Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 266
Filter
1.
Acta Neurochir (Wien) ; 166(1): 244, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822919

ABSTRACT

BACKGROUND: Surgical resection of insular gliomas is a challenge. TO resection is considered more versatile and has lower risk of vascular damage. In this study, we aimed to understand the factors that affect resection rates, ischemic changes and neurological outcomes and studied the utility of IONM in patients who underwent TO resection for IGs. METHODS: Retrospective analysis of 66 patients with IG who underwent TO resection was performed. RESULTS: Radical resection was possible in 39% patients. Involvement of zone II and the absence of contrast enhancement predicted lower resection rate. Persistent deficit rate was 10.9%. Although dominant lobe tumors increased immediate deficit and fronto-orbital operculum involvement reduced prolonged deficit rate, no tumor related factor showed significant association with persistent deficits. 45% of patients developed a postoperative infarct, 53% of whom developed deficits. Most affected vascular territory was lenticulostriate (39%). MEP changes were observed in 9/57 patients. 67% of stable TcMEPs and 74.5% of stable strip MEPs did not develop any postoperative motor deficits. Long-term deficits were seen in 3 and 6% patients with stable TcMEP and strip MEPs respectively. In contrast, 25% and 50% of patients with reversible strip MEP and Tc MEP changes respectively had persistent motor deficits. DWI changes were clinically more relevant when accompanied by MEP changes intraoperatively, with persistent deficit rates three times greater when MEP changes occurred than when MEPs were stable. CONCLUSION: Radical resection can be achieved in large, multizone IGs, with reasonable outcomes using TO approach and multimodal intraoperative strategy with IONM.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/surgery , Glioma/pathology , Male , Female , Middle Aged , Adult , Brain Neoplasms/surgery , Retrospective Studies , Treatment Outcome , Aged , Insular Cortex/surgery , Neurosurgical Procedures/methods , Postoperative Complications/etiology , Young Adult
2.
Transl Psychiatry ; 14(1): 241, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844469

ABSTRACT

Ordinary sensations from inside the body are important causes and consequences of our affective states and behaviour, yet the roles of neurotransmitters in interoceptive processing have been unclear. With a within-subjects design, this experiment tested the impacts of acute increases of endogenous extracellular serotonin on the neural processing of attended internal sensations and the links of these effects to anxiety using a selective serotonin reuptake inhibitor (SSRI) (20 mg CITALOPRAM) and a PLACEBO. Twenty-one healthy volunteers (fourteen female, mean age 23.9) completed the Visceral Interoceptive Attention (VIA) task while undergoing functional magnetic resonance imaging (fMRI) with each treatment. The VIA task required focused attention on the heart, stomach, or visual sensation. The relative neural interoceptive responses to heart sensation [heart minus visual attention] (heart-IR) and stomach sensation [stomach minus visual attention] (stomach-IR) were compared between treatments. Visual attention subtraction controlled for the general effects of CITALOPRAM on sensory processing. CITALOPRAM was associated with lower interoceptive processing in viscerosensory (the stomach-IR of bilateral posterior insular cortex) and integrative/affective (the stomach-IR and heart-IR of bilateral amygdala) components of interoceptive neural pathways. In anterior insular cortex, CITALOPRAM reductions of heart-IR depended on anxiety levels, removing a previously known association between anxiety and the region's response to attended heart sensation observed with PLACEBO. Preliminary post hoc analysis indicated that CITALOPRAM effects on the stomach-IR of the amygdalae corresponded to acute anxiety changes. This direct evidence of general and anxiety-linked serotonergic influence on neural interoceptive processes advances our understanding of interoception, its regulation, and anxiety.


Subject(s)
Anxiety , Citalopram , Interoception , Magnetic Resonance Imaging , Selective Serotonin Reuptake Inhibitors , Humans , Female , Selective Serotonin Reuptake Inhibitors/pharmacology , Male , Citalopram/pharmacology , Young Adult , Adult , Interoception/physiology , Interoception/drug effects , Anxiety/physiopathology , Attention/drug effects , Attention/physiology , Insular Cortex/diagnostic imaging , Insular Cortex/drug effects , Amygdala/drug effects , Amygdala/diagnostic imaging , Brain/diagnostic imaging , Brain/drug effects , Heart/drug effects
4.
Alcohol Alcohol ; 59(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38742547

