Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57.132
Filter
1.
Pak J Pharm Sci ; 37(2(Special)): 459-462, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822550

ABSTRACT

The purpose of this study was to examine the potential hypoglycemic effects of administering ginger (Zingiber officinale) and garlic (Allium sativum) to rats with induced type 2 diabetes. A total of forty-five male adult albino rats were randomly assigned to five groups. The groups were named Normal Control, Diabetic Control, Ginger group, Garlic group and a combination group of ginger and garlic. Diabetes was produced in all groups, except the normal control group, using an intraperitoneal injection of streptozotocin at a dosage of 60 mg/body weight. During the course of two months, rats were administered varying amounts of ginger and garlic powders as part of their treatment After the experiment concluded, measurements were taken for glycated hemoglobin, serum glucose, insulin, cholesterol, high density protein, low density protein and liver glycogen levels. These groups exhibited considerably greater serum insulin and high-density lipoprotein concentrations (P<0.05) compared to the diabetic control group. Conversely, body weight, fasting blood glucose, total cholesterol, low density lipoprotein, and glycated hemoglobin levels were significantly lower (P<0.05) in all groups compared to the diabetic control group. A statistically significant increase (P<0.05) increase shown in liver glycogen levels. This study proposes that the utilization of ginger and garlic powders improve the condition of type 2 diabetes and maybe reduce the risk of subsequent diabetic complications.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Garlic , Hypoglycemic Agents , Insulin , Powders , Zingiber officinale , Animals , Garlic/chemistry , Zingiber officinale/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Male , Blood Glucose/drug effects , Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Rats , Insulin/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Glycated Hemoglobin/metabolism , Plant Extracts/pharmacology , Phytotherapy , Liver Glycogen/metabolism , Streptozocin
2.
Food Res Int ; 188: 114517, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823849

ABSTRACT

Slowing the rate of carbohydrate digestion leads to low postprandial glucose and insulin responses, which are associated with reduced risk of type 2 diabetes. There is increasing evidence that food structure plays a crucial role in influencing the bioaccessibility and digestion kinetics of macronutrients. The aims of this study were to compare the effects of two hummus meals, with different degrees of cell wall integrity, on postprandial metabolic responses in relation to the microstructural and rheological characteristics of the meals. A randomised crossover trial in 15 healthy participants was designed to compare the acute effect of 27 g of starch, provided as hummus made from either intact chickpea cells (ICC) or ruptured chickpea cells (RCC), on postprandial metabolic responses. In vitro starch digestibility, microstructural and rheological experiments were also conducted to evaluate differences between the two chickpea hummus meals. Blood insulin and GIP concentrations were significantly lower (P < 0.02, P < 0.03) after the consumption of the ICC meal than the meal containing RCC. In vitro starch digestion for 90 min was slower in ICC than in RCC. Microscopic examination of hummus samples digested in vitro for 90 min revealed more intact chickpea cells in ICC compared to the RCC sample. Rheological experiments showed that fracture for ICC hummus samples occurred at smaller strains compared to RCC samples. However, the storage modulus for ICC was higher than RCC, which may be explained by the presence of intact cells in ICC. Food structure can affect the rate and extent of starch bioaccessibility and digestion and may explain the difference in the time course of metabolic responses between meals. The rheological properties were measured on the two types of meals before ingestion, showing significant differences that may point to different breakdown mechanisms during subsequent digestion. This trial was registered at clinicaltrial.gov as NCT03424187.


Subject(s)
Blood Glucose , Cicer , Cross-Over Studies , Digestion , Insulin , Postprandial Period , Rheology , Humans , Cicer/chemistry , Postprandial Period/physiology , Insulin/blood , Insulin/metabolism , Blood Glucose/metabolism , Adult , Male , Female , Young Adult , Starch/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/blood , Healthy Volunteers , Kinetics
3.
Nutr Diabetes ; 14(1): 37, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824123

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic medical condition affecting more than 95% of people with diabetes. Traditionally, some medicinal plants have been considered as an effective approach in management of T2DM. This trial evaluated the effects of date seed powder (DSP) on glycemia indices and oxidative stress in T2DM patients. METHODS: In this trail, 43 patients with T2DM were randomized to two groups: either 5 g/d of the DSP or placebo for 8 weeks. Levels of glycemic indices, lipolpolysaccharide (LPS), and soluble receptor for advanced glycation end products (s-RAGE), as well as other parameters associated with oxidative stress were assessed at baseline and after 8 weeks. Independent t-test and analysis of covariance (ANCOVA) were used for between-groups comparisons at baseline and the post-intervention phase, respectively. RESULTS: The results showed that supplementation with DSP significantly decreased HbA1c (-0.30 ± 0.48%), insulin (-1.70 ± 2.21 µU/ml), HOMA-IR (-1.05 ± 0.21), HOMA-B (-0.76 ± 21.21), lipopolysaccharide (LPS) (-3.68 ± 6.05 EU/mL), and pentosidine (118.99 ± 21.67 pg/mL) (P < 0.05, ANCOVA adjusted for baseline and confounding factors). On the other hand, DSP supplementation significantly increased total antioxidant capacity (TAC) (0.50 ± 0.26 mmol/L), superoxide dismutase (SOD) (0.69 ± 0.32 U/ml), and s-RAGE (240.13 ± 54.25 pg/mL) compared to the placebo group. FPG, hs-CRP, GPx, CML, and uric acid had no significant within- or between-group changes. CONCLUSION: Supplementation of DSP could be considered an effective strategy to improve glycemic control and oxidative stress in T2DM patients (Registration ID at www.irct.ir : IRCT20150205020965N10).


