Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.515
Filter
1.
Phys Chem Chem Phys ; 26(21): 15587-15599, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757742

ABSTRACT

Phenol-soluble modulins (PSMs) are extracellular short amphipathic peptides secreted by the bacteria Staphylococcus aureus (S. aureus). They play an essential role in the bacterial lifecycle, biofilm formation, and stabilisation. From the PSM family, PSMα3 has been of special interest recently due to its cytotoxicity and highly stable α-helical conformation, which also remains in its amyloid fibrils. In particular, PSMα3 fibrils were shown to be composed of self-associating "sheets" of α-helices oriented perpendicular to the fibril axis, mimicking the architecture of canonical cross-ß fibrils. Therefore, they were called cross-α-fibrils. PSMα3 was synthesised and verified for identity with wild-type sequences (S. aureus). Then, using several experimental techniques, we evaluated its propensity for in vitro aggregation. According to our findings, synthetic PSMα3 (which lacks the N-terminal formyl groups found in bacteria) does not form amyloid fibrils and maintains α-helical conformation in a soluble monomeric form for several days of incubation. We also evaluated the influence of PSMα3 on human insulin fibrillation in vitro, using a variety of experimental approaches in combination with computational molecular studies. First, it was shown that PSMα3 drastically inhibits the fibrillation of human insulin. The anti-fibrillation effect of PSMα3 was concentration-dependent and required a concentration ratio of PSMα3: insulin equal to or above 1 : 100. Molecular modelling revealed that PSMα3 most likely inhibits the production of insulin primary nuclei by competing for residues involved in its dimerization.


Subject(s)
Insulin , Protein Aggregates , Staphylococcus aureus , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Humans , Insulin/metabolism , Insulin/chemistry , Protein Aggregates/drug effects , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Amyloid/chemistry , Amyloid/metabolism
2.
Int J Biol Macromol ; 268(Pt 2): 131609, 2024 May.
Article in English | MEDLINE | ID: mdl-38621555

ABSTRACT

Diabetes mellitus is characterized by hyperglycemia that makes insulin more prone to glycation and form advanced glycation end products (AGEs). Here, we report the effect of glyoxal (GO) on the formation of AGEs using human insulin as model protein and their structural modifications. The present investigation also reports the anti-AGE potential of Heliotropium bacciferum (Leaf) extracts. The phytochemical analysis of H. bacciferum revealed that free phenolic extract contains higher amount of total phenolic (3901.58 ± 17.06 mg GAE/100 g) and total flavonoid content (30.41 ± 0.32 mg QE/100 g) when compared to bound phenolic extract. Naringin and caffeic acid were identified as the major phenolic ingredients by UPLC-PAD method. Furthermore, bound phenolics extract showed significantly higher DPPH and superoxide radicals scavenging activity (IC50 17.53 ± 0.36 µg/mL and 0.306 ± 0.038 mg/ mL, respectively) (p ≤ 0.05). Besides, the bound phenolics extract also showed significant (p ≤ 0.05) chelating power (IC50 0.063) compared to free phenolic extract. In addition, bound phenolic extract could efficiently trap GO under physiological conditions. Spectroscopic investigation of GO-modified insulin illustrated changes in the tertiary structure of insulin and formation of AGEs. On the other hand, no significant alteration in secondary structure was observed by far UV-CD measurement. Furthermore, H. bacciferum extract inhibited α-glucosidase activity and AGEs formation implicated in diabetes. Molecular docking analysis depicted that GO bind with human insulin in both chains and forms a stable complex with TYR A: 14, LEU A:13, ASN B:3, SER A:12 amino acid residues with binding energy of - 2.53 kcal/mol. However, caffeic acid binds to ASN A:18 and GLU A:17 residues of insulin with lower binding energy of -4.67 kcal/mol, suggesting its higher affinity towards human insulin compared to GO. Our finding showed promising activity of H. bacciferum against AGEs and its complications. The major phenolics like caffeic acid, naringin and their derivatives could be exploited for the drug development for management of AGEs in diabetes.