ABSTRACT

AIMS: Continued alcohol consumption despite negative consequences is a core symptom of alcohol use disorder. This is modeled in mice by pairing negative stimuli with alcohol, such as adulterating alcohol solution with quinine. Mice consuming alcohol under these conditions are considered to be engaging in aversion-resistant intake. Previously, we have observed sex differences in this behavior, with females more readily expressing aversion-resistant consumption. We also identified three brain regions that exhibited sex differences in neuronal activation during quinine-alcohol drinking: ventromedial prefrontal cortex (vmPFC), posterior insular cortex (PIC), and ventral tegmental area (VTA). Specifically, male mice showed increased activation in vmPFC and PIC, while females exhibited increased activation in VTA. In this study, we aimed to identify what specific type of neurons are activated in these regions during quinine-alcohol drinking. METHOD: We assessed quinine-adulterated alcohol intake using the two-bottle choice procedure. We also utilized RNAscope in situ hybridization in the three brain regions that previously exhibited a sex difference to examine colocalization of Fos, glutamate, GABA, and dopamine. RESULT: Females showed increased aversion-resistant alcohol consumption compared to males. We also found that males had higher colocalization of glutamate and Fos in vmPFC and PIC, while females had greater dopamine and Fos colocalization in the VTA. CONCLUSIONS: Collectively, these experiments suggest that glutamatergic output from the vmPFC and PIC may have a role in suppressing, and dopaminergic activity in the VTA may promote, aversion-resistant alcohol consumption. Future experiments will examine neuronal circuits that contribute to sex differences in aversion resistant consumption.


Subject(s)
Alcohol Drinking , Neurons , Quinine , Sex Characteristics , Animals , Quinine/pharmacology , Female , Male , Mice , Neurons/drug effects , Ventral Tegmental Area/drug effects , Mice, Inbred C57BL , Prefrontal Cortex/drug effects , Mesencephalon/metabolism , Mesencephalon/drug effects , Insular Cortex/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Ethanol/pharmacology , Glutamic Acid/metabolism
5.
Transl Psychiatry ; 14(1): 206, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782961

ABSTRACT

Interoception is the perception of afferent information that arises from anywhere and everywhere within the body. Recently, interoceptive accuracy could be enhanced by cognitive training. Given that the anterior insula cortex (AIC) is a key node of interoception, we hypothesized that resting functional connectivity (RSFC) from AIC was involved in an effect of interoceptive training. To address this issue, we conducted a longitudinal intervention study using interoceptive training and obtained RSFC using fMRI before and after the intervention. A heartbeat perception task evaluated interoceptive accuracy. Twenty-two healthy volunteers (15 females, age 19.9 ± 2.0 years) participated. After the intervention, interoceptive accuracy was enhanced, and anxiety levels and somatic symptoms were reduced. Also, RSFC from AIC to the dorsolateral prefrontal cortex (DLPFC), superior marginal gyrus (SMG), anterior cingulate cortex (ACC), and brain stem, including nucleus tractus solitarius (NTS) were enhanced, and those from AIC to the visual cortex (VC) were decreased according to enhanced interoceptive accuracy. The neural circuit of AIC, ACC, and NTS is involved in the bottom-up process of interoception. The neural circuit of AIC, DLPFC, and SMG is involved in the top-down process of interoception, which was thought to represent the cognitive control of emotion. The findings provided a better understanding of neural underpinnings of the effect of interoceptive training on somatic symptoms and anxiety levels by enhancing both bottom-up and top-down processes of interoception, which has a potential contribution to the structure of psychotherapies based on the neural mechanism of psychosomatics.


Subject(s)
Insular Cortex , Interoception , Magnetic Resonance Imaging , Humans , Female , Interoception/physiology , Male , Insular Cortex/physiology , Insular Cortex/diagnostic imaging , Young Adult , Adult , Anxiety/physiopathology , Longitudinal Studies , Neural Pathways/physiology , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging , Gyrus Cinguli/physiology , Gyrus Cinguli/diagnostic imaging
6.
J Headache Pain ; 25(1): 76, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730344

ABSTRACT

Trigeminal neuropathic pain (TNP) is a major concern in both dentistry and medicine. The progression from normal to chronic TNP through activation of the insular cortex (IC) is thought to involve several neuroplastic changes in multiple brain regions, resulting in distorted pain perception and associated comorbidities. While the functional changes in the insula are recognized contributors to TNP, the intricate mechanisms underlying the involvement of the insula in TNP processing remain subjects of ongoing investigation. Here, we have overviewed the most recent advancements regarding the functional role of IC in regulating TNP alongside insights into the IC's connectivity with other brain regions implicated in trigeminal pain pathways. In addition, the review examines diverse modulation strategies that target the different parts of the IC, thereby suggesting novel diagnostic and therapeutic management of chronic TNP in the future.