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Glycation End Products, Advanced , Oxidative Stress , Seeds , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Male , Female , Middle Aged , Glycation End Products, Advanced/blood , Oxidative Stress/drug effects , Glycated Hemoglobin/analysis , Blood Glucose/drug effects , Receptor for Advanced Glycation End Products/blood , Insulin/blood , Adult , Glycemic Index/drug effects , Aged
4.
Sci Rep ; 14(1): 12639, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825593

ABSTRACT

Chronic feeding of a high fat diet (HFD) in preclinical species induces broad metabolic dysfunction characterized by body weight gain, hyperinsulinemia, dyslipidemia and impaired insulin sensitivity. The plasma lipidome is not well characterized in dogs with HFD-induced metabolic dysfunction. We therefore aimed to describe the alterations that occur in the plasma lipid composition of dogs that are fed a HFD and examine the association of these changes with the clinical signs of metabolic dysfunction. Dogs were fed a normal diet (ND) or HFD for 12 weeks. Insulin sensitivity (SI) and beta cell compensation (AIRG) were assessed through an intravenous glucose tolerance test (IVGTT) and serum biochemistry was analyzed before the introduction of HFD and again after 12 weeks of continued ND or HFD feeding. Plasma lipidomics were conducted prior to the introduction of HFD and again at week 8 in both ND and HFD-fed dogs. 12 weeks of HFD feeding resulted in impaired insulin sensitivity and increased beta cell compensation measured by SI (ND mean: 11.5 [mU/l]-1 min-1, HFD mean: 4.7 [mU/l]-1 min-1) and AIRG (ND mean: 167.0 [mU/l]min, HFD mean: 260.2 [mU/l]min), respectively, compared to dogs fed ND over the same duration. Chronic HFD feeding increased concentrations of plasma lipid species and deleterious fatty acids compared to dogs fed a ND. Saturated fatty acid (SFA) concentrations were significantly associated with fasting insulin (R2 = 0.29), SI (R2 = 0.49) and AIRG (R2 = 0.37) in all dogs after 12 weeks, irrespective of diet. Our results demonstrate that chronic HFD feeding leads to significant changes in plasma lipid composition and fatty acid concentrations associated with metabolic dysfunction. High SFA concentrations may be predictive of deteriorated insulin sensitivity in dogs.


Subject(s)
Diet, High-Fat , Fatty Acids , Insulin Resistance , Insulin-Secreting Cells , Animals , Dogs , Insulin-Secreting Cells/metabolism , Fatty Acids/metabolism , Fatty Acids/blood , Diet, High-Fat/adverse effects , Male , Glucose Tolerance Test , Insulin/blood , Insulin/metabolism , Female , Lipidomics/methods
5.
J Oleo Sci ; 73(5): 751-760, 2024.
Article in English | MEDLINE | ID: mdl-38692897

ABSTRACT

A double-blind, placebo-controlled, crossover trial was performed to analyze the effects of a small amount of lysolecithin and canola oil on blood glucose levels after consuming japonica rice. Overall, 17 Japanese adult men were assigned to consume 150 g of normally cooked japonica rice (placebo group) and 150 g of japonica rice cooked with 18 mg of lysolecithin and 1.8 g of canola oil (treatment group); these lipids were added as emulsified formulation (EMF) for stability and uniformity. Subsequently, blood samples were collected before and 30, 45, 60, 90, and 120 min after consuming test foods. There was no significant difference in blood glucose, insulin, and triglyceride levels between the groups. However, a stratified analysis of 11 subjects with body mass index (BMI) ≥ 22 revealed that blood glucose levels were significantly lower after 30 min in the treatment group than in the placebo group (p = 0.041). Through in vitro digestibility test, the rice sample of the treatment group was observed to release significantly less glucose within 20 min than that in the placebo group rice. These results suggest that the combination of a small amount of lysolecithin and canola oil modulated the increase in postprandial blood glucose levels induced by the intake of cooked japonica rice in adult men with BMI ≥ 22. This clinical trial was registered with the University Hospital Medical Information Network (UMIN) Center, (UMIN000045744; registered on 15/10/2021).


Subject(s)
Blood Glucose , Cross-Over Studies , Oryza , Postprandial Period , Rapeseed Oil , Humans , Male , Rapeseed Oil/administration & dosage , Oryza/chemistry , Double-Blind Method , Blood Glucose/analysis , Adult , Triglycerides/blood , Middle Aged , Body Mass Index , Insulin/blood , Glycemic Index , Time Factors , East Asian People
6.
PLoS One ; 19(5): e0298239, 2024.
Article in English | MEDLINE | ID: mdl-38691547