Subject(s)
Glycation End Products, Advanced , Glycoside Hydrolase Inhibitors , Heliotropium , Molecular Docking Simulation , Plant Extracts , alpha-Glucosidases , Glycation End Products, Advanced/metabolism , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Humans , Heliotropium/chemistry , Spectrum Analysis , Phenols/chemistry , Phenols/pharmacology , Insulin/metabolism , Insulin/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry
3.
Eur J Pharm Biopharm ; 199: 114308, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688439

ABSTRACT

We have previously developed an in vitro instrument, termed subcutaneous injection site simulator (SCISSOR), that can be used to monitor release properties of an active pharmaceutical ingredient (API) and formulation components of a medicine designed for SC injection. Initial studies to validate the SCISSOR instrument applications used a simple hyaluronic acid (HA) hydrogel to monitor early release events. We now report a type of cross-linked HA that can, when combined with HA, provide a hydrogel (HA-XR) with optical clarity and rheological properties that remain stable for at least 6 days. Incorporation of 0.05-0.1 mg/mL of collagens isolated from human fibroblasts (Col F), bovine type I collagen (Col I), chicken collagen type II (Col II), or chondroitin sulphate (CS) produced HA or HA-XR hydrogel formats with optical clarity and rheological properties comparable to HA or HA-XR alone. HA + Col F hydrogel had a much greater effect on release rates of 70 kDa compared to 4 kDa dextran, while Col F incorporated into the HA-XR hydrogel accentuated differences in release rates of prandial and basal forms of insulin as well as decreased the release rate of denosumab. A hydrogel format of HA + Col I was used to examine the complex events for bevacizumab release under conditions where a target ligand (vascular endothelial growth factor) can interact with extracellular matrix (ECM). Together, these data have demonstrated the feasibility of using a cross-linked HA format to examine API release over multiple days and incorporation of specific ECM elements to prepare more biomimetic hydrogels that allow for tractable examination of their potential impact of API release.


Subject(s)
Hyaluronic Acid , Hydrogels , Injections, Subcutaneous , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Humans , Animals , Drug Interactions/physiology , Cattle , Rheology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/administration & dosage , Insulin/administration & dosage , Insulin/chemistry , Bevacizumab/administration & dosage , Bevacizumab/chemistry , Collagen/chemistry
4.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 299-313, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38606664

ABSTRACT

Diffuse scattering is a promising method to gain additional insight into protein dynamics from macromolecular crystallography experiments. Bragg intensities yield the average electron density, while the diffuse scattering can be processed to obtain a three-dimensional reciprocal-space map that is further analyzed to determine correlated motion. To make diffuse scattering techniques more accessible, software for data processing called mdx2 has been created that is both convenient to use and simple to extend and modify. mdx2 is written in Python, and it interfaces with DIALS to implement self-contained data-reduction workflows. Data are stored in NeXus format for software interchange and convenient visualization. mdx2 can be run on the command line or imported as a package, for instance to encapsulate a complete workflow in a Jupyter notebook for reproducible computing and education. Here, mdx2 version 1.0 is described, a new release incorporating state-of-the-art techniques for data reduction. The implementation of a complete multi-crystal scaling and merging workflow is described, and the methods are tested using a high-redundancy data set from cubic insulin. It is shown that redundancy can be leveraged during scaling to correct systematic errors and obtain accurate and reproducible measurements of weak diffuse signals.


Subject(s)
Software , Macromolecular Substances/chemistry , Crystallography, X-Ray/methods , Proteins/chemistry , Insulin/chemistry
5.
ACS Nano ; 18(18): 11863-11875, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38622996

ABSTRACT

Receptor-mediated polyester drug delivery systems have tremendous potential for improving the clinical performance of existing pharmaceutical drugs. Despite significant progress made in this area, it remains unclear how and to what extent the polyester nanoparticle surface topography would affect the in vitro, ex vivo and in vivo performance of a drug, and if there exists a correlation between in vitro and in vivo, as well as healthy versus pathophysiological states. Herein, we report a systematic investigation of the interactions between ligands and receptors as a function of the linker length, two-carbon (2C) versus four-carbon (4C). The in vitro, ex vivo and in vivo in healthy models validate the hypothesis that 4C has better reach and binding to the receptors. The results indicate that 4C offered better performance over 2C in vivo in improving the oral bioavailability of insulin (INS) by 1.1-fold (3.5-fold compared to unfunctionalized nanoparticles) in a healthy rat model. Similar observations were made in pathophysiological models; however, the effects were less prominent compared to those in healthy models. Throughout, ligand decorated nanoparticles outperformed unfunctionalized nanoparticles. Finally, a semimechanistic pharmacokinetic and pharmacodynamic (PKPD) model was developed using the experimental data sets to quantitatively evaluate the effect of P2Ns-GA on oral bioavailability and efficacy of insulin. The study presents a sophisticated oral delivery system for INS or hydrophilic therapeutic cargo, highlighting the significant impact on bioavailability that minor adjustments to the surface chemistry can have.