Subject(s)
Insular Cortex , Trigeminal Neuralgia , Humans , Trigeminal Neuralgia/physiopathology , Trigeminal Neuralgia/diagnosis , Insular Cortex/diagnostic imaging , Insular Cortex/physiopathology , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging
7.
Addict Biol ; 29(5): e13396, 2024 May.
Article in English | MEDLINE | ID: mdl-38733092

ABSTRACT

Impaired decision-making is often displayed by individuals suffering from gambling disorder (GD). Since there are a variety of different phenomena influencing decision-making, we focused in this study on the effects of GD on neural and behavioural processes related to loss aversion and choice difficulty. Behavioural responses as well as brain images of 23 patients with GD and 20 controls were recorded while they completed a mixed gambles task, where they had to decide to either accept or reject gambles with different amounts of potential gain and loss. We found no behavioural loss aversion in either group and no group differences regarding loss and gain-related choice behaviour, but there was a weaker relation between choice difficulty and decision time in patients with GD. Similarly, we observed no group differences in processing of losses or gains, but choice difficulty was weaker associated with brain activity in the right anterior insula and anterior cingulate cortex in patients with GD. Our results showed for the first time the effects of GD on neural processes related to choice difficulty. In addition, our findings on choice difficulty give new insights on the psychopathology of GD and on neural processes related to impaired decision-making in GD.


Subject(s)
Choice Behavior , Decision Making , Gambling , Gyrus Cinguli , Magnetic Resonance Imaging , Humans , Gambling/physiopathology , Gambling/diagnostic imaging , Gambling/psychology , Male , Adult , Choice Behavior/physiology , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Decision Making/physiology , Case-Control Studies , Middle Aged , Brain/diagnostic imaging , Brain/physiopathology , Brain Mapping/methods , Insular Cortex/diagnostic imaging , Young Adult
8.
Biol Sex Differ ; 15(1): 29, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561860

ABSTRACT

BACKGROUND: The insular cortex (IC) plays a pivotal role in processing interoceptive and emotional information, offering insights into sex differences in behavior and cognition. The IC comprises two distinct subregions: the anterior insular cortex (aIC), that processes emotional and social signals, and the posterior insular cortex (pIC), specialized in interoception and perception of pain. Pyramidal projection neurons within the IC integrate multimodal sensory inputs, influencing behavior and cognition. Despite previous research focusing on neuronal connectivity and transcriptomics, there has been a gap in understanding pyramidal neurons characteristics across subregions and between sexes. METHODS: Adult male and female C57Bl/6J mice were sacrificed and tissue containing the IC was collected for ex vivo slice electrophysiology recordings that examined baseline sex differences in synaptic plasticity and transmission within aIC and pIC subregions. RESULTS: Clear differences emerged between aIC and pIC neurons in both males and females: aIC neurons exhibited distinctive features such as larger size, increased hyperpolarization, and a higher rheobase compared to their pIC counterparts. Furthermore, we observed variations in neuronal excitability linked to sex, with male pIC neurons displaying a greater level of excitability than their female counterparts. We also identified region-specific differences in excitatory and inhibitory synaptic activity and the balance between excitation and inhibition in both male and female mice. Adult females demonstrated greater synaptic strength and maximum response in the aIC compared to the pIC. Lastly, synaptic long-term potentiation occurred in both subregions in males but was specific to the aIC in females. CONCLUSIONS: We conclude that there are sex differences in synaptic plasticity and excitatory transmission in IC subregions, and that distinct properties of IC pyramidal neurons between sexes could contribute to differences in behavior and cognition between males and females.