ABSTRACT

The sweet taste receptor, TAS1R2-TAS1R3, is expressed in taste bud cells, where it conveys sweetness, and also in intestinal enteroendocrine cells, where it may facilitate glucose absorption and assimilation. In the present study, our objective was to determine whether TAS1R2-TAS1R3 influences glucose metabolism bidirectionally via hyperactivation with 5 mM sucralose (n = 12) and inhibition with 2 mM sodium lactisole (n = 10) in mixture with 75 g glucose loads during oral glucose tolerance tests (OGTTs) in healthy humans. Plasma glucose, insulin, and glucagon were measured before, during, and after OGTTs up to 120 minutes post-prandially. We also assessed individual participants' sweet taste responses to sucralose and their sensitivities to lactisole sweetness inhibition. The addition of sucralose to glucose elevated plasma insulin responses to the OGTT (F(1, 11) = 4.55, p = 0.056). Sucralose sweetness ratings were correlated with early increases in plasma glucose (R2 = 0.41, p<0.05), as well as increases in plasma insulin (R2 = 0.38, p<0.05) when sucralose was added to the OGTT (15 minute AUC). Sensitivity to lactisole sweetness inhibition was correlated with decreased plasma glucose (R2 = 0.84, p<0.01) when lactisole was added to the OGTT over the whole test (120 minute AUC). In summary, stimulation and inhibition of the TAS1R2-TAS1R3 receptor demonstrates that TAS1R2-TAS1R3 helps regulate glucose metabolism in humans and may have translational implications for metabolic disease risk.


Subject(s)
Benzene Derivatives , Blood Glucose , Glucose Tolerance Test , Insulin , Receptors, G-Protein-Coupled , Sucrose , Sucrose/analogs & derivatives , Humans , Receptors, G-Protein-Coupled/metabolism , Male , Adult , Female , Sucrose/metabolism , Blood Glucose/metabolism , Insulin/metabolism , Insulin/blood , Taste/physiology , Young Adult , Thiazoles/pharmacology , Glucose/metabolism , Glucagon/metabolism , Glucagon/blood , Sweetening Agents/pharmacology
7.
Front Endocrinol (Lausanne) ; 15: 1343641, 2024.
Article in English | MEDLINE | ID: mdl-38715798

ABSTRACT

Background: Overweight and obesity, high blood pressure, hyperglycemia, hyperlipidemia, and insulin resistance (IR) are strongly associated with non-communicable diseases (NCDs), including type 2 diabetes, cardiovascular disease, stroke, and cancer. Different surrogate indices of IR are derived and validated with the euglycemic-hyperinsulinemic clamp (EHC) test. Thus, using a computational approach to predict IR with Matsuda index as reference, this study aimed to determine the optimal cutoff value and diagnosis accuracy for surrogate indices in non-diabetic young adult men. Methods: A cross-sectional descriptive study was carried out with 93 young men (ages 18-31). Serum levels of glucose and insulin were analyzed in the fasting state and during an oral glucose tolerance test (OGTT). Additionally, clinical, biochemical, hormonal, and anthropometric characteristics and body composition (DEXA) were determined. The computational approach to evaluate the IR diagnostic accuracy and cutoff value using difference parameters was examined, as well as other statistical tools to make the output robust. Results: The highest sensitivity and specificity at the optimal cutoff value, respectively, were established for the Homeostasis model assessment of insulin resistance index (HOMA-IR) (0.91; 0.98; 3.40), the Quantitative insulin sensitivity check index (QUICKI) (0.98; 0.96; 0.33), the triglyceride-glucose (TyG)-waist circumference index (TyG-WC) (1.00; 1.00; 427.77), the TyG-body mass index (TyG-BMI) (1.00; 1.00; 132.44), TyG-waist-to-height ratio (TyG-WHtR) (0.98; 1.00; 2.48), waist-to-height ratio (WHtR) (1.00; 1.00; 0.53), waist circumference (WC) (1.00; 1.00; 92.63), body mass index (BMI) (1.00; 1.00; 28.69), total body fat percentage (TFM) (%) (1.00; 1.00; 31.07), android fat (AF) (%) (1.00; 0.98; 40.33), lipid accumulation product (LAP) (0.84; 1.00; 45.49), leptin (0.91; 1.00; 16.08), leptin/adiponectin ratio (LAR) (0.84; 1.00; 1.17), and fasting insulin (0.91; 0.98; 16.01). Conclusions: The computational approach was used to determine the diagnosis accuracy and the optimal cutoff value for IR to be used in preventive healthcare.


Subject(s)
Blood Glucose , Glucose Tolerance Test , Insulin Resistance , Humans , Male , Cross-Sectional Studies , Adult , Young Adult , Adolescent , Glucose Tolerance Test/methods , Blood Glucose/analysis , Insulin/blood , Biomarkers/blood , Body Mass Index , Body Composition , Glucose Clamp Technique
8.
Transl Psychiatry ; 14(1): 205, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769320

