for agricultural purposes poses an acceptable risk, and does not pose a risk to the quality of groundwater extracted from the intake for food purposes. Consequently, it does not pose a risk to the health and life of humans and other organisms depending on that water. The opposite situation is observed for clothianidin and imidacloprid, which pose a higher risk of groundwater contamination. For higher maximum concentration of neonicotinoids used in the risk analysis, the concentration of clothianidin and imidacloprid in the groundwater intake significantly (from several to several hundred thousand times) exceeds the maximum permissible levels for drinking water (<0.1 µg/L). This risk exists even if the insecticides containing these pesticides are used according to the information sheet provided by the manufacturer (lower maximum concentration), which results in exceeding the maximum permissible levels for drinking water from several to several hundred times.


Subject(s)
Groundwater , Insecticides , Neonicotinoids , Water Pollutants, Chemical , Groundwater/chemistry , Neonicotinoids/analysis , Water Pollutants, Chemical/analysis , Insecticides/analysis , Risk Assessment , Environmental Monitoring , Thiamethoxam/analysis , Humans , Thiazoles/analysis , Guanidines/analysis , Drinking Water/chemistry , Nitro Compounds/analysis
6.
Food Chem ; 451: 139515, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703734

ABSTRACT

Imidacloprid (IMI) are widely used in modern tea industry for pest control, but IMI residues pose a great threat to human health. Herein, we propose a regeneration metal-semiconductor SERS substrate for IMI detection. We fabricated the SERS sensor through the in-situ growth of a nano-heterostructure incorporating a semiconductor (TiO2) and plasmonic metals (Au, Ag) on oxidized carbon cloth (OCC). Leveraging the high-density hot spots, the formed Ag/AuNPs-TiO2-OCC substrate exhibits higher enhancement factors (1.92 × 108) and uniformity (RSD = 7.68%). As for the detection of IMI on the substrate, the limit of detection was lowered to 4.1 × 10-6 µg/mL. With a hydrophobic structure, the Ag/AuNPs-TiO2-OCC possessed excellent self-cleaning performance addressing the limitation of single-use associated with traditional SERS substrates, as well as the degradation capability of the substrate under ultraviolet (UV) light. Accordingly, Ag/AuNPs-TiO2-OCC showcases outstanding SERS sensing and regenerating properties, making it poised for extensive application in the field of food safety assurance.


Subject(s)
Carbon , Gold , Metal Nanoparticles , Neonicotinoids , Nitro Compounds , Silver , Spectrum Analysis, Raman , Titanium , Titanium/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods , Carbon/chemistry , Neonicotinoids/chemistry , Neonicotinoids/analysis , Nitro Compounds/chemistry , Food Contamination/analysis , Oxidation-Reduction , Insecticides/chemistry , Insecticides/analysis , Limit of Detection , Textiles/analysis
7.
J Agric Food Chem ; 72(21): 11980-11989, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38758169

ABSTRACT

Compound-specific isotope analysis stands as a promising tool for unveiling the behavior of pesticides in agricultural environments. Using the commercial formulations of persistent fungicide procymidone (PRO) and less persistent insecticide diazinon (DIA), respectively, we analyzed the concentration and carbon isotope composition (δ13C) of the residual pesticides through soil incubation experiments in a greenhouse (for 150 days) and lab conditions (for 50-70 days). Our results showed that the magnitude of δ13C variation depends on pesticide specificity, in which PRO in the soil exhibited little variation in δ13C values over the entire incubation times, while DIA demonstrated an increased δ13C value, with the extent of δ13C variability affected by different spiking concentrations, plant presence, and light conditions. Moreover, the pesticides extracted from soils were isotopically overlapped with those from crop lettuce. Ultimately, the isotope composition of pesticides could infer the degradation and translocation processes and might contribute to identifying the source(s) of pesticide formulation in agricultural fields.