This study investigates differences in the insular cortex (IC), a region of the brain responsible for emotions and sensory perceptions, between male and female mice. The IC has two parts: the front (aIC) deals with emotions and social cues, while the back (pIC) is focused on sensing pain and bodily sensations. We examined specific brain cells called pyramidal neurons in both aIC and pIC and discovered noteworthy distinctions between these neurons in adult male and female mice. Firstly, aIC neurons were larger and had unique electrical properties in both male and female mice. Males had more excitable pIC neurons compared to females, indicating that their neurons were more likely to transmit signals. We also explored how these neurons communicate with each other through connections known as synapses. In adult females, the aIC had stronger connections than the pIC. Finally, we observed that specific types of basic synaptic learning occurred exclusively in males in the aIC. These findings underscore significant disparities in the IC between males and females, offering valuable insights into the potential reasons behind variations in behaviors and emotions between sexes.


Subject(s)
Cerebral Cortex , Insular Cortex , Mice , Animals , Female , Male , Cerebral Cortex/physiology , Neurons
9.
Alzheimers Res Ther ; 16(1): 85, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641653

ABSTRACT

BACKGROUND: Dementia with Lewy bodies (DLB) is characterized by insular atrophy, which occurs at the early stage of the disease. Damage to the insula has been associated with disorders reflecting impairments of the most fundamental components of the self, such as anosognosia, which is a frequently reported symptom in patients with Lewy bodies (LB). The purpose of this study was to investigate modifications of the self-concept (SC), another component of the self, and to identify neuroanatomical correlates, in prodromal to mild DLB. METHODS: Twenty patients with prodromal to mild DLB were selected to participate in this exploratory study along with 20 healthy control subjects matched in terms of age, gender, and level of education. The Twenty Statements Test (TST) was used to assess the SC. Behavioral performances were compared between LB patients and control subjects. Three-dimensional magnetic resonance images (MRI) were acquired for all participants and correlational analyses were performed using voxel-based morphometry (VBM) in whole brain and using a mask for the insula. RESULTS: The behavioral results on the TST showed significantly impaired performances in LB patients in comparison with control subjects (p < .0001). Correlational analyses using VBM revealed positive correlations between the TST and grey matter volume within insular cortex, right supplementary motor area, bilateral inferior temporal gyri, right inferior frontal gyrus, and left lingual gyrus, using a threshold of p = .001 uncorrected, including total intracranial volume (TIV), age, and MMSE as nuisance covariates. Additionally, correlational analysis using a mask for the insula revealed positive correlation with grey matter volume within bilateral insular cortex, using a threshold of p = .005. CONCLUSIONS: The behavioral results confirm the existence of SC impairments in LB patients from the prodromal stage of the disease, compared to matched healthy controls. As we expected, VBM analyses revealed involvement of the insula, among that of other brain regions, already known to be involved in other self-components. While this study is exploratory, our findings provide important insights regarding the involvement of the insula within the self, confirming the insula as a core region of the self-networks, including for high-order self-representations such as the SC.


Subject(s)
Lewy Body Disease , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Insular Cortex , Brain/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging
10.
J Clin Neurosci ; 123: 157-161, 2024 May.
Article in English | MEDLINE | ID: mdl-38579522

ABSTRACT

BACKGROUND: This study aimed to assess abnormalities in the insular cortex of individuals suffering from migraines and examine their associations with pain duration, medication usage, and clinical symptoms. METHODS: We analyzed radiological data from 38 migraine patients who had undergone 3D iso T1-weighted brain MRI at our university hospital between 2019 and 2023. Structured questionnaires were used to collect information on participants' age, migraine type, disease duration, clinical symptoms, and medication use. Volumetric analysis was performed on the insular regions using Volbrain and 3DSlicer. The results were statistically analyzed. RESULTS: Comparing groups with chronic pain to normal groups revealed significant differences in several insular regions, including the posterior insula (p = 0.034), parietal operculum (p = 0.04), and the entire insular cortex (p = 0.023). Further group comparisons (Group 1, 2, and 3) showed significant differences in specific insular regions. For instance, the anterior insula (p = 0.032) was associated with taste changes, the posterior insula (p = 0.010) with smell-related changes, and the central operculum (p = 0.046) with sensations of nausea. Additionally, significant changes were observed in the parietal operculum concerning nausea, photophobia, phonophobia, and changes in smell. CONCLUSION: To the best of our knowledge, there have been no studies investigating the relationship between clinical manifestations and volumetric correlation. This study provides insights into abnormalities in the insular cortex among migraine patients and their potential relevance to pain duration, severity, and migraine type. The results suggest that understanding alterations in insular regions possibly linked to pain could contribute to the development of innovative approaches to managing chronic pain.


