Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.070
Filter
1.
Sci Transl Med ; 16(750): eadk9811, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838134

ABSTRACT

Clinical evidence indicates a close association between muscle dysfunction and bone loss; however, the underlying mechanisms remain unclear. Here, we report that muscle dysfunction-related bone loss in humans with limb-girdle muscular dystrophy is associated with decreased expression of folliculin-interacting protein 1 (FNIP1) in muscle tissue. Supporting this finding, murine gain- and loss-of-function genetic models demonstrated that muscle-specific ablation of FNIP1 caused decreased bone mass, increased osteoclastic activity, and mechanical impairment that could be rescued by myofiber-specific expression of FNIP1. Myofiber-specific FNIP1 deficiency stimulated expression of nuclear translocation of transcription factor EB, thereby activating transcription of insulin-like growth factor 2 (Igf2) at a conserved promoter-binding site and subsequent IGF2 secretion. Muscle-derived IGF2 stimulated osteoclastogenesis through IGF2 receptor signaling. AAV9-mediated overexpression of IGF2 was sufficient to decrease bone volume and impair bone mechanical properties in mice. Further, we found that serum IGF2 concentration was negatively correlated with bone health in humans in the context of osteoporosis. Our findings elucidate a muscle-bone cross-talk mechanism bridging the gap between muscle dysfunction and bone loss. This cross-talk represents a potential target to treat musculoskeletal diseases and osteoporosis.


Subject(s)
Bone and Bones , Insulin-Like Growth Factor II , Animals , Insulin-Like Growth Factor II/metabolism , Humans , Bone and Bones/metabolism , Mice , Signal Transduction , Muscle, Skeletal/metabolism , Osteogenesis , Muscles/metabolism , Male , Female , Osteoclasts/metabolism
2.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791310

ABSTRACT

The coordinated action of VEGF, IGF1/2 and H19 factors influences the development of endometriosis. The aim of this study was to analyze the expression level of these genes in patients with endometriosis. The study group consisted of 100 patients who were diagnosed with endometriosis on laparoscopic and pathological examination. The control group consisted of 100 patients who were found to be free of endometriosis during the surgical procedure and whose eutopic endometrium wasnormal on histopathological examination. These patients were operated on for uterine fibroids. Gene expression was determined by RT-PCR. The expression of the VEGF gene was significantly higher in the samples classified as clinical stage 1-2 compared to the control material (p < 0.05). There was also a statistically significant difference between the samples studied at clinical stages 1-2 and 3-4 (p < 0.01). The expression of the VEGF gene in the group classified as 1-2 was significantly higher. IGF1 gene expression was significantly lower both in the group of samples classified as clinical stages 1-2 and 3-4 compared to the control group (p < 0.05 in both cases). The expression of the H19 gene was significantly lower in the group of samples classified as clinical stage 3-4 compared to the control group (p < 0.01). The reported studies suggest significant roles of VEGF, IGF and H19 expression in the pathogenesis of endometriosis.


Subject(s)
Endometriosis , Insulin-Like Growth Factor II , Insulin-Like Growth Factor I , RNA, Long Noncoding , Vascular Endothelial Growth Factor A , Humans , Female , Endometriosis/genetics , Endometriosis/metabolism , Endometriosis/pathology , RNA, Long Noncoding/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Adult , Poland , Middle Aged , Gene Expression Regulation , Case-Control Studies
3.
Mol Cell ; 84(10): 1842-1854.e7, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759624

ABSTRACT

Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.


Subject(s)
CCCTC-Binding Factor , Enhancer Elements, Genetic , Insulin-Like Growth Factor II , RNA, Long Noncoding , SOXB1 Transcription Factors , Animals , Mice , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Locus Control Region/genetics , Genomic Imprinting , Genomics/methods
4.
Domest Anim Endocrinol ; 88: 106852, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38701638