Subject(s)
Drug Delivery Systems , Insulin , Nanoparticles , Polyesters , Animals , Insulin/administration & dosage , Insulin/pharmacokinetics , Insulin/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Rats , Administration, Oral , Male , Rats, Sprague-Dawley , Humans , Surface Properties , Drug Carriers/chemistry
6.
Biomater Sci ; 12(11): 2899-2913, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38683198

ABSTRACT

Implantable medical devices that can facilitate therapy transport to localized sites are being developed for a number of diverse applications, including the treatment of diseases such as diabetes and cancer, and tissue regeneration after myocardial infraction. These implants can take the form of an encapsulation device which encases therapy in the form of drugs, proteins, cells, and bioactive agents, in semi-permeable membranes. Such implants have shown some success but the nature of these devices pose a barrier to the diffusion of vital factors, which is further exacerbated upon implantation due to the foreign body response (FBR). The FBR results in the formation of a dense hypo-permeable fibrous capsule around devices and is a leading cause of failure in many implantable technologies. One potential method for overcoming this diffusion barrier and enhancing therapy transport from the device is to incorporate local fluid flow. In this work, we used experimentally informed inputs to characterize the change in the fibrous capsule over time and quantified how this impacts therapy release from a device using computational methods. Insulin was used as a representative therapy as encapsulation devices for Type 1 diabetes are among the most-well characterised. We then explored how local fluid flow may be used to counteract these diffusion barriers, as well as how a more practical pulsatile flow regimen could be implemented to achieve similar results to continuous fluid flow. The generated model is a versatile tool toward informing future device design through its ability to capture the expected decrease in insulin release over time resulting from the FBR and investigate potential methods to overcome these effects.


Subject(s)
Insulin , Insulin/administration & dosage , Insulin/chemistry , Humans , Prostheses and Implants , Foreign-Body Reaction , Diffusion
7.
J Mater Chem B ; 12(16): 4029-4038, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38586978

ABSTRACT

Spatiotemporal controlled drug delivery minimizes side-effects and enables therapies that require specific dosing patterns. Conjugated polymers (CP) can be used for electrically controlled drug delivery; however so far, most demonstrations were limited to molecules up to 500 Da. Larger molecules could be incorporated only during the CP polymerization and thus limited to a single delivery. This work harnesses the record volume changes of a glycolated polythiophene p(g3T2) for controlled drug delivery. p(g3T2) undergoes reversible volumetric changes of up to 300% during electrochemical doping, forming pores in the nm-size range, resulting in a conducting hydrogel. p(g3T2)-coated 3D carbon sponges enable controlled loading and release of molecules spanning molecular weights of 800-6000 Da, from simple dyes up to the hormone insulin. Molecules are loaded as a combination of electrostatic interactions with the charged polymer backbone and physical entrapment in the porous matrix. Smaller molecules leak out of the polymer while larger ones could not be loaded effectively. Finally, this work shows the temporally patterned release of molecules with molecular weight of 1300 Da and multiple reloading and release cycles without affecting the on/off ratio.