Subject(s)
Carbon Isotopes , Diazinon , Pesticide Residues , Soil Pollutants , Soil , Diazinon/analysis , Diazinon/chemistry , Carbon Isotopes/analysis , Soil/chemistry , Pesticide Residues/chemistry , Pesticide Residues/analysis , Soil Pollutants/chemistry , Soil Pollutants/analysis , Fungicides, Industrial/chemistry , Fungicides, Industrial/analysis , Insecticides/chemistry , Insecticides/analysis , Bridged Bicyclo Compounds
8.
Talanta ; 275: 126190, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38703483

ABSTRACT

Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment. The environmental impact of neonicotinoids, often overlooked, underscores the urgency to develop tools for their detection and understanding of their behavior. Conventional methods for pesticide detection have limitations. Chromatographic techniques are sensitive but expensive, generate waste, and require complex sample preparation. Bioassays lack specificity and accuracy, making them suitable as preliminary tests in conjunction with instrumental methods. Aptamer-based biosensor is recognized as an advantageous tool for neonicotinoids detection due to its rapid response, user-friendly nature, cost-effectiveness, and suitability for on-site detection. This comprehensive review represents the inaugural in-depth analysis of advancements in aptamer-based biosensors targeting neonicotinoids such as imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, nitenpyram, and dinotefuran. Additionally, the review offers valuable insights into the critical challenges requiring prompt attention for the successful transition from research to practical field applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Insecticides , Neonicotinoids , Insecticides/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Neonicotinoids/analysis , Guanidines/analysis , Guanidines/chemistry , Thiamethoxam/analysis , Thiazoles/analysis , Thiazoles/chemistry , Nitro Compounds/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Thiazines
9.
PLoS One ; 19(4): e0302126, 2024.
Article in English | MEDLINE | ID: mdl-38625968

ABSTRACT

The St. Lawrence River is an important North American waterway that is subject to anthropogenic pressures including intensive urbanization, and agricultural development. Pesticides are widely used for agricultural activities in fields surrounding the yellow perch (Perca flavescens) habitat in Lake St. Pierre (Quebec, Canada), a fluvial lake of the river where the perch population has collapsed. Clothianidin and chlorantraniliprole were two of the most detected insecticides in surface waters near perch spawning areas. The objectives of the present study were to evaluate the transcriptional and biochemical effects of these two pesticides on juvenile yellow perch exposed for 28d to environmental doses of each compound alone and in a mixture under laboratory/aquaria conditions. Hepatic mRNA-sequencing revealed an effect of chlorantraniliprole alone (37 genes) and combined with clothianidin (251 genes), but no effects of clothianidin alone were observed in perch. Dysregulated genes were mostly related to circadian rhythms and to Ca2+ signaling, the latter effect has been previously associated with chlorantraniliprole mode of action in insects. Moreover, chronic exposure to clothianidin increased the activity of acetylcholinesterase in the brain of exposed fish, suggesting a potential non-target effect of this insecticide. Further analyses of three clock genes by qRT-PCR suggested that part of the observed effects of chlorantraniliprole on the circadian gene regulation of juvenile perch could be the result of time-of-day of sacrifice. These results provide insight into biological effects of insecticides in juvenile perch and highlight the importance of considering the circadian rhythm in experimental design and results analyses.


Subject(s)
Guanidines , Insecticides , Neonicotinoids , Perches , Thiazoles , Water Pollutants, Chemical , ortho-Aminobenzoates , Animals , Perches/genetics , Insecticides/toxicity , Insecticides/analysis , Acetylcholinesterase , Selection Bias , Gene Expression Profiling , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
10.
Mikrochim Acta ; 191(5): 289, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38683210