ABSTRACT

Mares resume ovarian activity rapidly after foaling. Besides follicle-stimulating hormone (FSH) and luteinizing hormone (LH), the pituitary synthesizes prolactin and growth hormone which stimulate insulin-like growth factor (IGF) synthesis in the liver. We tested the hypothesis that follicular growth is initiated already antepartum, mares with early and delayed ovulation differ in IGF-1 release and that there is an additional IGF-1 synthesis in the placenta. Plasma concentrations of LH, FSH, IGF-1, IGF-2, activin and prolactin. IGF-1, IGF-2, prolactin and their receptors in placental tissues were analyzed at the mRNA and protein level. Follicular growth was determined from 15 days before to 15 days after foaling in 14 pregnancies. Mares ovulating within 15 days postpartum formed group OV (n=5) and mares not ovulating within 15 days group NOV (n=9). Before foaling, follicles with a diameter >1 cm were present in all mares and their number increased over time (p<0.05). Follicle growth after foaling was more pronounced in OV mares (day p<0.001, group p<0.05, day x group p<0.05) in parallel to an increase in LH concentration (p<0.001, day x group p<0.001) while FSH increased (p<0.001) similarly in both groups. Plasma concentrations of IGF-1 and prolactin peaked one day after foaling (p<0.001). The IGF-1 mRNA abundance was higher in the allantochorion but lower in the amnion of OV versus NOV mares (group p=0.01, localization x group p<0.01). The IGF-1 receptor mRNA was most abundant in the allantochorion (p<0.001) and IGF-1 protein was expressed in placental tissue without differences between groups. In conclusion, follicular growth in mares is initiated before foaling and placental IGF-1 may enhance resumption of ovulatory cycles.


Subject(s)
Insulin-Like Growth Factor I , Ovary , Postpartum Period , Prolactin , Animals , Horses/physiology , Female , Postpartum Period/physiology , Prolactin/blood , Prolactin/metabolism , Pregnancy , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Ovary/physiology , Ovary/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Placenta/metabolism , Luteinizing Hormone/blood , Luteinizing Hormone/metabolism , Ovarian Follicle/physiology , Ovarian Follicle/metabolism , Follicle Stimulating Hormone/blood , Follicle Stimulating Hormone/metabolism , Ovulation/physiology , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Activins/metabolism , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism
5.
Medwave ; 24(3): e2783, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687996

ABSTRACT

Introduction: Chronic obstructive pulmonary disease is a systemic disease characterized not only by respiratory symptoms but also by physical deconditioning and muscle weakness. One prominent manifestation of this disease is the decline in respiratory muscle strength. Previous studies have linked the genotypes of insulin-like growth factor 1 and 2 (IGF-1 and IGF-2) to muscle weakness in other populations without this disease. However, there is a notable knowledge gap regarding the biological mechanisms underlying respiratory muscle weakness, particularly the role of IGF-1 and IGF-2 genotypes in this pulmonary disease. Therefore, this study aimed to investigate, for the first time, the association between IGF-1 and IGF-2 genotypes with respiratory muscle strength in individuals with chronic obstructive pulmonary disease. In addition, we analyzed the relationship between oxidative stress, chronic inflammation, and vitamin D with respiratory muscle strength. Methods: A cross sectional study with 61 individuals with chronic obstructive pulmonary disease. Polymerase chain reaction of gene polymorphisms IGF-1 (rs35767) and IGF-2 (rs3213221) was analyzed. Other variables, related to oxidative stress, inflammation and Vitamin D were dosed from peripheral blood. Maximal inspiratory and expiratory pressure were measured. Results: The genetic polymorphisms were associated with respiratory muscle strength ( 3.0 and 3.5; = 0.57). Specific genotypes of IGF-1 and IGF-2 presented lower maximal inspiratory and expiratory pressure (<0.05 for all). Oxidative stress, inflammatory biomarkers, and vitamin D were not associated with respiratory muscle strength. Conclusion: The polymorphisms of IGF-1 and IGF-2 displayed stronger correlations with respiratory muscle strength compared to blood biomarkers in patients with chronic obstructive pulmonary disease. Specific genotypes of IGF-1 and IGF-2 were associated with reduced respiratory muscle strength in this population.