Subject(s)
Drug Delivery Systems , Hydrogels , Polymers , Hydrogels/chemistry , Polymers/chemistry , Insulin/administration & dosage , Insulin/chemistry , Particle Size , Thiophenes/chemistry , Porosity , Drug Carriers/chemistry , Drug Liberation , Surface Properties
8.
Biophys Chem ; 310: 107236, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615538

ABSTRACT

A novel inhibitor, carboxyphenylboronic acid-modified chitosan oligosaccharide (COS-CPBA), was developed by coupling carboxyphenylboronic acid (CPBA) with chitosan oligosaccharide (COS) to inhibit insulin fibrillation. Extensive biophysical assays indicated that COS-CPBA could decelerate insulin aggregation, hinder the conformational transition from α-helix to ß-sheet structure, change the morphology of insulin aggregates and alter fibrillation pathway. A mechanism for the inhibition of insulin fibrillation by COS-CPBA was proposed. It considers that insulin molecules bind to COS-CPBA via hydrophobic interactions, while the positively charged groups in COS-CPBA exert electrostatic repulsion on the bound insulin molecules. These two opposite forces cause the insulin molecules to display extended conformations and hinder the conformational transition of insulin from α-helix to ß-sheet structure necessary for fibrillation, thus decelerating aggregation and altering the fibrillation pathway of insulin. The studies provide novel ideas for the development of more effective inhibitors of amyloid fibrillation.


Subject(s)
Boronic Acids , Chitosan , Hydrophobic and Hydrophilic Interactions , Insulin , Oligosaccharides , Static Electricity , Insulin/chemistry , Insulin/metabolism , Chitosan/chemistry , Boronic Acids/chemistry , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Protein Aggregates/drug effects , Animals , Humans
9.
J Phys Chem B ; 128(15): 3598-3604, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38574232

ABSTRACT

We demonstrate that the binding affinity of a multichain protein-protein complex, insulin dimer, can be accurately predicted using a streamlined route of standard binding free-energy calculations. We find that chains A and C, which do not interact directly during binding, stabilize the insulin monomer structures and reduce the binding affinity of the two monomers, therefore enabling their reversible association. Notably, we confirm that although classical methods can estimate the binding affinity of the insulin dimer, conventional molecular dynamics, enhanced sampling algorithms, and classical geometrical routes of binding free-energy calculations may not fully capture certain aspects of the role played by the noninteracting chains in the binding dynamics. Therefore, this study not only elucidates the role of noninteracting chains in the reversible binding of the insulin dimer but also offers a methodological guide for investigating the reversible binding of multichain protein-protein complexes utilizing streamlined free-energy calculations.


Subject(s)
Insulin , Molecular Dynamics Simulation , Entropy , Insulin/chemistry , Protein Binding , Thermodynamics
10.
Protein Sci ; 33(4): e4962, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501507

ABSTRACT

Insulin is commonly used to treat diabetes and undergoes aggregation at the site of repeated injections in diabetic patients. Moreover, aggregation is also observed during its industrial production and transport and should be avoided to preserve its bioavailability to correctly adjust glucose levels in diabetic patients. However, monitoring the effect of various parameters (pH, protein concentration, metal ions, etc.) on the insulin aggregation and oligomerization state is very challenging. In this work, we have applied a novel Surface Plasmon Resonance (SPR)-based experimental approach to insulin solutions at various experimental conditions, monitoring how its diffusion coefficient is affected by pH and the presence of metal ions (copper and zinc) with unprecedented sensitivity, precision, and reproducibility. The reported SPR method, hereby applied to a protein for the first time, besides giving insight into the insulin oligomerization and aggregation phenomena, proved to be very robust for determining the diffusion coefficient of any biomolecule. A theoretical background is given together with the software description, specially designed to fit the experimental data. This new way of applying SPR represents an innovation in the bio-sensing field and expanding the potentiality of commonly used SPR instruments well over the canonical investigation of biomolecular interactions.


Subject(s)
Biosensing Techniques , Diabetes Mellitus , Humans , Surface Plasmon Resonance/methods , Insulin/chemistry , Reproducibility of Results , Metals , Ions , Biosensing Techniques/methods
11.
Biomacromolecules ; 25(5): 3131-3140, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38554085