ABSTRACT

As a common chlorinated nicotinic pesticide with high insecticidal activity, acetamiprid has been widely used for pest control. However, the irrational use of acetamiprid will pollute the environment and thus affect human health. Therefore, it is crucial to develop a simple, highly sensitive, and rapid method for acetamiprid residue detection. In this study, the capture probe (Fe3O4@Pt-Aptamer) was connected with the signal probe (Au@DTNB@Ag CS-cDNA) to form an assembly with multiple SERS-enhanced effects. Combined with magnetic separation technology, a SERS sensor with high sensitivity and stability was constructed to detect acetamiprid residue. Based on the optimal conditions, the SERS intensity measured at 1333 cm-1 is in relation to the concentration of acetamiprid in the range 2.25 × 10-9-2.25 × 10-5 M, and the calculated limit of detection (LOD) was 2.87 × 10-10 M. There was no cross-reactivity with thiacloprid, clothianidin, nitenpyram, imidacloprid, and chlorpyrifos, indicating that this method has good sensitivity and specificity. Finally, the method was applied to the detection of acetamiprid in cucumber samples, and the average recoveries were 94.19-103.58%, with RSD < 2.32%. The sensor can be used to analyse real samples with fast detection speed, high sensitivity, and high selectivity.


Subject(s)
Aptamers, Nucleotide , Gold , Limit of Detection , Metal Nanoparticles , Neonicotinoids , Silver , Spectrum Analysis, Raman , Neonicotinoids/analysis , Aptamers, Nucleotide/chemistry , Gold/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Platinum/chemistry , Insecticides/analysis , Cucumis sativus/chemistry
11.
Ecotoxicol Environ Saf ; 277: 116378, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663191

ABSTRACT

Pesticide residues and microplastics (MPs) in agricultural soils are two major concerns for soil health and food safety. The degradation of chlorpyrifos (CPF), an organophosphorus pesticide, releases phosphates. This process may be affected by the presence of MPs in the soil. The combination of CPF and MPs presence in the soil may thus produce interaction effects that alter the soil phosphorus (P) balance. This study explores the degradation pathways of CPF (6 mg kg-1, 12 mg kg-1 of CPF addition) in soils with different levels of polylactic acid MPs (PLA-MPs) (0.0 %, 0.1 %, 0.5 %, 1.0 % w/w), and analyzes soil P fractions and phosphatase enzyme activities to investigate soil P bioavailability under different treatments. Results show that the degradation of CPF fits to a first-order decay model, with half-lives (DT50) ranging from 11.0 to 14.8 d depending on PLA-MPs treatment. The concentration of its metabolite 3, 5, 6-trichloropyridine 2-phenol (TCP) reached a peak of 0.93-1.67 mg kg-1 within 7-14 days. Similarly, the degradation of CPF led to a significant transient increase in P bioavailability within 3-7 days (p < 0.05), with a peak range of 22.55-26.01 mg kg-1 for Olsen-P content and a peak range of 4.63-6.76 % for the proportions of available P fractions (H2O-P+NaHCO3-P+NaOH-P), before returning to prior levels (Olsen-P: 11.28-19.52 mg kg-1; available soil P fractions: 4.15-5.61 %). CPF degradation (6 mg kg-1) was significantly inhibited in soil with 1.0 % PLA-MPs addition. The effects of MPs and CPF on soil P fractions occur at different time frames, implying that their modes of action and interactions with soil microbes differ.


Subject(s)
Chlorpyrifos , Microplastics , Phosphorus , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil Pollutants/metabolism , Phosphorus/analysis , Soil/chemistry , Biological Availability , Biodegradation, Environmental , Polyesters/chemistry , Polyesters/metabolism , Insecticides/analysis
12.
Biosens Bioelectron ; 257: 116324, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38669844

ABSTRACT

Exploring efficient photoactive material presents an intriguing opportunity to enhance the analytical performance of photoelectrochemical (PEC) sensor in the environmental analysis. In this work, a sandwich-structured multi-interface Co9S8@ZnIn2S4/CdSe QDs dual Z-Scheme heterojunction, derived from metal-organic framework (MOF), was synthesized as a sensing platform for chlorpyrifos detection, by integrating with enzyme-induced in situ insoluble precipitates strategy. The meticulously designed Co9S8@ZnIn2S4/CdSe QDs exhibited enhanced charge separation efficiency and was proved to be a highly effective sensing platform for the immobilization of biomolecules, attributing to the intrinsic dual Z-Scheme heterojunction and the distinctive hollow structure. The proposed PEC sensing platform combined with enzyme-induced in situ precipitate signal amplification strategy achieved superior performance for sensing of chlorpyrifos (CPF), showing in wide linear range (1.0 pg mL-1-100 ng mL-1), with a limit of detection (0.6 pg mL-1), excellent selectivity, and stability. This work offers valuable insights for the design of novel advanced photoactive materials aimed at detecting environmental pollutants with low level concentration.


