Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.540
Filter
1.
Mol Biol Rep ; 51(1): 711, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824245

ABSTRACT

BACKGROUND: Diabetes is a chronic metabolic disease that affects many parts of the body. Considering diabetes as a beta cells' defect and loss, the focus is on finding mechanisms and compounds involved in stimulating the function and regeneration of pancreatic ß-cells. DNA methylation as an epigenetic mechanism plays a pivotal role in the ß-cells' function and development. Considering the regenerative and anti-diabetic effects of Rosa canina extract, this study aimed to assess the methylation levels of Pdx-1, Pax-4, and Ins-1 genes in diabetic rats treated with Rosa Canina extract. METHODS AND RESULTS: Streptozotocin-induced diabetic rats were used to evaluate the frequency of Pdx-1, Pax-4, and Ins-1 gene methylation. Treatment groups were exposed to Rosa canina as spray-dried and decoction extracts. Following blood glucose measurement, pancreatic DNA was extracted and bisulfited. Genes' methylation was measured using MSP-PCR and qRT-PCR techniques. Oral administration of Rosa canina extracts significantly reduced blood sugar levels in diabetic rats compared to the control group. The methylation levels of the Pdx-1, Pax-4, and Ins-1 genes promoter in streptozotocin-induced diabetic rats increased compared to the control rats while, the treatment of diabetic rats with Rosa canina extracts, spray-dried samples especially, led to a decreased methylation in these genes. CONCLUSION: The results of this study showed that Rosa canina extract as a spray-dried sample could be effective in treating diabetes by regulating the methylation of genes including Pdx-1, Pax-4, and Ins-1 involved in the activity and regeneration of pancreatic islet cells.


Subject(s)
Blood Glucose , DNA Methylation , Diabetes Mellitus, Experimental , Plant Extracts , Rosa , Trans-Activators , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/drug therapy , Rosa/chemistry , DNA Methylation/drug effects , DNA Methylation/genetics , Rats , Plant Extracts/pharmacology , Male , Trans-Activators/genetics , Trans-Activators/metabolism , Blood Glucose/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Streptozocin , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Insulin/metabolism
2.
Int J Nanomedicine ; 19: 4957-4976, 2024.
Article in English | MEDLINE | ID: mdl-38828198

ABSTRACT

Background: The "gut-islets axis" is an important endocrine signaling axis that regulates islets function by modulating the gut microbiota and endocrine metabolism within the gut. However, the specific mechanisms and roles of the intestine in islets regulation remain unclear. Recent studies investigated that exosomes derived from gut microbiota can transport signals to remotely regulate islets ß-cell function, suggesting the possibility of novel signaling pathways mediated by gut exosomes in the regulation of the "gut-islet axis.". Methods: The exosomes were isolated from the intestinal enteroendocrine cell-line STC-1cells culture supernatants treated with palmitate acid (PA) or BSA. Metabolic stress models were established by separately subjecting MIN6 cells to PA stimulation and feeding mice with a high-fat diet. Intervention with exosomes in vitro and in vivo to assess the biological effects of exosomes on islets ß cells under metabolic stress. The Mas receptor antagonist A779 and ACE2ko mice were used to evaluate the role of exosomal ACE2. Results: We found ACE2, a molecule that plays a crucial role in the regulation of islets function, is abundantly expressed in exosomes derived from STC-1 under physiological normal condition (NCEO). These exosomes cannot only be taken up by ß-cells in vitro but also selectively transported to the islets in vivo. Following intervention with NCEXO, both Min6 cells in a lipotoxic environment and mice on a high-fat diet exhibited significant improvements in islets ß-cell function and ß-cell mass. Further investigations demonstrated that these protective effects are attributed to exosomal ACE2, as ACE2 inhibits NLRP3 inflammasome activation and reduces ß-cell pyroptosis. Conclusion: ACE2-enriched exosomes from the gut can selectively target islets, subsequently inhibiting NLRP3 inflammasome activation and ß cell pyroptosis, thereby restoring islets ß cell function under metabolic stress. This study provides novel insights into therapeutic strategies for the prevention and treatment of obesity and diabetes.