ABSTRACT

The sulfated marine polysaccharides, fucoidan and λ-carrageenan, are known to possess anti-inflammatory, immunomodulatory, and cellular protective properties. Although they hold considerable promise for tissue engineering constructs, their covalent cross-linking in hydrogels and comparative bioactivities to cells are absent from the literature. Thus, fucoidan and λ-carrageenan were modified with methacrylate groups and were covalently cross-linked with the synthetic polymer poly(vinyl alcohol)-methacrylate (PVA-MA) to form 20 wt % biosynthetic hydrogels. Identical degrees of methacrylation were confirmed by 1H NMR, and covalent conjugation was determined by using a colorimetric 1,9-dimethyl-methylene blue (DMMB) assay. Pancreatic beta cells were encapsulated in the hydrogels, followed by culturing in the 3D environment for a prolonged period of 32 days and evaluation of the cellular functionality by live/dead, adenosine 5'-triphosphate (ATP) level, and insulin secretion. The results confirmed that fucoidan and λ-carrageenan exhibited ∼12% methacrylate substitution, which generated hydrogels with stable conjugation of the polysaccharides with PVA-MA. The cells encapsulated in the PVA-fucoidan hydrogels demonstrated consistently high ATP levels over the culture period. Furthermore, only cells in the PVA-fucoidan hydrogels retained glucose responsiveness, demonstrating comparatively higher insulin secretion in response to glucose. In contrast, cells in the PVA-λ-carrageenan and the PVA control hydrogels lost all glucose responsiveness. The present work confirms the superior effects of chemically modified fucoidan over λ-carrageenan on pancreatic beta cell survival and function in covalently cross-linked hydrogels, thereby illustrating the importance of differential polysaccharide structural features on their biological effects.


Subject(s)
Carrageenan , Hydrogels , Polysaccharides , Carrageenan/chemistry , Carrageenan/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Polyvinyl Alcohol/chemistry , Cross-Linking Reagents/chemistry , Rats , Methacrylates/chemistry , Methacrylates/pharmacology , Cell Survival/drug effects , Insulin/chemistry , Insulin/metabolism
12.
Mol Pharm ; 21(4): 2025-2033, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38525800

ABSTRACT

Insulin aggregation poses a significant problem in pharmacology and medicine as it occurs during prolonged storage of the hormone and in vivo at insulin injection sites. We have recently shown that dominant forces driving the self-assembly of insulin fibrils are likely to arise from intermolecular interactions involving the N-terminal segment of the A-chain (ACC1-13). Here, we study how proline substitutions within the pilot GIVEQ sequence of this fragment affect its propensity to aggregate in both neutral and acidic environments. In a reasonable agreement with in silico prediction based on the Cordax algorithm, proline substitutions at positions 3, 4, and 5 turn out to be very effective in preventing aggregation according to thioflavin T-fluorescence-based kinetic assay, infrared spectroscopy, and atomic force microscopy (AFM). Since the valine and glutamate side chains within this segment are strongly involved in the interactions with the insulin receptor, we have focused on the possible implications of the Q → P substitution for insulin's stability and interactions with the receptor. To this end, comparative molecular dynamics (MD) simulations of the Q5P mutant and wild-type insulin were carried out for both free and receptor-bound (site 1) monomers. The results point to a mild destabilization of the mutant vis à vis the wild-type monomer, as well as partial preservation of key contacts in the complex between Q5P insulin and the receptor. We discuss the implications of these findings in the context of the design of aggregation-resistant insulin analogues retaining hormonal activity.


Subject(s)
Amyloid , Insulin , Insulin/chemistry , Proline , Peptides , Insulin, Regular, Human
13.
Protein Sci ; 33(4): e4949, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511500

ABSTRACT

Primary defects in folding of mutant proinsulin can cause dominant-negative proinsulin accumulation in the endoplasmic reticulum (ER), impaired anterograde proinsulin trafficking, perturbed ER homeostasis, diminished insulin production, and ß-cell dysfunction. Conversely, if primary impairment of ER-to-Golgi trafficking (which also perturbs ER homeostasis) drives misfolding of nonmutant proinsulin-this might suggest bi-directional entry into a common pathological phenotype (proinsulin misfolding, perturbed ER homeostasis, and deficient ER export of proinsulin) that can culminate in diminished insulin storage and diabetes. Here, we've challenged ß-cells with conditions that impair ER-to-Golgi trafficking, and devised an accurate means to assess the relative abundance of distinct folded/misfolded forms of proinsulin using a novel nonreducing SDS-PAGE/immunoblotting protocol. We confirm abundant proinsulin misfolding upon introduction of a diabetogenic INS mutation, or in the islets of db/db mice. Whereas blockade of proinsulin trafficking in Golgi/post-Golgi compartments results in intracellular accumulation of properly-folded proinsulin (bearing native disulfide bonds), impairment of ER-to-Golgi trafficking (regardless whether such impairment is achieved by genetic or pharmacologic means) results in decreased native proinsulin with more misfolded proinsulin. Remarkably, reversible ER-to-Golgi transport defects (such as treatment with brefeldin A or cellular energy depletion) upon reversal quickly restore the ER folding environment, resulting in the disappearance of pre-existing misfolded proinsulin while preserving proinsulin bearing native disulfide bonds. Thus, proper homeostatic balance of ER-to-Golgi trafficking is linked to a more favorable proinsulin folding (as well as trafficking) outcome.