Subject(s)
Biosensing Techniques , Chlorpyrifos , Electrochemical Techniques , Limit of Detection , Metal-Organic Frameworks , Quantum Dots , Chlorpyrifos/analysis , Metal-Organic Frameworks/chemistry , Electrochemical Techniques/methods , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Selenium Compounds/chemistry , Cobalt/chemistry , Insecticides/analysis
13.
Chemosphere ; 357: 141983, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631501

ABSTRACT

Neonicotinoid insecticides (NNIs) have attracted global concern due to its extensive use in agricultural activities and their potential risks to the animal and human health, however, there is limited knowledge on the regional traits and ecological risks of NNIs in the aquatic environments. We herein investigated the occurrence of NNIs within the midsection of Yangtze River in China, offering the inaugural comprehensive report on NNIs within this region. In this study, eleven NNIs were analyzed in 108 river water and sediment samples from three seasons (normal, dry and wet season). We detected a minimum of seven NNIs in the water and four NNIs in the sediment, with total concentrations ranging from 12.33 to 100.5 ng/L in water and 0.08-5.68 ng/g in sediment. The levels of NNIs in both river water and sediment were primarily influenced by the extent of agricultural activities. The estimated annual load of NNIs within the midsection of Yangtze River totaled 40.27 tons, April was a critical contamination period. Relative potency factor (RPF) analysis of the human exposure risk revealed that infants faced the greatest exposure risk, with an estimated daily intake of 11.27 ng kg-1∙bw∙d-1. We established the acute and chronic thresholds for aquatic organisms by employing the Species Sensitive Distribution (SSD) method (acute: 384.1 ng/L; chronic: 168.9 ng/L). Based on the findings from this study, 33% of the river water samples exceeded the chronic ecological risks thresholds, indicating the urgent need for intervention programs to guarantee the safety of the river for aquatic life in the Yangtze River Basin.


Subject(s)
Environmental Monitoring , Insecticides , Neonicotinoids , Rivers , Water Pollutants, Chemical , Rivers/chemistry , China , Insecticides/analysis , Insecticides/toxicity , Water Pollutants, Chemical/analysis , Risk Assessment , Humans , Neonicotinoids/analysis , Animals , Geologic Sediments/chemistry , Seasons , Agriculture , Spatio-Temporal Analysis
14.
Environ Pollut ; 349: 123968, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38631448

ABSTRACT

Neonicotinoid insecticides (NEOs) have gained widespread usage as the most prevalent class of insecticides globally and are frequently detected in the environment, posing potential risks to biodiversity and human health. Wastewater discharged from wastewater treatment plants (WWTPs) is a substantial source of environmental NEOs. However, research tracking NEO variations in different treatment units at the WWTPs after being treated by the treatment processes remains limited. Therefore, this study aimed to comprehensively investigate the fate of nine parent NEOs (p-NEOs) and five metabolites in two municipal WWTPs using distinct treatment processes. The mean concentrations of ∑NEOs in influent (effluent) for the UNITANK, anaerobic-anoxic-oxic (A2/O), and cyclic activated sludge system (CASS) processes were 189 ng/L (195 ng/L), 173 ng/L (177 ng/L), and 123 ng/L (138 ng/L), respectively. Dinotefuran, imidacloprid, thiamethoxam, acetamiprid, and clothianidin were the most abundant p-NEOs in the WWTPs. Conventional wastewater treatment processes were ineffective in removing NEOs from wastewater (-4.91% to -12.1%), particularly major p-NEOs. Moreover, the behavior of the NEOs in various treatment units was investigated. The results showed that biodegradation and sludge adsorption were the primary mechanisms responsible for eliminating NEO. An anoxic or anaerobic treatment unit can improve the removal efficiency of NEOs during biological treatment. However, the terminal treatment unit (chlorination disinfection tank) did not facilitate the removal of most of the NEOs. The estimated total amount of NEOs released from WWTPs to receiving waters in the Pearl River of South China totaled approximately 6.90-42.6 g/d. These findings provide new insights into the efficiency of different treatment processes for removing NEOs in current wastewater treatment systems.