Subject(s)
Angiotensin-Converting Enzyme 2 , Exosomes , Inflammasomes , Insulin-Secreting Cells , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Exosomes/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Pyroptosis/drug effects , Pyroptosis/physiology , Angiotensin-Converting Enzyme 2/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Cell Line , Intestine, Small/drug effects , Male , Diet, High-Fat , Mice, Knockout , Enteroendocrine Cells/drug effects , Enteroendocrine Cells/metabolism
3.
Sci Rep ; 14(1): 12639, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825593

ABSTRACT

Chronic feeding of a high fat diet (HFD) in preclinical species induces broad metabolic dysfunction characterized by body weight gain, hyperinsulinemia, dyslipidemia and impaired insulin sensitivity. The plasma lipidome is not well characterized in dogs with HFD-induced metabolic dysfunction. We therefore aimed to describe the alterations that occur in the plasma lipid composition of dogs that are fed a HFD and examine the association of these changes with the clinical signs of metabolic dysfunction. Dogs were fed a normal diet (ND) or HFD for 12 weeks. Insulin sensitivity (SI) and beta cell compensation (AIRG) were assessed through an intravenous glucose tolerance test (IVGTT) and serum biochemistry was analyzed before the introduction of HFD and again after 12 weeks of continued ND or HFD feeding. Plasma lipidomics were conducted prior to the introduction of HFD and again at week 8 in both ND and HFD-fed dogs. 12 weeks of HFD feeding resulted in impaired insulin sensitivity and increased beta cell compensation measured by SI (ND mean: 11.5 [mU/l]-1 min-1, HFD mean: 4.7 [mU/l]-1 min-1) and AIRG (ND mean: 167.0 [mU/l]min, HFD mean: 260.2 [mU/l]min), respectively, compared to dogs fed ND over the same duration. Chronic HFD feeding increased concentrations of plasma lipid species and deleterious fatty acids compared to dogs fed a ND. Saturated fatty acid (SFA) concentrations were significantly associated with fasting insulin (R2 = 0.29), SI (R2 = 0.49) and AIRG (R2 = 0.37) in all dogs after 12 weeks, irrespective of diet. Our results demonstrate that chronic HFD feeding leads to significant changes in plasma lipid composition and fatty acid concentrations associated with metabolic dysfunction. High SFA concentrations may be predictive of deteriorated insulin sensitivity in dogs.


Subject(s)
Diet, High-Fat , Fatty Acids , Insulin Resistance , Insulin-Secreting Cells , Animals , Dogs , Insulin-Secreting Cells/metabolism , Fatty Acids/metabolism , Fatty Acids/blood , Diet, High-Fat/adverse effects , Male , Glucose Tolerance Test , Insulin/blood , Insulin/metabolism , Female , Lipidomics/methods
4.
Nat Commun ; 15(1): 3682, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693121

ABSTRACT

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Subject(s)
Diet, High-Fat , Galectin 3 , Insulin Secretion , Insulin-Secreting Cells , Animals , Humans , Male , Mice , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diet, High-Fat/adverse effects , Galectin 3/metabolism , Galectin 3/genetics , Glucose/metabolism , Insulin/metabolism , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout
5.
Sci Adv ; 10(20): eadn2136, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758799

ABSTRACT

Monocytes are immune regulators implicated in the pathogenesis of type 1 diabetes (T1D), an autoimmune disease that targets insulin-producing pancreatic ß cells. We determined that monocytes of recent onset (RO) T1D patients and their healthy siblings express proinflammatory/cytolytic transcriptomes and hypersecrete cytokines in response to lipopolysaccharide exposure compared to unrelated healthy controls (uHCs). Flow cytometry measured elevated circulating abundances of intermediate monocytes and >2-fold more CD14+CD16+HLADR+KLRD1+PRF1+ NK-like monocytes among patients with ROT1D compared to uHC. The intermediate to nonclassical monocyte ratio among ROT1D patients correlated with the decline in functional ß cell mass during the first 24 months after onset. Among sibling nonprogressors, temporal decreases were measured in the intermediate to nonclassical monocyte ratio and NK-like monocyte abundances; these changes coincided with increases in activated regulatory T cells. In contrast, these monocyte populations exhibited stability among T1D progressors. This study associates heightened monocyte proinflammatory/cytolytic activity with T1D susceptibility and progression and offers insight to the age-dependent decline in T1D susceptibility.