ABSTRACT

Growing evidence suggests an association between osteocalcin (OCN), a peptide derived from bone and involved in regulating glucose and lipid metabolism, and the risk of Alzheimer's disease (AD). However, the causality of these associations and the underlying mechanisms remain uncertain. We utilized a Mendelian randomization (MR) approach to investigate the causal effects of blood OCN levels on AD and to assess the potential involvement of glucose and lipid metabolism. Independent instrumental variables strongly associated (P < 5E-08) with blood OCN levels were obtained from three independent genome-wide association studies (GWAS) on the human blood proteome (N = 3301 to 35,892). Two distinct summary statistics datasets on AD from the International Genomics of Alzheimer's Project (IGAP, N = 63,926) and a recent study including familial-proxy AD patients (FPAD, N = 472,868) were used. Summary-level data for fasting glucose (FG), 2h-glucose post-challenge, fasting insulin, HbA1c, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol (TC), and triglycerides were incorporated to evaluate the potential role of glucose and lipid metabolism in mediating the impact of OCN on AD risk. Our findings consistently demonstrate a significantly negative correlation between genetically determined blood OCN levels and the risk of AD (IGAP: odds ratio [OR, 95%CI] = 0.83[0.72-0.96], P = 0.013; FPAD: OR = 0.81 [0.70-0.93], P = 0.002). Similar estimates with the same trend direction were obtained using other statistical approaches. Furthermore, employing multivariable MR analysis, we found that the causal relationship between OCN levels and AD was disappeared after adjustment of FG and TC (IGAP: OR = 0.97[0.80-1.17], P = 0.753; FPAD: OR = 0.98 [0.84-1.15], P = 0.831). There were no apparent instances of horizontal pleiotropy, and leave-one-out analysis showed good stability of the estimates. Our study provides evidence supporting a protective effect of blood OCN levels on AD, which is primarily mediated through regulating FG and TC levels. Further studies are warranted to elucidate the underlying physio-pathological mechanisms.


Subject(s)
Alzheimer Disease , Energy Metabolism , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteocalcin , Humans , Alzheimer Disease/blood , Alzheimer Disease/genetics , Osteocalcin/blood , Energy Metabolism/genetics , Blood Glucose/metabolism , Polymorphism, Single Nucleotide , Male , Female , Triglycerides/blood , Insulin/blood
9.
Cardiovasc Diabetol ; 23(1): 152, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702680

ABSTRACT

BACKGROUND: Insulin resistance and chronic kidney disease are both associated with increased coronary artery disease risk. Many formulae estimating glucose disposal rate in type 1 diabetes infer insulin sensitivity from clinical data. We compare associations and performance relative to traditional risk factors and kidney disease severity between three formulae estimating the glucose disposal rate and coronary artery disease in people with type 1 diabetes. METHODS: The baseline glucose disposal rate was estimated by three (Williams, Duca, and Januszewski) formulae in FinnDiane Study participants and related to subsequent incidence of coronary artery disease, by baseline kidney status. RESULTS: In 3517 adults with type 1 diabetes, during median (IQR) 19.3 (14.6, 21.4) years, 539 (15.3%) experienced a coronary artery disease event, with higher rates with worsening baseline kidney status. Correlations between the three formulae estimating the glucose disposal rate were weak, but the lowest quartile of each formula was associated with higher incidence of coronary artery disease. Importantly, only the glucose disposal rate estimation by Williams showed a linear association with coronary artery disease risk in all analyses. Of the three formulae, Williams was the strongest predictor of coronary artery disease. Only age and diabetes duration were stronger predictors. The strength of associations between estimated glucose disposal rate and CAD incidence varied by formula and kidney status. CONCLUSIONS: In type 1 diabetes, estimated glucose disposal rates are associated with subsequent coronary artery disease, modulated by kidney disease severity. Future research is merited regarding the clinical usefulness of estimating the glucose disposal rate as a coronary artery disease risk factor and potential therapeutic target.


Subject(s)
Biomarkers , Blood Glucose , Coronary Artery Disease , Diabetes Mellitus, Type 1 , Insulin Resistance , Humans , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Coronary Artery Disease/epidemiology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/blood , Male , Female , Adult , Incidence , Middle Aged , Risk Assessment , Time Factors , Blood Glucose/metabolism , Biomarkers/blood , Finland/epidemiology , Longitudinal Studies , Risk Factors , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/diagnosis , Prognosis , Predictive Value of Tests , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/blood , Kidney/physiopathology , Insulin/blood , Insulin/therapeutic use , Young Adult , Severity of Illness Index
10.
FASEB J ; 38(10): e23669, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38747734

ABSTRACT

Amomum xanthioides (AX) has been used as an edible herbal medicine to treat digestive system disorders in Asia. Additionally, Lactobacillus casei is a well-known probiotic commonly used in fermentation processes as a starter. The current study aimed to investigate the potential of Lactobacillus casei-fermented Amomum xanthioides (LAX) in alleviating metabolic disorders induced by high-fat diet (HFD) in a mouse model. LAX significantly reduced the body and fat weight, outperforming AX, yet without suppressing appetite. LAX also markedly ameliorated excessive lipid accumulation and reduced inflammatory cytokine (IL-6) levels in serum superior to AX in association with UCP1 activation and adiponectin elevation. Furthermore, LAX noticeably improved the levels of fasting blood glucose, serum insulin, and HOMA-IR through positive regulation of glucose transporters (GLUT2, GLUT4), and insulin receptor gene expression. In conclusion, the fermentation of AX demonstrates a pronounced mitigation of overnutrition-induced metabolic dysfunction, including hyperlipidemia, hyperglycemia, hyperinsulinemia, and obesity, compared to non-fermented AX. Consequently, we proposed that the fermentation of AX holds promise as a potential candidate for effectively ameliorating metabolic disorders.