Subject(s)
Insecticides , Neonicotinoids , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Insecticides/analysis , Insecticides/metabolism , China , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Neonicotinoids/analysis , Neonicotinoids/metabolism , Environmental Monitoring
15.
Food Chem ; 449: 139231, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38579654

ABSTRACT

Pyrethroids are widely used insecticides worldwide, while their on-site and rapid detection still faces technological challenges. Herein, an innovative detection mechanism was designed for deltamethrin, a typical kind of type II pyrethroids, based on a dual-emitting fluoroprobe consisting of NH2-SiQDs and Eu3+. Deltamethrin can rapidly hydrolyze into 3-phenoxybenzaldehyde (3-PBD) and react specifically with fluoroprobe, causing fluorescence quenching of SiQDs while maintaining the fluorescent stability of Eu3+. Building upon the above fluorescence-responsive principle, SiQDs@Eu3+ provided satisfactorily dual-emitting signals, realizing the highly-selective and sensitive detection of deltamethrin. Correlation between the surface structure of SiQDs and their absorption spectra was in-depth unraveled by TD-DFT calculation and FT-IR analysis. As for the analytical performance, the recovery and LOD of deltamethrin in lettuce, provided by SiQDs@Eu3+, were comparable or even superior over conventional chromatographic analysis. Meanwhile, an innovative smartphone-based optical device was developed, which greatly decreased errors caused by the previously reported smartphone-based fluorescence detection.


Subject(s)
Food Contamination , Insecticides , Nitriles , Pyrethrins , Smartphone , Pyrethrins/chemistry , Pyrethrins/analysis , Nitriles/chemistry , Insecticides/chemistry , Insecticides/analysis , Food Contamination/analysis , Lactuca/chemistry , Spectrometry, Fluorescence , Fluorescence , Fluorescent Dyes/chemistry , Limit of Detection
16.
Talanta ; 275: 126128, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657361

ABSTRACT

Imidacloprid (IMI), the most commonly used neonicotinoid, is widely present in both the environment and agro-products due to extensive and prolonged application, posing potential risks to ecological security and human health. This study introduced a sensitive and rapid fluorescence-linked immunosorbent assay, employing Quantum Dot-Streptavidin conjugate (QDs-SA-FLISA), for efficient monitoring of IMI residues in agro-products. Under optimized conditions, the QDs-SA-FLISA exhibited a half-maximal inhibition concentration (IC50) of 1.70 ng/mL and a limit of detection (LOD, IC20) of 0.5 ng/mL. Investigation into the sensitivity enhancement effect of the QDs-SA revealed that the sensitivity (IC50) of the QDs-SA-FLISA was 7.3 times higher than that of ELISA. The recoveries and relative standard deviation (RSD) ranged from 81.7 to 118.1 % and 0.5-9.4 %, respectively, for IMI in brown rice, tomato and pear. There was no significant difference in IMI residues obtained between QDs-SA-FLISA and UHPLC-MS/MS. Thus, the QDs-SA-FLISA represents a reliable approach for the quantitative determination of IMI in agro-products.