Subject(s)
Diabetes Mellitus, Type 1 , Disease Progression , Monocytes , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/genetics , Monocytes/metabolism , Monocytes/immunology , Male , Female , Adolescent , Child , Adult , Cytokines/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Young Adult , Case-Control Studies
6.
Cell Death Dis ; 15(5): 334, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744890

ABSTRACT

The prevalence of diabetes steadily increases worldwide mirroring the prevalence of obesity. Endoplasmic reticulum (ER) stress is activated in diabetes and contributes to ß-cell dysfunction and apoptosis through the activation of a terminal unfolded protein response (UPR). Our results uncover a new role for Bax Inhibitor-One (BI-1), a negative regulator of inositol-requiring enzyme 1 (IRE1α) in preserving ß-cell health against terminal UPR-induced apoptosis and pyroptosis in the context of supraphysiological loads of insulin production. BI-1-deficient mice experience a decline in endocrine pancreatic function in physiological and pathophysiological conditions, namely obesity induced by high-fat diet (HFD). We observed early-onset diabetes characterized by hyperglycemia, reduced serum insulin levels, ß-cell loss, increased pancreatic lipases and pro-inflammatory cytokines, and the progression of metabolic dysfunction. Pancreatic section analysis revealed that BI-1 deletion overburdens unfolded proinsulin in the ER of ß-cells, confirmed by ultrastructural signs of ER stress with overwhelmed IRE1α endoribonuclease (RNase) activity in freshly isolated islets. ER stress led to ß-cell dysfunction and islet loss, due to an increase in immature proinsulin granules and defects in insulin crystallization with the presence of Rod-like granules. These results correlated with the induction of autophagy, ER phagy, and crinophagy quality control mechanisms, likely to alleviate the atypical accumulation of misfolded proinsulin in the ER. In fine, BI-1 in ß-cells limited IRE1α RNase activity from triggering programmed ß-cell death through apoptosis and pyroptosis (caspase-1, IL-1ß) via NLRP3 inflammasome activation and metabolic dysfunction. Pharmaceutical IRE1α inhibition with STF-083010 reversed ß-cell failure and normalized the metabolic phenotype. These results uncover a new protective role for BI-1 in pancreatic ß-cell physiology as a stress integrator to modulate the UPR triggered by accumulating unfolded proinsulin in the ER, as well as autophagy and programmed cell death, with consequences on ß-cell function and insulin secretion. In pancreatic ß-cells, BI-1-/- deficiency perturbs proteostasis with proinsulin misfolding, ER stress, terminal UPR with overwhelmed IRE1α/XBP1s/CHOP activation, inflammation, ß-cell programmed cell death, and diabetes.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Insulin-Secreting Cells , Membrane Proteins , Proinsulin , Proteostasis , Unfolded Protein Response , Animals , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Proinsulin/metabolism , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Protein Folding , Endoribonucleases/metabolism , Mice, Inbred C57BL , Diet, High-Fat , Mice, Knockout , Male
7.
J Diabetes ; 16(6): e13557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751366

ABSTRACT

Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.


Subject(s)
Diabetes Mellitus , Optogenetics , Humans , Optogenetics/methods , Diabetes Mellitus/therapy , Animals , Insulin/metabolism , Insulin Resistance , Glucagon-Like Peptide 1 , Cell- and Tissue-Based Therapy/methods , Insulin-Secreting Cells/metabolism
8.
PLoS Comput Biol ; 20(5): e1012130, 2024 May.
Article in English | MEDLINE | ID: mdl-38739680

ABSTRACT

Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.