Subject(s)
Amomum , Diet, High-Fat , Fermentation , Lacticaseibacillus casei , Obesity , Animals , Diet, High-Fat/adverse effects , Mice , Obesity/metabolism , Male , Lacticaseibacillus casei/metabolism , Amomum/chemistry , Mice, Inbred C57BL , Probiotics/pharmacology , Uncoupling Protein 1/metabolism , Insulin Resistance , Mice, Obese , Adiponectin/metabolism , Insulin/metabolism , Insulin/blood , Blood Glucose/metabolism
11.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747928

ABSTRACT

BACKGROUND: Our aim was to investigate the changes in neudesin levels in pregnant women with GDM and the relationship between neudesin and metabolic parameters. METHODS: Forty pregnant women diagnosed with GDM and forty age- and gestational week-matched control subjects were included in the study. Demographic data were obtained from records. Maternal lipid profiles, glucose levels, fasting insulin, HbA1C, and HOMA-IR results were compared between the groups. Correlation tests were performed to evaluate the relationship between neudesin and clinical and laboratory diagnostic parameters. p < 0.05 were interpreted as statistically significant. RESULTS: The human serum neudesin levels were significantly lower in the GDM group compared with the controls. The correlation tests showed statistically negative and weak correlations between the neudesin levels and the maternal age, 50 g OGCT, 100 g OGTT 3 hours, and HbA1C. The optimum neudesin cutoff value for a diagnosis of GDM disease is 6.94 ng/dL, with a sensitivity of 65.9% and a specificity of 63.2%. CONCLUSIONS: This study has shown that lower neudesin levels may occur as a reflection of changes in glucose metabolism during intrauterine life.


Subject(s)
Blood Glucose , Diabetes, Gestational , Glycated Hemoglobin , Humans , Female , Diabetes, Gestational/blood , Diabetes, Gestational/diagnosis , Pregnancy , Adult , Blood Glucose/metabolism , Blood Glucose/analysis , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Case-Control Studies , Glucose Tolerance Test , Biomarkers/blood , Insulin/blood , Insulin Resistance
12.
J Sports Sci ; 42(6): 498-510, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38695325

ABSTRACT

Stair climbing exercise (SE) provides a feasible approach to elevate physical activity, but the effects on metabolic health are unclear. We systematically reviewed the currently available evidence on the effects of SE on fasting and postprandial glycaemia and lipidaemia. Studies were included if they investigated the effects of acute or chronic (at least 2 weeks) SE on fasting and/or postprandial glycaemic (insulin and glucose) and lipidaemic (triacylglycerols and non-esterified fatty acids) responses in healthy, prediabetic or type 2 diabetic adult populations. PubMed, Web of Science and Scopus were searched for eligible studies until July 2022. A total of 25 studies (14 acute and 11 chronic) were eligible for review. Acute bout(s) of SE can reduce postprandial glycaemia in individuals with prediabetes and type 2 diabetes (8 of 9 studies), but not in normoglycemic individuals. The effects of acute SE on postprandial lipidaemic responses and SE training on both fasting and postprandial glycaemia/lipidaemia were unclear. Acute SE may reduce postprandial glucose concentrations in people with impaired glycaemic control, but high-quality studies are needed. More studies are needed to determine the effect of chronic SE training on postprandial glucose and lipid responses, and the acute effects of SE on lipid responses.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Postprandial Period , Stair Climbing , Humans , Postprandial Period/physiology , Blood Glucose/metabolism , Stair Climbing/physiology , Fasting , Prediabetic State/therapy , Insulin/blood , Triglycerides/blood , Fatty Acids, Nonesterified/blood , Lipids/blood
13.
PLoS One ; 19(5): e0303117, 2024.
Article in English | MEDLINE | ID: mdl-38753844

ABSTRACT

Several cardiovascular disease (CVD) risk factors (e.g., hypertension, poor glycemic control) can affect and be affected by autonomic nervous system (ANS) activity. Since excess adiposity can influence CVD development through its effect on hypertension and diabetes mellitus, it is important to determine how adiposity and altered ANS activity are related. The present study employed structural equation modeling to investigate the relation between adiposity and ANS activity both directly and indirectly through biological variables typically associated with glycemic impairment and cardiac stress in older adults. Utilizing the Atherosclerosis Risk in Communities (ARIC) dataset, 1,145 non-smoking adults (74±4.8 yrs, 62.8% female) free from known CVD, hypertension, and diabetes and not currently taking beta-blockers were evaluated for fasting blood glucose (FBG), insulin, and HbA1c concentrations, waist circumference (WC), blood pressure (BP), and markers of ANS activity. WC was recorded just above the iliac crest and was used to reflect central adiposity. Resting 2-minute electrocardiograph recordings, pulse wave velocity, and ankle-brachial index data were used to assess the root mean square of successive differences in RR intervals (RMSSD) and the pre-ejection period (PEP), markers of parasympathetic and sympathetic activity, respectively. FBG, insulin, and HbA1c inferred a latent variable termed glycemic impairment (GI), whereas heart rate and diastolic BP inferred a latent variable termed cardiac stress (CS). The structural equation model fit was acceptable [root mean square error of approximation = 0.050 (90% CI = .036, .066), comparative fit index = .970, Tucker Lewis Index = 0.929], with adiposity having both significant direct (ß = 0.208, p = 0.018) and indirect (ß = -.217, p = .041) effects on PEP through GI. Adiposity displayed no significant direct effect on RMSSD. CS displayed a significant pathway (ß = -0.524, p = 0.035) on RMSSD, but the indirect effect of WC on RMSSD through CS did not reach statistical significance (ß = -0.094, p = 0.137). These results suggest that adiposity's relation to ANS activity is multifaceted, as increased central adiposity had opposing direct and indirect effects on markers of sympathetic activity in this population of older adults.