Subject(s)
Chronic Pain , Insular Cortex , Magnetic Resonance Imaging , Migraine Disorders , Humans , Migraine Disorders/diagnostic imaging , Female , Male , Adult , Middle Aged , Chronic Pain/diagnostic imaging , Insular Cortex/diagnostic imaging , Young Adult , Cerebral Cortex/diagnostic imaging
11.
Hum Brain Mapp ; 45(6): e26643, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38664992

ABSTRACT

Coping with distracting inputs during goal-directed behavior is a common challenge, especially when stopping ongoing responses. The neural basis for this remains debated. Our study explores this using a conflict-modulation Stop Signal task, integrating group independent component analysis (group-ICA), multivariate pattern analysis (MVPA), and EEG source localization analysis. Consistent with previous findings, we show that stopping performance is better in congruent (nonconflicting) trials than in incongruent (conflicting) trials. Conflict effects in incongruent trials compromise stopping more due to the need for the reconfiguration of stimulus-response (S-R) mappings. These cognitive dynamics are reflected by four independent neural activity patterns (ICA), each coding representational content (MVPA). It is shown that each component was equally important in predicting behavioral outcomes. The data support an emerging idea that perception-action integration in action-stopping involves multiple independent neural activity patterns. One pattern relates to the precuneus (BA 7) and is involved in attention and early S-R processes. Of note, three other independent neural activity patterns were associated with the insular cortex (BA13) in distinct time windows. These patterns reflect a role in early attentional selection but also show the reiterated processing of representational content relevant for stopping in different S-R mapping contexts. Moreover, the insular cortex's role in automatic versus complex response selection in relation to stopping processes is shown. Overall, the insular cortex is depicted as a brain hub, crucial for response selection and cancellation across both straightforward (automatic) and complex (conditional) S-R mappings, providing a neural basis for general cognitive accounts on action control.


Subject(s)
Conflict, Psychological , Electroencephalography , Inhibition, Psychological , Insular Cortex , Humans , Male , Female , Adult , Young Adult , Insular Cortex/physiology , Insular Cortex/diagnostic imaging , Brain Mapping , Attention/physiology , Psychomotor Performance/physiology , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging
12.
Cell Rep ; 43(4): 114027, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38568813

ABSTRACT

The insular cortex is involved in diverse processes, including bodily homeostasis, emotions, and cognition. However, we lack a comprehensive understanding of how it processes information at the level of neuronal populations. We leveraged recent advances in unsupervised machine learning to study insular cortex population activity patterns (i.e., neuronal manifold) in mice performing goal-directed behaviors. We find that the insular cortex activity manifold is remarkably consistent across different animals and under different motivational states. Activity dynamics within the neuronal manifold are highly stereotyped during rewarded trials, enabling robust prediction of single-trial outcomes across different mice and across various natural and artificial motivational states. Comparing goal-directed behavior with self-paced free consumption, we find that the stereotyped activity patterns reflect task-dependent goal-directed reward anticipation, and not licking, taste, or positive valence. These findings reveal a core computation in insular cortex that could explain its involvement in pathologies involving aberrant motivations.


Subject(s)
Goals , Insular Cortex , Animals , Mice , Insular Cortex/physiology , Male , Motivation/physiology , Reward , Mice, Inbred C57BL , Neurons/physiology , Behavior, Animal/physiology , Cerebral Cortex/physiology
13.
J Affect Disord ; 356: 604-615, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38631423