Subject(s)
Diabetes Mellitus , Insulin-Secreting Cells , Mice , Animals , Proinsulin/genetics , Proinsulin/chemistry , Protein Folding , Insulin/chemistry , Endoplasmic Reticulum , Homeostasis , Disulfides/chemistry
14.
Biochim Biophys Acta Gen Subj ; 1868(4): 130578, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278307

ABSTRACT

Insulin fibrillation poses a significant challenge in the development and treatment of diabetes. Current efforts to unravel its mechanisms have thus far remained incomplete. To shed light on the intricate processes behind insulin fibrillation, we employed mutagenesis techniques to introduce additional positive charge residues into the C-terminal region of the insulin B chain which plays an important role in insulin dimerization. We employed our investigation with various spectroscopic methods, electron microscopy, and molecular dynamics simulations. These methods allowed us to explore the structure and fibrillation behavior of the engineered B chains following their expression in a bacterial host and successful purification. This manipulation had a pronounced impact on the oligomerization behavior of the insulin B chain. It appears that these mutations delay the formation of the dimeric state in the process of transitioning to larger oligomers, consequently, leading to an alteration in the kinetics of fibrillation. Our findings also indicated that the mutant insulin B chains (Di-R, Di-K, and Di-H) displayed resistance to the initiation of fibrillation. This resistance can be attributed to the repulsive forces generated by the introduced positive charges, which disrupt the attractive interactions favoring nucleation. Notably, the mutant B chains formed shorter and less abundant oligomers and fibrils, which can be ascribed to the alterations induced by repulsion. Our engineered mutant B chains exhibited enhanced stability against stress-induced fibrillation, hinting at their potential utility in the development of new insulin analogs. This study underscores the significance of the C-terminal region in the initial stages of insulin B chain fibrillation, providing valuable insights into the intricate mechanisms involved and their potential pharmaceutical applications.


Subject(s)
Insulin , Molecular Dynamics Simulation , Humans , Insulin/chemistry , Dimerization
15.
Biomater Sci ; 12(2): 507-517, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38088652

ABSTRACT

"Closed-loop" insulin-loaded microneedle patche shows great promise for improving therapeutic outcomes and life quality for diabetes patients. However, it is typically hampered by limited insulin loading capacity, random degradation, and intricate preparation procedures for the independence of the "closed-loop" bulk microneedles. In this study, we combined the solubility of microneedles and "closed-loop" systems and designed poly(vinyl alcohol)-based bulk microneedles (MNs@GI) through in situ photopolymerization for multi-responsive and sustained hypoglycemic therapy, which significantly simplified the preparation process and improved insulin loading. GOx/insulin co-encapsulated MNs@GI with a phenylboronic ester structure improved glycemic responsiveness to control the insulin release under high glucose conditions and reduced inflammation risk in the normal skin. MNs@GI could further degrade to increase insulin release due to the crosslinked acetal-linkage hydrolysis in the presence of gluconic acid, which was caused by GOx-mediated glucose-oxidation in a hyperglycemic environment. The in vivo results showed that MNs@GI effectively regulated glycemic levels within the normal range for approximately 10 h compared to that of only insulin-loaded microneedles (MNs@INS). Consequently, the highly insulin-loaded, multi-responsive, and pH-triggered MN system has tremendous potential for diabetes treatment.