Subject(s)
Adiposity , Autonomic Nervous System , Biomarkers , Humans , Female , Male , Aged , Autonomic Nervous System/physiopathology , Biomarkers/blood , Blood Glucose/analysis , Blood Glucose/metabolism , Blood Pressure/physiology , Waist Circumference , Insulin/blood , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Aged, 80 and over , Cardiovascular Diseases/physiopathology
14.
Sci Rep ; 14(1): 11313, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760452

ABSTRACT

Physical activity promotes various metabolic benefits by balancing pro and anti-inflammatory adipokines. Recent studies suggest that asprosin might be involved in progression of metabolic syndrome (MetS), however, the underlying mechanisms have not been understood yet. This study aimed to evaluate the effects of high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), and further detraining on MetS indices, insulin resistance, serum and the liver levels of asprosin, and AMP-activated protein kinase (AMPK) pathway in menopause-induced MetS model of rats. A total of 64 Wistar rats were used in this study and divided into eight groups: Sham1, OVX1 (ovariectomized), Sham2, OVX2, OVX + HIIT, OVX + MICT, OVX + HIIT + Det (detraining), and OVX + MICT + Det. Animals performed the protocols, and then serum concentrations of asprosin, TNF-α, insulin, fasting blood glucose, and lipid profiles (TC, LDL, TG, and HDL) were assessed. Additionally, the liver expression of asprosin, AMPK, and P-AMPK was measured by western blotting. Both HIIT and MICT caused a significant decrease in weight, waist circumference, BMI (P = 0.001), and serum levels of glucose, insulin, asprosin (P = 0.001), triglyceride, total cholesterol, low-density lipoprotein (LDL), and TNF-α (P = 0.001), but an increase in the liver AMPK, P-AMPK, and P-AMPK/AMPK (P = 0.001), compared with OVX2 noexercised group. MICT was superior to HIIT in reducing serum asprosin, TNF-a, TG, LDL (P = 0.001), insulin, fasting blood glucose, HOMA-IR, and QUEKI index (P = 0.001), but an increase in the liver AMPK, and p-AMPK (P = 0.001). Although after two months of de-training almost all indices returned to the pre exercise values (P < 0.05). The findings suggest that MICT effectively alleviates MetS induced by menopause, at least partly through the activation of liver signaling of P-AMPK and the reduction of asprosin and TNF-α. These results have practical implications for the development of exercise interventions targeting MetS in menopausal individuals, emphasizing the potential benefits of MICT in mitigating MetS-related complications.


Subject(s)
AMP-Activated Protein Kinases , Disease Models, Animal , Fibrillin-1 , Metabolic Syndrome , Physical Conditioning, Animal , Rats, Wistar , Signal Transduction , Animals , Fibrillin-1/metabolism , Metabolic Syndrome/metabolism , Metabolic Syndrome/therapy , Rats , Female , AMP-Activated Protein Kinases/metabolism , High-Intensity Interval Training/methods , Liver/metabolism , Insulin Resistance , Blood Glucose/metabolism , Insulin/blood , Insulin/metabolism , Peptide Fragments/blood , Peptide Fragments/metabolism
15.
Nutr Metab Cardiovasc Dis ; 34(6): 1339-1351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734541

ABSTRACT

BACKGROUND AND AIM: The impact of the loss-of-function (LOF) genetic variant PCSK9 R46L on glucose homeostasis and cardiovascular disease (CVD) remains uncertain, despite its established correlation with diminished blood cholesterol levels. This meta-analysis aimed at exploring the effect of the PCSK9 R46L genetic variant on plasma insulin and glucose levels, risk of diabetes mellitus and CVD. METHODS AND RESULTS: PubMed, Embase, and the Cochrane Library were searched for cohort and case-control studies published until October 1, 2023. The studies should report the association of the PCSK9 R46L genetic variant with one of the following: fasting plasma insulin, blood glucose levels, diabetes mellitus, and CVD risk. A dominant model of the PCSK9 R46L genetic variant was employed to statistical analysis. The meta-analyses were performed for continuous variables with standard mean difference (SMD), categorical variables with odds ratio (OR) using a random-effects model. A total of 17 articles with 20 studies engaging 1,186,861 population were identified and mobilized for these analyses. The overall results indicated that, compared with non-carriers of the PCSK9 R46L genetic variant, carriers of the PCSK9 R46L genetic variant did not increase or decrease the levels of fasting plasma insulin (3 studies with 7277 population; SMD, 0.08; 95% CI, -0.04 to 0.19; P = 0.270), and the levels of fasting plasma glucose (7 studies with 9331 population; SMD, 0.03; 95% CI, -0.08 to 0.13; P = 0.610). However, carriers of the PCSK9 R46L genetic variant indeed had 17% reduction in the risk of CVD (11 studies with 558,263 population; OR, 0.83; 95% CI, 0.71 to 0.98; P = 0.030), and 9% increase in the risk of diabetes mellitus (10 studies with 744,466 population; OR, 1.09; 95% CI, 1.04 to 1.14; P < 0.01). Meta-regression analyses indicated that the increased risk of diabetes mellitus and the reduced risk of CVD were positively correlated with reduction in LDL-C (P = 0.004 and 0.033, respectively). CONCLUSIONS: PCSK9 R46L genetic variant exhibited an elevated susceptibility to diabetes mellitus alongside a reduced vulnerability to CVD.