Introducción: La enfermedad pulmonar obstructiva crónica es una enfermedad sistémica caracterizada no solo por síntomas respiratorios, sino también por el deterioro físico y la debilidad muscular. Una manifestación destacada de esta enfermedad es el declive en la fuerza de los músculos respiratorios. Estudios previos han vinculado los genotipos de factor de crecimiento insulínico 1 y 2 (IGF-1 e IGF-2) con la debilidad muscular en poblaciones sin esta enfermedad. Sin embargo, existe un vacío de conocimiento con respecto a los mecanismos biológicos subyacentes a la debilidad de los músculos respiratorios, en particular el papel de los genotipos IGF-1 e IGF-2 en esta enfermedad pulmonar. Por lo tanto, este estudio tuvo como objetivo investigar, por primera vez, la asociación de los genotipos IGF-1 e IGF-2 con la fuerza de los músculos respiratorios en individuos con enfermedad pulmonar obstructiva crónica. Además, analizamos la relación entre el estrés oxidativo, la inflamación crónica y la vitamina D con la fuerza de los músculos respiratorios. Métodos: Un estudio transversal con 61 individuos con enfermedad pulmonar obstructiva crónica. Se analizó la reacción en cadena de la polimerasa de los polimorfismos genéticos IGF-1 (rs35767) e IGF-2 (rs3213221). Otras variables relacionadas con el estrés oxidativo, la inflamación y la vitamina D se dosificaron a partir de muestras de sangre periférica. Se midieron las presiones inspiratorias y espiratorias máximas. Resultados: Los polimorfismos genéticos están asociados con la fuerza de los músculos respiratorios (F: 3.0 y 3.5; R2= 0.57). Genotipos específicos de IGF-1 e IGF-2 presentaron bajos valores en las presiones inspiratorias y espiratorias (p<0.05 en todos los casos). El estrés oxidativo, los biomarcadores inflamatorios y la vitamina D no se asociaron con la fuerza de los músculos respiratorios. Conclusión: Los polimorfismos de IGF-1 e IGF-2 mostraron correlaciones más sólidas con la fuerza de los músculos respiratorios en pacientes con enfermedad pulmonar obstructiva crónica en comparación con los biomarcadores sanguíneos. Genotipos específicos de IGF-1 e IGF-2 se asociaron con una disminución de la fuerza de los músculos respiratorios en esta población.


Subject(s)
Genotype , Insulin-Like Growth Factor II , Insulin-Like Growth Factor I , Muscle Strength , Oxidative Stress , Pulmonary Disease, Chronic Obstructive , Respiratory Muscles , Humans , Cross-Sectional Studies , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/genetics , Muscle Strength/physiology , Male , Insulin-Like Growth Factor I/metabolism , Respiratory Muscles/physiopathology , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Aged , Female , Middle Aged , Inflammation/physiopathology , Inflammation/genetics , Vitamin D/blood , Muscle Weakness/physiopathology , Muscle Weakness/genetics
6.
Int Immunopharmacol ; 132: 111984, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38565043

ABSTRACT

Periodontitis is a chronic inflammatory disease with the destruction of supporting periodontal tissue. This study evaluated the role of insulin-like growth factor 2 (IGF2) in periodontitis by inhibiting the polarization of M1 macrophages via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. IGF2 was enriched in the gingival tissue of murine periodontitis model identified by RNA sequencing. IGF2 application alleviated the expression of pro-inflammatory factors and promoted osteogenesis and the expression of related genes and proteins in a dose-dependent manner in periodontitis. The result of micro-CT verified this finding. Both in vivo and in vitro results revealed that IGF2 decreased the polarization of M1 macrophages and pro-inflammatory factors by immunofluorescence staining, flow cytometry, western blotting and RT-PCR. IGF2 application promoted the osteogenic ability of periodontal ligament fibroblasts (PDLFs) indirectly via its inhibition of M1 polarization evaluated by alkaline phosphatase and alizarin red staining. Then, the cGAS/STING pathway was upregulated in periodontitis and macrophages challenged by LPS, the inhibition of which led to downregulation of M1 polarization. Furthermore, IGF2 could downregulate cGAS, STING and the phosphorylation of P65. Collectively, our study indicates IGF2 can regulate the polarization of M1 macrophages via the cGAS/STING pathway and highlights the promising future of IGF2 as a therapeutic treatment for periodontitis.