Subject(s)
Diabetes Mellitus, Experimental , Hypoglycemic Agents , Animals , Humans , Hypoglycemic Agents/therapeutic use , Drug Delivery Systems/methods , Insulin/chemistry , Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Hydrogen-Ion Concentration
16.
Int J Biol Macromol ; 257(Pt 2): 128680, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38071871

ABSTRACT

Self-propagating polymorphism of amyloid fibrils is a distinct manifestation of non-equilibrium conditions under which protein aggregation typically occurs. Structural variants of fibrils can often be accessed through physicochemical perturbations of the de novo aggregation process. On the other hand, tiny changes in the amino acid sequence of the parent protein may also result in structurally distinguishable amyloid fibrils. Here, we show that in the presence of acetone, the low-pH fibrillization pathway of bovine insulin (BI) leads to a new type of amyloid with the infrared features (split amide I' band with the maximum at 1623 cm-1) bearing a striking resemblance to those of the previously reported fibrils from recombinant LysB31-ArgB32 human insulin analog formed in the absence of the co-solvent. Insulin fibrils formed in the presence ([BI-ace]) and absence ([BI]) of acetone cross-seed each other and pass their infrared features to the daughter generations of fibrils. We have used dimethyl sulfoxide (DMSO) coupled to in situ infrared spectroscopy measurements to probe the stability of fibrils against chemical denaturation. While both types of fibrils eventually undergo DMSO-induced disassembly coupled to a ß-sheet→coil transition, in the case of [BI-ace] amyloid, the denaturation is preceded by the fibrils transiently acquiring the [BI]-like infrared characteristics. We argue that this effect is caused by DMSO-induced dehydration of [BI-ace]. In support to this hypothesis, we show that, even in the absence of DMSO, the infrared features of [BI-ace] disappear upon drying. We discuss this very peculiar aspect of [BI-ace] fibrils in the context of recently accessed in silico models of plausible structural variants of insulin protofilaments.


Subject(s)
Amyloid , Insulin , Animals , Cattle , Humans , Insulin/chemistry , Amyloid/chemistry , Acetone , Dimethyl Sulfoxide/chemistry , Amino Acid Sequence , Amyloidogenic Proteins
17.
J Pept Sci ; 30(2): e3542, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37697741

ABSTRACT

Insulin replacement therapy is essential for the management of diabetes. However, despite the relative success of this therapeutic strategy, there is still a need to improve glycaemic control and the overall quality of life of patients. This need has driven research into orally available, glucose-responsive and rapid-acting insulins. A key consideration during analogue development is formulation stability, which can be improved via the replacement of insulin's A6-A11 disulfide bond with stable mimetics. Unfortunately, analogues such as these require extensive chemical synthesis to incorporate the nonnative cross-links, which is not a scalable synthetic approach. To address this issue, we demonstrate proof of principle for the semisynthesis of insulin analogues bearing nonnative A6-A11 cystine isosteres. The key feature of our synthetic strategy involves the use of several biosynthetically derived peptide precursors which can be produced at scale cost-effectively and a small, chemically synthesised A6-A11 macrocyclic lactam fragment. Although the assembled A6-A11 lactam insulin possesses poor biological activity in vitro, our synthetic strategy can be applied to other disulfide mimetics that have been shown to improve thermal stability without significantly affecting activity and structure. Moreover, we envisage that this new semisynthetic approach will underpin a new generation of hyperstable proteomimetics.


Subject(s)
Insulin , Lactams , Humans , Insulin/chemistry , Quality of Life , Cystine , Disulfides/chemistry
18.
Int J Biol Macromol ; 254(Pt 3): 127857, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37924913

ABSTRACT

In the current study, we first established that chitosan oligosaccharides (COS) have significant anti-fibrillogenic and fibril-destabilising effects on bovine insulin in vitro that proportionally expand with concentration growth. The obtained data were supported by the Thioflavin T (ThT) assay, circular dichroism (CD), attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and atomic force microscopy (AFM). Interestingly, coincubation of insulin with COS in the ratio of 1 to 10 over 48 h at 37 °C leads to full prevention of insulin aggregation, and in the case of preformed fibrils, results in their destabilisation and disaggregation. Moreover, both a cationic polymer of allylamine (PAH) and a sulphated oligosaccharide (CROS) prepared from carrageenan had no inhibitory effect on insulin amyloid formation. Thus, we proposed that COS modulates insulin amyloid formation due to the presence of linear sugar units, the degree of polymerization, and the free amino group providing a positive charge. These findings highlight the potential implications of COS as a promising substance for the treatment of insulin-dependent diabetes mellitus and localised insulin-derived amyloidosis and, moreover, provide a new insight into the mechanism of the anti-diabetic and antitoxic properties of chitosan and chitosan-based agents.