Subject(s)
Biomarkers , Blood Glucose , Cardiovascular Diseases , Diabetes Mellitus , Genetic Predisposition to Disease , Insulin , Phenotype , Proprotein Convertase 9 , Humans , Proprotein Convertase 9/genetics , Proprotein Convertase 9/blood , Cardiovascular Diseases/genetics , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/diagnosis , Blood Glucose/metabolism , Insulin/blood , Risk Assessment , Biomarkers/blood , Diabetes Mellitus/genetics , Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Female , Male , Middle Aged , Adult , Aged , Loss of Function Mutation , Risk Factors , Young Adult , Heart Disease Risk Factors
16.
Cardiovasc Diabetol ; 23(1): 175, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769519

ABSTRACT

BACKGROUND: Insulin resistance (IR) is the cornerstone of Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD), pathophysiologically being the key link between MASLD, metabolic disorders, and cardiovascular (CV) diseases. There are no prospective studies comparing the predictive values of different markers of insulin resistance (IR) in identifying the presence of MASLD and the associated risk of cardiovascular events (CVEs). METHODS: Post hoc analysis of the prospective Plinio Study, involving dysmetabolic patients evaluated for the presence of MASLD. The IR markers considered were Homeostatic Model Assessment for IR (HOMA-IR), Triglycerides-Glycemia (TyG) index, Triglycerides to High-Density Lipoprotein Cholesterol ratio (TG/HDL-C), Lipid Accumulation Product (LAP) and Visceral Adiposity Index (VAI). Receiver operative characteristic (ROC) analyses were performed to find the optimal cut-offs of each IR marker for detecting MASLD and predicting CVEs in MASLD patients. Logistic and Cox multivariable regression analyses were performed, after dichotomizing the IR markers based on the optimal cut-offs, to assess the factors independently associated with MASLD and the risk of CVEs. RESULTS: The study included 772 patients (age 55.6 ± 12.1 years, 39.4% women), of whom 82.8% had MASLD. VAI (Area Under the Curve [AUC] 0.731), TyG Index (AUC 0.723), and TG/HDL-C ratio (AUC: 0.721) predicted MASLD but was greater with HOMA-IR (AUC: 0.792) and LAP (AUC: 0.787). After a median follow-up of 48.7 (25.4-75.8) months, 53 MASLD patients experienced CVEs (1.8%/year). TyG index (AUC: 0.630), LAP (AUC: 0.626), TG/HDL-C (AUC: 0.614), and VAI (AUC: 0.590) demonstrated comparable, modest predictive values in assessing the CVEs risk in MASLD patients. CONCLUSION: In dysmetabolic patients HOMA-IR and LAP showed the best accuracy in detecting MASLD. The possible use of lipid-based IR markers in stratifying the CV risk in patients with MASLD needs further validation in larger cohorts.


Subject(s)
Biomarkers , Cardiovascular Diseases , Insulin Resistance , Predictive Value of Tests , Humans , Male , Middle Aged , Female , Biomarkers/blood , Prospective Studies , Aged , Risk Assessment , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Prognosis , Adult , Lipid Accumulation Product , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/complications , Triglycerides/blood , Blood Glucose/metabolism , Risk Factors , Insulin/blood , Heart Disease Risk Factors , Time Factors
17.
Nutr Diabetes ; 14(1): 25, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729941

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a significant risk factor for non-alcoholic fatty liver disease (NAFLD). Increased fasting blood sugar (FBS), fasting insulin (FI), and insulin resistance (HOMA-IR) are observed in patients with NAFLD. Gut microbial modulation using prebiotics, probiotics, and synbiotics has shown promise in NAFLD treatment. This meta-umbrella study aimed to investigate the effects of gut microbial modulation on glycemic indices in patients with NAFLD and discuss potential mechanisms of action. METHODS: A systematic search was conducted in PubMed, Web of Science, Scopus, and Cochrane Library until March 2023 for meta-analyses evaluating the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD. Random-effect models, sensitivity analysis, and subgroup analysis were employed. RESULTS: Gut microbial therapy significantly decreased HOMA-IR (ES: -0.41; 95%CI: -0.52, -0.31; P < 0.001) and FI (ES: -0.59; 95%CI: -0.77, -0.41; P < 0.001). However, no significant effect was observed on FBS (ES: -0.17; 95%CI: -0.36, 0.02; P = 0.082). Subgroup analysis revealed prebiotics had the most potent effect on HOMA-IR, followed by probiotics and synbiotics. For FI, synbiotics had the most substantial effect, followed by prebiotics and probiotics. CONCLUSION: Probiotics, prebiotics, and synbiotics administration significantly reduced FI and HOMA-IR, but no significant effect was observed on FBS.