Subject(s)
Insulin-Like Growth Factor II , Macrophages , Membrane Proteins , Nucleotidyltransferases , Periodontitis , Animals , Humans , Male , Mice , Bone Regeneration/drug effects , Cells, Cultured , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Insulin-Like Growth Factor II/metabolism , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Nucleotidyltransferases/metabolism , Osteogenesis/drug effects , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/pathology , Periodontitis/immunology , Periodontitis/metabolism , Periodontitis/drug therapy , Signal Transduction
7.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38586898

ABSTRACT

The pleomorphic adenoma gene1 (PLAG1) encodes a DNA-binding, C2H2 zinc-finger protein which acts as a transcription factor that regulates the expression of diverse genes across different organs and tissues; hence, the name pleomorphic. Rearrangements of the PLAG1 gene, and/or overexpression, are associated with benign tumors and cancers in a variety of tissues. This is best described for pleomorphic adenoma of the salivary glands in humans. The most notable expression of PLAG1 occurs during embryonic and fetal development, with lesser expression after birth. Evidence has accumulated of a role for PLAG1 protein in normal early embryonic development and placentation in mammals. PLAG1 protein influences the expression of the ike growth factor 2 (IGF2) gene and production of IGF2 protein. IGF2 is an important mitogen in ovarian follicles/oocytes, embryos, and fetuses. The PLAG1-IGF2 axis, therefore, provides one pathway whereby PLAG1 protein can influence embryonic survival and pregnancy. PLAG1 also influences over 1,000 other genes in embryos including those associated with ribosomal assembly and proteins. Brahman (Bos indicus) heifers homozygous for the PLAG1 variant, rs109815800 (G > T), show greater fertility than contemporary heifers with either one, or no copy, of the variant. Greater fertility in heifers homozygous for rs109815800 could be the result of early puberty and/or greater embryonic survival. The present review first looks at the broader roles of the PLAG1 gene and PLAG1 protein and then focuses on the emerging role of PLAG1/PLAG1 in embryonic development and pregnancy. A deeper understanding of factors which influence embryonic development is required for the next transformational increase in embryonic survival and successful pregnancy for both in vivo and in vitro derived embryos in cattle.


The pleomorphic adenoma gene1 (PLAG1) produces PLAG1 protein which, by binding to specific regions on DNA, influences the activity of other genes that regulate many body functions. One gene is insulin-like growth factor 2 (IGF2) which controls cell metabolism and growth. The PLAG1 gene is particularly active during embryonic and fetal growth, and through IGF2 determines stature later in life. IGF2 protein is also very important in early embryonic development. This review explores the hypothesis that PLAG1 is an important determinant of embryonic survival and the establishment of pregnancy in mammals.


Subject(s)
DNA-Binding Proteins , Animals , Cattle/genetics , Female , Pregnancy , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Reproduction/genetics , Embryonic Development/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism
8.
Int Wound J ; 21(4): e14862, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572823

ABSTRACT

Oral mucosa is an ideal model for studying scarless wound healing. Researchers have shown that the key factors which promote scarless wound healing already exist in basal state of oral mucosa. Thus, to identify the other potential factors in basal state of oral mucosa will benefit to skin wound healing. In this study, we identified eight gene modules enriched in wound healing stages of human skin and oral mucosa through co-expression analysis, among which the module M8 was only module enriched in basal state of oral mucosa, indicating that the genes in module M8 may have key factors mediating scarless wound healing. Through bioinformatic analysis of genes in module M8, we found IGF2 may be the key factor mediating scarless wound healing of oral mucosa. Then, we purified IGF2 protein by prokaryotic expression, and we found that IGF2 could promote the proliferation and migration of HaCaT cells. Moreover, IGF2 promoted wound re-epithelialization and accelerated wound healing in a full-thickness skin wound model. Our findings identified IGF2 as a factor to promote skin wound healing which provide a potential target for wound healing therapy in clinic.


Subject(s)
Skin , Wound Healing , Humans , Skin/metabolism , Re-Epithelialization , Mouth Mucosa , Fibroblasts/metabolism , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism
9.
Nat Commun ; 15(1): 2609, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521788

ABSTRACT

Insulin receptor (IR) controls growth and metabolism. Insulin-like growth factor 2 (IGF2) has different binding properties on two IR isoforms, mimicking insulin's function. However, the molecular mechanism underlying IGF2-induced IR activation remains unclear. Here, we present cryo-EM structures of full-length human long isoform IR (IR-B) in both the inactive and IGF2-bound active states, and short isoform IR (IR-A) in the IGF2-bound active state. Under saturated IGF2 concentrations, both the IR-A and IR-B adopt predominantly asymmetric conformations with two or three IGF2s bound at site-1 and site-2, which differs from that insulin saturated IR forms an exclusively T-shaped symmetric conformation. IGF2 exhibits a relatively weak binding to IR site-2 compared to insulin, making it less potent in promoting full IR activation. Cell-based experiments validated the functional importance of IGF2 binding to two distinct binding sites in optimal IR signaling and trafficking. In the inactive state, the C-terminus of α-CT of IR-B contacts FnIII-2 domain of the same protomer, hindering its threading into the C-loop of IGF2, thus reducing the association rate of IGF2 with IR-B. Collectively, our studies demonstrate the activation mechanism of IR by IGF2 and reveal the molecular basis underlying the different affinity of IGF2 to IR-A and IR-B.