Subject(s)
Amyloidosis , Chitosan , Animals , Cattle , Insulin/chemistry , Chitosan/pharmacology , Chitosan/chemistry , Amyloid/chemistry , Amyloidogenic Proteins , Oligosaccharides/pharmacology , Oligosaccharides/chemistry
19.
ACS Appl Mater Interfaces ; 16(1): 217-227, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38123449

ABSTRACT

Biomolecular piezoelectric materials are envisioned for advanced biomedical applications for their robust piezoelectricity, biocompatibility, and flexibility. Here, we report the piezoelectric property of amyloid fibrils derived from three distinct proteins: lysozyme, insulin, and amyloid-ß. We found that piezoelectric properties are dependent on the extent of the ß-sheet structure and the extent of fibril anisotropy. We have observed the piezoelectric constant value in the range of 24-42 pm/V for fibrils made of lysozyme/insulin/amyloid-ß, and for the sheet/bundle-like structure of lysozyme aggregates, the value becomes 62 pm/V. These piezoelectric constant values are 4-10 times higher than the native lysozyme/insulin/amyloid proteins. Computational studies show that extension of the ß-sheet structure produces an asymmetric arrangement of charges (in creating dipole moment) and mechanical stress induces an aligned orientation of these dipoles that results in a piezoelectric effect. It is shown that these piezoelectric fibrils can harvest mechanical as well as ultrasound-based energy to produce a voltage of up to 1 V and a current of up to 13 nA. These fibrils are employed for reactive oxygen species (ROS) generation under ultrasound exposure and utilized for ultrasonic degradation of organic pollutants or killing of cancer cells via intracellular ROS generation under ultrasound exposure. Our findings demonstrate that the piezoelectric property of protein fibrils has potential for wireless therapeutic applications and may have physiological roles that are yet to be explored.


Subject(s)
Amyloid , Muramidase , Amyloid/chemistry , Reactive Oxygen Species , Muramidase/chemistry , Protein Folding , Insulin/chemistry
20.
Molecules ; 28(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38005191

ABSTRACT

In this overview, the latest achievements in dietary origins, absorption mechanism, bioavailability assay, health advantages, cutting-edge encapsulation techniques, fortification approaches, and innovative highly sensitive sensor-based detection methods of vitamin B12 (VB12) were addressed. The cobalt-centered vitamin B is mainly found in animal products, posing challenges for strict vegetarians and vegans. Its bioavailability is highly influenced by intrinsic factor, absorption in the ileum, and liver reabsorption. VB12 mainly contributes to blood cell synthesis, cognitive function, and cardiovascular health, and potentially reduces anemia and optic neuropathy. Microencapsulation techniques improve the stability and controlled release of VB12. Co-microencapsulation of VB12 with other vitamins and bioactive compounds enhances bioavailability and controlled release, providing versatile initiatives for improving bio-functionality. Nanotechnology, including nanovesicles, nanoemulsions, and nanoparticles can enhance the delivery, stability, and bioavailability of VB12 in diverse applications, ranging from antimicrobial agents to skincare and oral insulin delivery. Staple food fortification with encapsulated and free VB12 emerges as a prominent strategy to combat deficiency and promote nutritional value. Biosensing technologies, such as electrochemical and optical biosensors, offer rapid, portable, and sensitive VB12 assessment. Carbon dot-based fluorescent nanosensors, nanocluster-based fluorescent probes, and electrochemical sensors show promise for precise detection, especially in pharmaceutical and biomedical applications.


Subject(s)
Food, Fortified , Vitamin B 12 , Animals , Vitamin B 12/chemistry , Delayed-Action Preparations , Vitamins , Insulin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...