Subject(s)
Fluoroimmunoassay , Neonicotinoids , Nitro Compounds , Quantum Dots , Streptavidin , Quantum Dots/chemistry , Neonicotinoids/analysis , Neonicotinoids/chemistry , Streptavidin/chemistry , Nitro Compounds/analysis , Nitro Compounds/chemistry , Fluoroimmunoassay/methods , Limit of Detection , Oryza/chemistry , Solanum lycopersicum/chemistry , Pyrus/chemistry , Food Contamination/analysis , Insecticides/analysis , Pesticide Residues/analysis
17.
Chemosphere ; 358: 142159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679175

ABSTRACT

Abamectin, the mixture of avermectin B1a and B1b, is widely used as a bioinsecticide and is an alternative to chemical pest control from insects. To our knowledge, its behaviour is not fully recognized, especially in herbs. Thus, the objective of this study was to investigate the environmental fate of abamectin in herbal plants belonging to the Lamiaceae family, its dissipation in open field studies laboratory processing treatments and dietary risk assessment. Three medicinally and culinary important species of herbs: Melissa officinalis L., Mentha × piperita L. and Salvia L. were treated with single and double dose than recommended on the label during their cultivation (BBCH 11-29). Residues were monitored using the QuEChERS method followed by the LC-MS/MS. The dissipation pattern of the sum of avermectin B1a and B1b and their persistence were observed 14 d after spraying. Abamectin decline was very rapid in plants and followed the first-order kinetics model. The half-life (t1/2) was in the range of 0.96-1.08 d (single dose) and 0.93-1.02 d (double dose). The pre-harvest intervals (decrease to the level of 0.01 mg kg-1) were 7.29-7.92 d at single and 7.99-8.64 d at double dose application. Herbal infusion preparation in previously washed and dried mint, lemon balm and sage leaves was the key processing step in the removal of abamectin residues. The reduction of initial deposits after single dose treatment was noted up to 65% (PF = 0.35-0.67) and up to 79% after double dose application (PF = 0.21-0.72) in herbal tea. Acute risk assessment of children and adults for the highest residues in EFSA PRIMo model at single and double dose expressed as hazard quotients (HQ) were <1, indicating no risk to humans via consumption of the herbal products. The data provide a better understanding of abamectin behaviour in herbal plants and can help assure herbs' safety for consumers.


Subject(s)
Ivermectin , Ivermectin/analogs & derivatives , Ivermectin/analysis , Ivermectin/toxicity , Risk Assessment , Teas, Herbal/analysis , Humans , Insecticides/analysis , Lamiaceae/chemistry
18.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429983

ABSTRACT

The insecticidal crystal proteins produced by Bacillus thuringiensis during sporulation are active ingredients against lepidopteran, dipteran, and coleopteran insects. Several methods have been reported for their quantification, such as crystal counting, ELISA, and SDS-PAGE/densitometry. One of the major tasks in industrial processes is the analysis of raw material dependency and costs. Thus, the crystal protein quantification method is expected to be compatible with the presence of complex and inexpensive culture medium components. This work presents a revalidated elution-based method for the quantification of insecticidal crystal proteins produced by the native strain B. thuringiensis RT. To quantify proteins, a calibration curve was generated by varying the amount of BSA loaded into SDS-PAGE gels. First, SDS-PAGE was performed for quality control of the bioinsecticide. Then, the stained protein band was excised from 10% polyacrylamide gel and the protein-associated dye was eluted with an alcoholic solution of SDS (3% SDS in 50% isopropanol) during 45 min at 95°C. This protocol was a sensitive procedure to quantify proteins in the range of 2.0-10.0 µg. As proof of concept, proteins of samples obtained from a complex fermented broth were separated by SDS-PAGE. Then, Cry1 and Cry2 proteins were properly quantified.


Subject(s)
Bacillus thuringiensis , Insecticides , Insecticides/analysis , Endotoxins/analysis , Endotoxins/chemistry , Waste Products/analysis , Bacillus thuringiensis Toxins/analysis , Bacterial Proteins/chemistry , Hemolysin Proteins , Electrophoresis, Polyacrylamide Gel
19.
J Bone Miner Metab ; 42(2): 242-252, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38498197