Subject(s)
Insulin-Like Growth Factor II , Receptor, Insulin , Humans , Insulin/metabolism , Insulin-Like Growth Factor II/metabolism , Protein Isoforms/metabolism , Receptor, Insulin/metabolism
10.
BMJ Case Rep ; 17(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453223

ABSTRACT

A patient without a diagnosis of diabetes mellitus presented to the hospital due to a fall and hypoglycaemia on admission. The patient was found to have recurrent nocturnal fasting hypoglycaemia. CT revealed a large lung mass consistent with a solitary pleural fibroma, a rare tumour associated with insulin-like growth factor 2 (IGF-2) production. This case is an important reminder that potential causes of hypoglycaemia should be considered in non-diabetic patients.


Subject(s)
Fibroma , Hypoglycemia , Pleural Neoplasms , Solitary Fibrous Tumor, Pleural , Humans , Insulin-Like Growth Factor II/metabolism , Pleural Neoplasms/diagnosis , Solitary Fibrous Tumor, Pleural/complications , Solitary Fibrous Tumor, Pleural/diagnostic imaging , Solitary Fibrous Tumor, Pleural/surgery , Hypoglycemia/diagnosis , Fibroma/complications , Fibroma/diagnostic imaging , Fibroma/surgery
11.
Tohoku J Exp Med ; 263(1): 11-16, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38325831

ABSTRACT

Non-islet cell tumor hypoglycemia (NICTH) is one of the paraneoplastic syndromes manifesting severe hypoglycemia caused by aberrant production of high-molecular-weight insulin-like growth factor 2 (big-IGF2). Two surgical cases of extremely large thoracic solitary fibrous tumors (SFT) with unusual history of NICTH are presented. One case manifested severe hypoglycemia after four years of the first complete surgical resection of the tumor with potential malignant transformation, and the other case showed severe hypoglycemia after ten years of the first detection of the tumor. Meticulous laboratory testing, including serum endocrinological tests and western immunoblotting before and after surgery was performed, and both cases were diagnosed as NICTH. Both patients underwent open thoracic surgery. The patients showed normal glucose and hormone levels immediately after the resection of responsible tumors with elevated blood insulin concentration. SFTs are generally considered benign; however, life-threatening hypoglycemia can happen regardless of treatment. Careful follow-up of the tumor growth is warranted.


Subject(s)
Hypoglycemia , Solitary Fibrous Tumor, Pleural , Humans , Hypoglycemia/etiology , Solitary Fibrous Tumor, Pleural/surgery , Solitary Fibrous Tumor, Pleural/complications , Solitary Fibrous Tumor, Pleural/pathology , Solitary Fibrous Tumor, Pleural/diagnostic imaging , Male , Middle Aged , Female , Tomography, X-Ray Computed , Insulin-Like Growth Factor II/metabolism , Aged
12.
Hepatol Commun ; 8(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38285887