Subject(s)
Gastrointestinal Microbiome , Glycemic Index , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Prebiotics , Probiotics , Synbiotics , Humans , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diet therapy , Prebiotics/administration & dosage , Probiotics/therapeutic use , Probiotics/administration & dosage , Synbiotics/administration & dosage , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/therapy , Insulin/blood
18.
Biochem Biophys Res Commun ; 716: 150026, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38701557

ABSTRACT

BACKGROUND: Previous in vivo and in vitro studies have demonstrated that estrogen receptor agonist G-1 regulates glucose and lipid metabolism. This study focused on the effects of G-1 on cardiometabolic syndrome and anti-obesity under a high fat diet (HFD). METHODS: Bilateral ovariectomized female mice were fed an HFD for 6 weeks, and treated them with G-1. A cardiomyocyte insulin resistance model was used to simulate the in vivo environment. The main outcome measures were blood glucose, body weight, and serum insulin levels to assess insulin resistance, while cardiac function and degree of fibrosis were assessed by cardiac ultrasound and pathological observations. We also examined the expression of p-AMPK, p-AKT, and GLUT4 in mice hearts and in vitro models to explore the mechanism by which G-1 regulates insulin signaling. RESULTS: G-1 reduced body weight in mice on an HFD, but simultaneously increased blood glucose and promoted insulin resistance, resulting in myocardial damage. This damage included disordered cardiomyocytes, massive accumulation of glycogen, extensive fibrosis of the heart, and thickening of the front and rear walls of the left ventricle. At the molecular level, G-1 enhances gluconeogenesis and promotes glucose production by increasing the activity of pyruvate carboxylase (PC) while inhibiting GLUT4 translocation via the AMPK/TBC1D1 pathway, thereby limiting glucose uptake. CONCLUSION: Despite G-1's the potential efficacy in weight reduction, the concomitant induction of insulin resistance and cardiac impairment in conjunction with an HFD raises significant concerns. Therefore, comprehensive studies of its safety profile and effects under specific conditions are essential prior to clinical use.


Subject(s)
Diet, High-Fat , Insulin Resistance , Mice, Inbred C57BL , Ovariectomy , Receptors, G-Protein-Coupled , Animals , Female , Diet, High-Fat/adverse effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Mice , Glucose Transporter Type 4/metabolism , Receptors, Estrogen/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Insulin/metabolism , Insulin/blood
19.
Sci Rep ; 14(1): 10936, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740832

ABSTRACT

The aim of this study was to develop a dynamic model-based approach to separately quantify the exogenous and endogenous contributions to total plasma insulin concentration and to apply it to assess the effects of inhaled-insulin administration on endogenous insulin secretion during a meal test. A three-step dynamic in-silico modeling approach was developed to estimate the two insulin contributions of total plasma insulin in a group of 21 healthy subjects who underwent two equivalent standardized meal tests on separate days, one of which preceded by inhalation of a Technosphere® Insulin dose (22U or 20U). In the 30-120 min test interval, the calculated endogenous insulin component showed a divergence in the time course between the test with and without inhaled insulin. Moreover, the supra-basal area-under-the-curve of endogenous insulin in the test with inhaled insulin was significantly lower than that in the test without (2.1 ± 1.7 × 104 pmol·min/L vs 4.2 ± 1.8 × 104 pmol·min/L, p < 0.01). The percentage of exogenous insulin reaching the plasma, relative to the inhaled dose, was 42 ± 21%. The proposed in-silico approach separates exogenous and endogenous insulin contributions to total plasma insulin, provides individual bioavailability estimates, and can be used to assess the effect of inhaled insulin on endogenous insulin secretion during a meal.


Subject(s)
Computer Simulation , Insulin , Humans , Insulin/blood , Insulin/administration & dosage , Insulin/metabolism , Administration, Inhalation , Male , Adult , Female , Models, Biological , Blood Glucose/metabolism , Young Adult
20.
Pak J Pharm Sci ; 37(1): 79-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741403

ABSTRACT

Vanadyl sulfate (VS), is a component of some food supplements and experimental drugs. This study was carried out to present a novel method for induction of Type 2 diabetes in rats, then for the first time in literature, for evaluating the effect of VS on metabolic parameters and gene expression, simultaneously. 40 male wistar rats were distributed between the four groups, equally. High fat diet and fructose were used for diabetes induction. Diabetic rats treated by two different dose of VS for 12 weeks. Metabolic profiles were evaluated by commercial available kits and gene expression were assayed by real time-PCR. Compared to controls, in non-treated diabetic rats, weight, glucose, triglyceride, total cholesterol, insulin and insulin resistance were increased significantly (p-value <0.05) that indicated induction of type 2 diabetes. Further, the results showed that VS significantly reduced weight, insulin secretion, Tumor Necrosis Factor-alpha (TNF-α) genes expression, lipid profiles except HDL that we couldn't find any significant change and increased Peroxisome Proliferator-Activated Receptor- gamma (PPAR-γ) gene expression in VS-treated diabetic animals in comparison with the non-treated diabetics. Our study demonstrated that vanadyl supplementation in diabetic rats had advantageous effects on metabolic profiles and related gene expression.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , PPAR gamma , Rats, Wistar , Tumor Necrosis Factor-alpha , Vanadium Compounds , Animals , Male , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Blood Glucose/drug effects , Blood Glucose/metabolism , Vanadium Compounds/pharmacology , Insulin Resistance , Rats , Insulin/blood , Hypoglycemic Agents/pharmacology , Diet, High-Fat/adverse effects , Gene Expression Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...