ABSTRACT

BACKGROUND: Romantic relationship dissolutions (RRDs) are associated with posttraumatic stress symptoms (PTSS). Functional magnetic resonance imaging in RRD studies indicate overlapping neural activation similar to posttraumatic stress disorder. These studies combine real and hypothetical rejection, and lack contextual information and control and/or comparison groups exposed to non-RRD or DSM-5 defined traumatic events. AIM: We investigated blood oxygen level dependent (BOLD) activation in the hippocampus, amygdala, and insula of participants with RRDs compared with other traumatic or non-trauma stressors. METHODS: Emerging adults (mean age = 21.54 years; female = 74.7 %) who experienced an RRD (n = 36), DSM-5 defined trauma (physical and/or sexual assault: n = 15), or a non-RRD or DSM-5 stressor (n = 28) completed PTSS, depression, childhood trauma, lifetime trauma exposure, and attachment measures. We used a general and customised version of the International Affective Picture System to investigate responses to index-trauma-related stimuli. We used mixed linear models to assess between-group differences, and ANOVAs and Spearman's correlations to analyse factors associated with BOLD activation. RESULTS: BOLD activity increased between index-trauma stimuli as compared to neutral stimuli in the hippocampus and amygdala, with no significant difference between the DSM-5 Trauma and RRD groups. Childhood adversity, sexual orientation, and attachment style were associated with BOLD activation changes. Breakup characteristics (e.g., initiator status) were associated with increased BOLD activation in the hippocampus and amygdala, in the RRD group. CONCLUSION: RRDs should be considered as potentially traumatic events. Breakup characteristics are risk factors for experiencing RRDs as traumatic. LIMITATION: Future studies should consider more diverse representation across sex, ethnicity, and sexual orientation.


Subject(s)
Amygdala , Hippocampus , Magnetic Resonance Imaging , Stress Disorders, Post-Traumatic , Humans , Female , Male , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Amygdala/diagnostic imaging , Amygdala/physiopathology , Young Adult , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/diagnostic imaging , Case-Control Studies , Adult , Insular Cortex/diagnostic imaging , Insular Cortex/physiopathology , Insular Cortex/physiology , Interpersonal Relations , Students/psychology , Students/statistics & numerical data , Adolescent , Object Attachment , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology
14.
Curr Biol ; 34(9): 1880-1892.e5, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38631343

ABSTRACT

Learning to discriminate overlapping gustatory stimuli that predict distinct outcomes-a feat known as discrimination learning-can mean the difference between ingesting a poison or a nutritive meal. Despite the obvious importance of this process, very little is known about the neural basis of taste discrimination learning. In other sensory modalities, this form of learning can be mediated by either the sharpening of sensory representations or the enhanced ability of "decision-making" circuits to interpret sensory information. Given the dual role of the gustatory insular cortex (GC) in encoding both sensory and decision-related variables, this region represents an ideal site for investigating how neural activity changes as animals learn a novel taste discrimination. Here, we present results from experiments relying on two-photon calcium imaging of GC neural activity in mice performing a taste-guided mixture discrimination task. The task allows for the recording of neural activity before and after learning induced by training mice to discriminate increasingly similar pairs of taste mixtures. Single-neuron and population analyses show a time-varying pattern of activity, with early sensory responses emerging after taste delivery and binary, choice-encoding responses emerging later in the delay before a decision is made. Our results demonstrate that, while both sensory and decision-related information is encoded by GC in the context of a taste mixture discrimination task, learning and improved performance are associated with a specific enhancement of decision-related responses.


Subject(s)
Discrimination Learning , Insular Cortex , Taste Perception , Taste , Animals , Mice , Taste/physiology , Male , Insular Cortex/physiology , Discrimination Learning/physiology , Taste Perception/physiology , Decision Making/physiology , Mice, Inbred C57BL , Female , Neurons/physiology
15.
Neuroimage ; 293: 120624, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657745

ABSTRACT

Pain empathy, defined as the ability of one person to understand another person's pain, shows large individual variations. The anterior insula is the core region of the pain empathy network. However, the relationship between white matter (WM) properties of the fiber tracts connecting the anterior insula with other cortical regions and an individual's ability to modulate pain empathy remains largely unclear. In this study, we outline an automatic seed-based fiber streamline (sFS) analysis method and multivariate pattern analysis (MVPA) to predict the levels of pain empathy in healthy women and women with primary dysmenorrhoea (PDM). Using the sFS method, the anterior insula-based fiber tract network was divided into five fiber cluster groups. In healthy women, interindividual differences in pain empathy were predicted only by the WM properties of the five fiber cluster groups, suggesting that interindividual differences in pain empathy may rely on the connectivity of the anterior insula-based fiber tract network. In women with PDM, pain empathy could be predicted by a single cluster group. The mean WM properties along the anterior insular-rostroventral area of the inferior parietal lobule further mediated the effect of pain on empathy in patients with PDM. Our results suggest that chronic periodic pain may lead to maladaptive plastic changes, which could further impair empathy by making women with PDM feel more pain when they see other people experiencing pain. Our study also addresses an important gap in the analysis of the microstructural characteristics of seed-based fiber tract network.