ABSTRACT

BACKGROUND: As the variable clinical outcome of patients with hepatoblastoma (HB) cannot be explained by genetics alone, the identification of drugs with the potential to effectively reverse epigenetic alterations is a promising approach to overcome poor therapy response. The gene ubiquitin like with PHD and ring finger domains 1 (UHRF1) represents an encouraging epigenetic target due to its regulatory function in both DNA methylation and histone modifications and its clinical relevance in HB. METHODS: Patient-derived xenograft in vitro and in vivo models were used to study drug response. The mechanistic basis of CM-272 treatment was elucidated using RNA sequencing and western blot experiments. RESULTS: We validated in comprehensive data sets that UHRF1 is highly expressed in HB and associated with poor outcomes. The simultaneous pharmacological targeting of UHRF1-dependent DNA methylation and histone H3 methylation by the dual inhibitor CM-272 identified a selective impact on HB patient-derived xenograft cell viability while leaving healthy fibroblasts unaffected. RNA sequencing revealed downregulation of the IGF2-activated survival pathway as the main mode of action of CM-272 treatment, subsequently leading to loss of proliferation, hindered colony formation capability, reduced spheroid growth, decreased migration potential, and ultimately, induction of apoptosis in HB cells. Importantly, drug response depended on the level of IGF2 expression, and combination assays showed a strong synergistic effect of CM-272 with cisplatin. Preclinical testing of CM-272 in a transplanted patient-derived xenograft model proved its efficacy but also uncovered side effects presumably caused by its strong antitumor effect in IGF2-driven tumors. CONCLUSIONS: The inhibition of UHRF1-associated epigenetic traces, such as IGF2-mediated survival, is an attractive approach to treat high-risk HB, especially when combined with the standard-of-care therapeutic cisplatin.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Humans , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cisplatin/pharmacology , Hepatoblastoma/drug therapy , Hepatoblastoma/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/antagonists & inhibitors
14.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069291

ABSTRACT

The insulin-like growth factor axis is a multifaceted, complex system that comprises two ligands, IGF-I and IGF-II, receptors (IGF-1R, IGF-IIR, insulin receptor isoforms IR-A and B, and hybrid receptors) six high affinity IGF-binding proteins (IGFBPs 1-6), and IGFBP proteases [...].


Subject(s)
Insulin-Like Growth Factor II , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor Binding Proteins/metabolism , Protein Binding , Insulin-Like Growth Factor Binding Protein 6/metabolism
15.
Cell Commun Signal ; 21(1): 345, 2023 11 30.
Article in English | MEDLINE | ID: mdl-38037054

ABSTRACT

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous and common upper airway disease divided into various inflammatory endotypes. Recent epidemiological findings showed a T helper 2 (Th2)-skewed dominance in CRSwNP patients. Histone modification alterations can regulate transcriptional and translational expression, resulting in abnormal pathogenic changes and the occurrence of diseases. Trimethylation of histone H3 lysine 4 (H3K4me3) is considered an activator of gene expression through modulation of accessibility for transcription, which is closely related to CRSwNP. H3K4me3 levels in the human nasal epithelium may change under Th2-biased inflammatory conditions, resulting in exaggerated local nasal Th2 responses via the regulation of naïve CD4+ T-cell differentiation. Here, we revealed that the level of SET and MYND domain-containing protein 3 (SMYD3)-mediated H3K4me3 was increased in NPs from Th2 CRSwNP patients compared with those from healthy controls. We demonstrated that SMYD3-mediated H3K4me3 is increased in human nasal epithelial cells under Th2-biased inflammatory conditions via S-adenosyl-L-methionine (SAM) production and further found that the H3K4me3high status of insulin-like growth factor 2 (IGF2) produced in primary human nasal epithelial cells could promote naïve CD4+ T-cell differentiation into Th2 cells. Moreover, we found that SAM production was dependent on the c-Myc/methionine adenosyltransferase 2A (MAT2A) axis in the nasal epithelium. Understanding histone modifications in the nasal epithelium has immense potential utility in the development of novel classes of therapeutics targeting Th2 polarization in Th2 CRSwNP. Video Abstract.


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Humans , Histones , Rhinitis/metabolism , Rhinitis/pathology , Nasal Polyps/metabolism , Feedback , Sinusitis/complications , Sinusitis/metabolism , Cell Differentiation , Histone-Lysine N-Methyltransferase/metabolism , Insulin-Like Growth Factor II/metabolism , Methionine Adenosyltransferase/metabolism
16.
Proc Natl Acad Sci U S A ; 120(46): e2215285120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37931110

ABSTRACT

The insulin-like growth factor 2 (IGF2) plays critical roles in cell proliferation, migration, differentiation, and survival. Despite its importance, the molecular mechanisms mediating the trafficking of IGF2 along the secretory pathway remain unclear. Here, we utilized a Retention Using Selective Hook system to analyze molecular mechanisms that regulate the secretion of IGF2. We found that a type I transmembrane protein, TMED10, is essential for the secretion of IGF2 and for differentiation of mouse myoblast C2C12 cells. Further analyses indicate that the residues 112-140 in IGF2 are important for the secretion of IGF2 and these residues directly interact with the GOLD domain of TMED10. We then reconstituted the release of IGF2 into COPII vesicles. This assay suggests that TMED10 mediates the packaging of IGF2 into COPII vesicles to be efficiently delivered to the Golgi. Moreover, TMED10 also mediates ER export of TGN-localized cargo receptor, sortilin, which subsequently mediates TGN export of IGF2. These analyses indicate that TMED10 is critical for IGF2 secretion by directly regulating ER export and indirectly regulating TGN export of IGF2, providing insights into trafficking of IGF2 for myoblast differentiation.