ABSTRACT

INTRODUCTION: This study was to investigate the correlations between pyrethroid exposure and bone mineral density (BMD) and osteopenia. MATERIALS AND METHODS: This cross-sectional study included 1389 participants over 50 years of age drawn from the 2007-2010 and 2013-2014 National Health and Nutrition Examination Survey (NHANES). Three pyrethroid metabolites, 3-phenoxybenzoic acid (3-PBA), trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid (trans-DCCA), and 4-fluoro-3-phenoxybenzoic acid (4-F-3PBA) were used as indicators of pyrethroid exposure. Low BMD was defined as T-score < - 1.0, including osteopenia. Weighted multivariable linear regression analysis or logistic regression analysis was utilized to evaluate the correlation between pyrethroid exposure and BMD and low BMD. Bayesian kernel machine regression (BKMR) model was utilized to analyze the correlation between pyrethroids mixed exposure and low BMD. RESULTS: There were 648 (48.41%) patients with low BMD. In individual pyrethroid metabolite analysis, both tertile 2 and tertile 3 of trans-DCCA were negatively related to total femur, femur neck, and total spine BMD [coefficient (ß) = - 0.041 to - 0.028; all P < 0.05]. Both tertile 2 and tertile 3 of 4-F-3PBA were negatively related to total femur BMD (P < 0.05). Only tertile 2 [odds ratio (OR) = 1.63; 95% CI = 1.07, 2.48] and tertile 3 (OR = 1.65; 95% CI = 1.10, 2.50) of trans-DCCA was correlated with an increased risk of low BMD. The BKMR analysis indicated that there was a positive tendency between mixed pyrethroids exposure and low BMD. CONCLUSION: In conclusion, pyrethroids exposure was negatively correlated with BMD levels, and the associations of pyrethroids with BMD and low BMD varied by specific pyrethroids, pyrethroid concentrations, and bone sites.


Subject(s)
Benzoates , Bone Diseases, Metabolic , Insecticides , Phenyl Ethers , Pyrethrins , Adult , Humans , Middle Aged , Pyrethrins/adverse effects , Pyrethrins/analysis , Pyrethrins/metabolism , Insecticides/adverse effects , Insecticides/analysis , Insecticides/metabolism , Nutrition Surveys , Cross-Sectional Studies , Bone Density , Bayes Theorem , Environmental Exposure/adverse effects , Bone Diseases, Metabolic/chemically induced , Bone Diseases, Metabolic/epidemiology
20.
Chemosphere ; 354: 141755, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521101

ABSTRACT

Chlordecone is an organochlorine pesticide used from 1972 to 1993 in the French West Indies. Its extensive use and high persistence in soils induced massive contamination of the environment and of the food chain, especially in cattle through contaminated soil ingestion. To ensure suitability for consumption of bovine meat, monitoring plans are set up based on perirenal fat concentrations after slaughtering. In the present study, we have investigated an in-vivo monitoring approach by measuring chlordecone levels in serum samples. For this purpose, a sensitive high-performance liquid-chromatography-tandem mass spectrometry (HPLC-MS/MS) method following a QuEChERS extraction method was successfully optimized and validated, reaching a limit of quantification of 0.05 ng g-1 fresh weight. This method was applied to 121 serum samples collected from bovines originating from contaminated areas of Martinique and Guadeloupe. Chlordecone was detected in 88% of the samples, and quantified in 77% of the samples, with concentrations ranging from 0.05 to 22 ng g-1. Perirenal fat, liver, and muscle were also sampled on the same animals and the measured concentrations of chlordecone were statistically correlated to the levels determined in serum. Mean concentration ratios of 6.5 for fat/serum, 27.5 for liver/serum, and 3.3 for muscle/serum were calculated, meaning that chlordecone was not only distribute in fat (as expected), muscle and liver, but also in serum. Good correlations were found to allow prediction of chlordecone concentrations in muscle based on concentrations measured in serum. This study opens the door to possible pre-control of bovines before slaughter. In cases of probable non-compliance with maximum residue levels (MRLs), farm management could proceed to allow for depuration under controlled conditions. This would have a strong impact on both economic and food safety management measures.


Subject(s)
Chlordecone , Insecticides , Soil Pollutants , Animals , Cattle , Chlordecone/analysis , Insecticides/analysis , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Liquid Chromatography-Mass Spectrometry , Liver/chemistry , Muscles/chemistry , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...