Subject(s)
Dysmenorrhea , Empathy , Individuality , Insular Cortex , White Matter , Humans , Female , Dysmenorrhea/diagnostic imaging , Dysmenorrhea/physiopathology , White Matter/diagnostic imaging , White Matter/pathology , Empathy/physiology , Adult , Young Adult , Insular Cortex/diagnostic imaging , Diffusion Tensor Imaging/methods , Pain/psychology , Pain/physiopathology , Pain/diagnostic imaging , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Cerebral Cortex/diagnostic imaging
16.
PLoS One ; 19(4): e0298740, 2024.
Article in English | MEDLINE | ID: mdl-38669282

ABSTRACT

In this research, we employed functional magnetic resonance imaging (fMRI) to examine the neurological basis for understanding wh-questions in wh-in-situ languages such as Korean, where wh-elements maintain their original positions instead of moving explicitly within the sentence. Our hypothesis centered on the role of the salience and attention network in comprehending wh-questions in wh-in-situ languages, such as the discernment of wh-elements, the demarcation between interrogative types, and the allocation of cognitive resources towards essential constituents vis-à-vis subordinate elements in order to capture the speaker's communicative intent. We explored subject and object wh-questions and scrambled wh-questions, contrasting them with yes/no questions in Korean. Increased activation was observed in the left anterior insula and bilateral frontal operculum, irrespective of the wh-position or scrambling of wh-element. These results suggest the interaction between the salience and attentional system and the syntactic linguistic system, particularly the left anterior insula and bilateral frontal operculum, in comprehending wh-questions in wh-in-situ languages.


Subject(s)
Comprehension , Language , Magnetic Resonance Imaging , Humans , Female , Male , Comprehension/physiology , Adult , Young Adult , Brain Mapping , Frontal Lobe/physiology , Frontal Lobe/diagnostic imaging , Republic of Korea , Insular Cortex/physiology , Insular Cortex/diagnostic imaging
17.
Curr Biol ; 34(9): 1918-1929.e5, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38636514

ABSTRACT

The insular cortex, or insula, is a large brain region involved in the detection of thirst and the regulation of water intake. However, our understanding of the topographical, circuit, and molecular mechanisms for controlling water intake within the insula remains parcellated. We found that type-1 cannabinoid (CB1) receptors in the insular cortex cells participate in the regulation of water intake and deconstructed the circuit mechanisms of this control. Topographically, we revealed that the activity of excitatory neurons in both the anterior insula (aIC) and posterior insula (pIC) increases in response to water intake, yet only the specific removal of CB1 receptors in the pIC decreases water intake. Interestingly, we found that CB1 receptors are highly expressed in insula projections to the basolateral amygdala (BLA), while undetectable in the neighboring central part of the amygdala. Thus, we recorded the neurons of the aIC or pIC targeting the BLA (aIC-BLA and pIC-BLA) and found that they decreased their activity upon water drinking. Additionally, chemogenetic activation of pIC-BLA projection neurons decreased water intake. Finally, we uncovered CB1-dependent short-term synaptic plasticity (depolarization-induced suppression of excitation [DSE]) selectively in pIC-BLA, compared with aIC-BLA synapses. Altogether, our results support a model where CB1 receptor signaling promotes water intake by inhibiting the pIC-BLA pathway, thereby contributing to the fine top-down control of thirst responses.


Subject(s)
Drinking , Insular Cortex , Receptor, Cannabinoid, CB1 , Animals , Receptor, Cannabinoid, CB1/metabolism , Male , Mice , Drinking/physiology , Insular Cortex/physiology , Cannabinoids/metabolism , Cannabinoids/pharmacology , Neurons/physiology , Neurons/metabolism , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Basolateral Nuclear Complex/physiology , Basolateral Nuclear Complex/metabolism
18.
Neurosci Biobehav Rev ; 160: 105643, 2024 May.
Article in English | MEDLINE | ID: mdl-38531518

ABSTRACT

Schizophrenia is a highly heterogeneous disorder characterized by a multitude of complex and seemingly non-overlapping symptoms. The insular cortex has gained increasing attention in neuroscience and psychiatry due to its involvement in a diverse range of fundamental human experiences and behaviors. This review article provides an overview of the insula's cellular and anatomical organization, functional and structural connectivity, and functional significance. Focusing on specific insula subregions and using knowledge gained from humans and preclinical studies of insular tracings in non-human primates, we review the literature and discuss the functional roles of each subregion, including in somatosensation, interoception, salience processing, emotional processing, and social cognition. Building from this foundation, we then extend these findings to discuss reported abnormalities of these functions in individuals with schizophrenia, implicating insular involvement in schizophrenia pathology. This review underscores the insula's vast role in the human experience and how abnormal insula structure and function could result in the wide-ranging symptoms observed in schizophrenia.