Subject(s)
Insulin-Like Growth Factor II , Myoblasts , Secretory Pathway , Vesicular Transport Proteins , Animals , Mice , Cell Differentiation , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Transport , Vesicular Transport Proteins/metabolism , Insulin-Like Growth Factor II/metabolism
17.
J Am Chem Soc ; 145(44): 24272-24283, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37899626

ABSTRACT

Targeted degradation of the cell-surface and extracellular proteins via the endogenous lysosomal degradation pathways, such as lysosome-targeting chimeras (LYTACs), has recently emerged as an attractive tool to expand the scope of extracellular chemical biology. Herein, we report a series of recombinant proteins genetically fused to insulin-like growth factor 2 (IGF2), which we termed iLYTACs, that can be conveniently obtained in high yield by standard cloning and bacterial expression in a matter of days. We showed that both type-I iLYTACs, in which IGF2 was fused to a suitable affibody or nanobody capable of binding to a specific protein target, and type-II iLYTAC (or IGF2-Z), in which IGF2 was fused to the IgG-binding Z domain that served as a universal antibody-binding adaptor, could be used for effective lysosomal targeting and degradation of various extracellular and membrane-bound proteins-of-interest. These heterobifunctional iLYTACs are fully genetically encoded and can be produced on a large scale from conventional E. coli expression systems without any form of chemical modification. In the current study, we showed that iLYTACs successfully facilitated the cell uptake, lysosomal localization, and efficient lysosomal degradation of various disease-relevant protein targets from different mammalian cell lines, including EGFR, PD-L1, CD20, and α-synuclein. The antitumor properties of iLYTACs were further validated in a mouse xenograft model. Overall, iLYTACs represent a general and modular strategy for convenient and selective targeted protein degradation, thus expanding the potential applications of current LYTACs and related techniques.


Subject(s)
Escherichia coli , Membrane Proteins , Humans , Mice , Animals , Membrane Proteins/metabolism , Escherichia coli/metabolism , Signal Transduction , Lysosomes/metabolism , Cell Line , Mammals/metabolism , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor II/pharmacology
18.
J Reprod Immunol ; 160: 104155, 2023 12.
Article in English | MEDLINE | ID: mdl-37801889

ABSTRACT

A recent meta-analysis revealed that patients with unexplained recurrent pregnancy loss (RPL) show higher insulin resistance compared to healthy controls. However, the etiology of RPL remains unknown. Prokineticin (PROK1), a pleiotropic uterine endometrial protein, is important for implantation and decidualization and is regulated by hypoxia and insulin. In this study, we investigated the decidualization status and the role of PROK1 in the decidua of patients with unexplained RPL showing insulin resistance. Thirty-two patients with unexplained RPL were included in this study. Following the diagnosis of a miscarriage, the decidua and villi of the patient were surgically collected. Fasting blood glucose and insulin levels were measured, and HOMA-ß was calculated. Using IHC and ELISA, the expression of IGFBP-1, PRL and PROK1 in the decidua and IGF-2 in the villi were analyzed in patients with euploid miscarriage with a high HOMA-ß index (n = 8) and compared to controls (euploid miscarriage with normal HOMA-ß: n = 12, aneuploid miscarriage with normal HOMA-ß: n = 12). The co-localization of PROK1 and IGFBP-1 was observed in the decidua by IHC. In the decidua of RPL patients with high HOMA-ß, the expression levels of IGFBP-1 and PRL were significantly lower, whereas the PROK1/IGFBP-1 ratio was significantly higher compared to that of the controls. IGF-2 expression in villi was significantly lower in RPL patients with high HOMA-ß. Impaired decidualization and excessive PROK1 production may have pathological implications in patients with unexplained RPL with insulin resistance, especially under the state of hyper insulin production.