Subject(s)
Schizophrenia , Humans , Insular Cortex , Cerebral Cortex , Attention , Emotions , Magnetic Resonance Imaging
19.
Neurobiol Dis ; 194: 106466, 2024 May.
Article in English | MEDLINE | ID: mdl-38471625

ABSTRACT

In recent studies, brain stimulation has shown promising potential to alleviate chronic pain. Although studies have shown that stimulation of pain-related brain regions can induce pain-relieving effects, few studies have elucidated the mechanisms of brain stimulation in the insular cortex (IC). The present study was conducted to explore the changes in characteristic molecules involved in pain modulation mechanisms and to identify the changes in synaptic plasticity after IC stimulation (ICS). Following ICS, pain-relieving behaviors and changes in proteomics were explored. Neuronal activity in the IC after ICS was observed by optical imaging. Western blotting was used to validate the proteomics data and identify the changes in the expression of glutamatergic receptors associated with synaptic plasticity. Experimental results showed that ICS effectively relieved mechanical allodynia, and proteomics identified specific changes in collapsin response mediator protein 2 (CRMP2). Neuronal activity in the neuropathic rats was significantly decreased after ICS. Neuropathic rats showed increased expression levels of phosphorylated CRMP2, alpha amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR), and N-methyl-d-aspartate receptor (NMDAR) subunit 2B (NR2B), which were inhibited by ICS. These results indicate that ICS regulates the synaptic plasticity of ICS through pCRMP2, together with AMPAR and NR2B, to induce pain relief.


Subject(s)
Neuralgia , Receptors, N-Methyl-D-Aspartate , Semaphorin-3A , Animals , Rats , Hyperalgesia , Insular Cortex , Neuralgia/therapy , Neuralgia/metabolism , Neuronal Plasticity/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Semaphorin-3A/metabolism
20.
J Neurosci ; 44(16)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38453466

ABSTRACT

Chronic pain and alcohol use disorder (AUD) are highly comorbid, and patients with chronic pain are more likely to meet the criteria for AUD. Evidence suggests that both conditions alter similar brain pathways, yet this relationship remains poorly understood. Prior work shows that the anterior insular cortex (AIC) is involved in both chronic pain and AUD. However, circuit-specific changes elicited by the combination of pain and alcohol use remain understudied. The goal of this work was to elucidate the converging effects of binge alcohol consumption and chronic pain on AIC neurons that send projections to the dorsolateral striatum (DLS). Here, we used the Drinking-in-the-Dark (DID) paradigm to model binge-like alcohol drinking in mice that underwent spared nerve injury (SNI), after which whole-cell patch-clamp electrophysiological recordings were performed in acute brain slices to measure intrinsic and synaptic properties of AIC→DLS neurons. In male, but not female, mice, we found that SNI mice with no prior alcohol exposure consumed less alcohol compared with sham mice. Electrophysiological analyses showed that AIC→DLS neurons from SNI-alcohol male mice displayed increased neuronal excitability and increased frequency of miniature excitatory postsynaptic currents. However, mice exposed to alcohol prior to SNI consumed similar amounts of alcohol compared with sham mice following SNI. Together, our data suggest that the interaction of chronic pain and alcohol drinking have a direct effect on both intrinsic excitability and synaptic transmission onto AIC→DLS neurons in mice, which may be critical in understanding how chronic pain alters motivated behaviors associated with alcohol.


Subject(s)
Alcoholism , Binge Drinking , Chronic Pain , Peripheral Nervous System Diseases , Humans , Mice , Animals , Male , Chronic Pain/metabolism , Insular Cortex , Binge Drinking/metabolism , Ethanol/pharmacology , Neurons/metabolism , Alcoholism/metabolism , Peripheral Nervous System Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...