Subject(s)
Abortion, Habitual , Gastrointestinal Hormones , Insulin Resistance , Vascular Endothelial Growth Factor, Endocrine-Gland-Derived , Pregnancy , Female , Humans , Decidua/pathology , Insulin-Like Growth Factor Binding Protein 1/metabolism , Insulin-Like Growth Factor II/metabolism , Abortion, Habitual/pathology , Insulin , Gastrointestinal Hormones/metabolism , Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/metabolism
19.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894932

ABSTRACT

The Insulin-like growth factor 2 (IGF-2) has been recently proven to alleviate depressive-like behaviors in both rats and mice models. However, its potential role as a peripheral biomarker has not been evaluated in depression. To do this, we measured plasma IGF-2 and other members of the IGF family such as Binding Proteins (IGFBP-1, IGFBP-3, IGFBP-5 and IGFBP-7) in a depressed group of patients (n = 51) and in a healthy control group (n = 48). In some of these patients (n = 15), we measured these proteins after a period (19 ± 6 days) of treatment with antidepressants. The Hamilton Depressive Rating Scale (HDRS) and the Self-Assessment Anhedonia Scale (SAAS) were used to measure depression severity and anhedonia, respectively. The general cognition state was assessed by the Mini-Mental State Examination (MMSE) test and memory with the Free and Cued Selective Reminding Test (FCSRT). The levels of both IGF-2 and IGFBP-7 were found to be significantly increased in the depressed group; however, only IGF-2 remained significantly elevated after correction by age and sex. On the other hand, the levels of IGF-2, IGFBP-3 and IGFBP-5 were significantly decreased after treatment, whereas only IGFBP-7 was significantly increased. Therefore, peripheral changes in the IGF family and their response to antidepressants might represent alterations at the brain level in depression.


Subject(s)
Depressive Disorder, Major , Insulin-Like Growth Factor II , Humans , Rats , Animals , Mice , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor Binding Protein 3 , Insulin-Like Growth Factor Binding Protein 5 , Depressive Disorder, Major/drug therapy , Insulin-Like Growth Factor I/metabolism , Anhedonia , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Insulin-Like Growth Factor Binding Protein 2
20.
J Cell Mol Med ; 27(21): 3247-3258, 2023 11.
Article in English | MEDLINE | ID: mdl-37525394

ABSTRACT

Postembryonic angiogenesis is mainly induced by various proangiogenic factors derived from the original vascular network. Previous studies have shown that the role of Ang-2 in angiogenesis is controversial. Tip cells play a vanguard role in angiogenesis and exhibit a transdifferentiated phenotype under the action of angiogenic factors. However, whether Ang-2 promotes the transformation of endothelial cells to tip cells remains unknown. Our study found that miR-221-3p was highly expressed in HCMECs cultured for 4 h under hypoxic conditions (1% O2 ). Moreover, miR-221-3p overexpression inhibited HCMECs proliferation and tube formation, which may play an important role in hypoxia-induced angiogenesis. By target gene prediction, we further demonstrated that Ang-2 was a downstream target of miR-221-3p and miR-221-3p overexpression inhibited Ang-2 expression in HCMECs under hypoxic conditions. Subsequently, qRT-PCR and western blotting methods were performed to analyse the role of miR-221-3p and Ang-2 on the regulation of tip cell marker genes. MiR-221-3p overexpression inhibited CD34, IGF1R, IGF-2 and VEGFR2 proteins expression while Ang-2 overexpression induced CD34, IGF1R, IGF-2 and VEGFR2 expression in HCMECs under hypoxic conditions. In addition, we further confirmed that Ang-2 played a dominant role in miR-221-3p inhibitors promoting the transformation of HCMECs to tip cells by using Ang-2 shRNA to interfere with miR-221-3p inhibitor-treated HCMECs under hypoxic conditions. Finally, we found that miR-221-3p expression was significantly elevated in both serum and myocardial tissue of AMI rats. Hence, our data showed that miR-221-3p may inhibit angiogenesis after acute myocardial infarction by targeting Ang-2 to inhibit the transformation of HCMECs to tip cells.


Subject(s)
MicroRNAs , Animals , Rats , Endothelial Cells/metabolism , Hypoxia/metabolism , Insulin-Like Growth Factor II/metabolism , MicroRNAs/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...