Subject(s)
Islets of Langerhans , Islets of Langerhans/physiology , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Animals , Computational Biology/methods , Mice , Insulin/metabolism , Humans , Insulin-Secreting Cells/physiology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , Insulin Secretion/physiology , Models, Biological , Calcium/metabolism , Calcium Signaling/physiology
9.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786091

ABSTRACT

The dysfunction of α and ß cells in pancreatic islets can lead to diabetes. Many questions remain on the subcellular organization of islet cells during the progression of disease. Existing three-dimensional cellular mapping approaches face challenges such as time-intensive sample sectioning and subjective cellular identification. To address these challenges, we have developed a subcellular feature-based classification approach, which allows us to identify α and ß cells and quantify their subcellular structural characteristics using soft X-ray tomography (SXT). We observed significant differences in whole-cell morphological and organelle statistics between the two cell types. Additionally, we characterize subtle biophysical differences between individual insulin and glucagon vesicles by analyzing vesicle size and molecular density distributions, which were not previously possible using other methods. These sub-vesicular parameters enable us to predict cell types systematically using supervised machine learning. We also visualize distinct vesicle and cell subtypes using Uniform Manifold Approximation and Projection (UMAP) embeddings, which provides us with an innovative approach to explore structural heterogeneity in islet cells. This methodology presents an innovative approach for tracking biologically meaningful heterogeneity in cells that can be applied to any cellular system.


Subject(s)
Glucagon-Secreting Cells , Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Glucagon-Secreting Cells/metabolism , Animals , Tomography, X-Ray/methods , Mice , Humans , Insulin/metabolism
10.
PLoS One ; 19(5): e0287877, 2024.
Article in English | MEDLINE | ID: mdl-38787820

ABSTRACT

Type 1 diabetes (T1D) is characterized by HLA class I-mediated presentation of autoantigens on the surface of pancreatic ß-cells. Recognition of these autoantigens by CD8+ T cells results in the destruction of pancreatic ß-cells and, consequently, insulin deficiency. Most epitopes presented at the surface of ß-cells derive from the insulin precursor molecule proinsulin. The intracellular processing pathway(s) involved in the generation of these peptides are poorly defined. In this study, we show that a proinsulin B-chain antigen (PPIB5-14) originates from proinsulin molecules that are processed by ER-associated protein degradation (ERAD) and thus originate from ER-resident proteins. Furthermore, screening genes encoding for E2 ubiquitin conjugating enzymes, we identified UBE2G2 to be involved in proinsulin degradation and subsequent presentation of the PPIB10-18 autoantigen. These insights into the pathway involved in the generation of insulin-derived peptides emphasize the importance of proinsulin processing in the ER to T1D pathogenesis and identify novel targets for future T1D therapies.


Subject(s)
Autoantigens , Endoplasmic Reticulum-Associated Degradation , Proinsulin , Proteolysis , Ubiquitin-Conjugating Enzymes , Proinsulin/metabolism , Proinsulin/immunology , Proinsulin/genetics , Autoantigens/metabolism , Autoantigens/immunology , Humans , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Antigen Presentation/immunology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/immunology
11.
Diabetes ; 73(6): 856-863, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38768366

ABSTRACT

An agreed-upon consensus model of glucose-stimulated insulin secretion from healthy ß-cells is essential for understanding diabetes pathophysiology. Since the discovery of the KATP channel in 1984, an oxidative phosphorylation (OxPhos)-driven rise in ATP has been assumed to close KATP channels to initiate insulin secretion. This model lacks any evidence, genetic or otherwise, that mitochondria possess the bioenergetics to raise the ATP/ADP ratio to the triggering threshold, and conflicts with genetic evidence demonstrating that OxPhos is dispensable for insulin secretion. It also conflates the stoichiometric yield of OxPhos with thermodynamics, and overestimates OxPhos by failing to account for established features of ß-cell metabolism, such as leak, anaplerosis, cataplerosis, and NADPH production that subtract from the efficiency of mitochondrial ATP production. We have proposed an alternative model, based on the spatial and bioenergetic specializations of ß-cell metabolism, in which glycolysis initiates insulin secretion. The evidence for this model includes that 1) glycolysis has high control strength over insulin secretion; 2) glycolysis is active at the correct time to explain KATP channel closure; 3) plasma membrane-associated glycolytic enzymes control KATP channels; 4) pyruvate kinase has favorable bioenergetics, relative to OxPhos, for raising ATP/ADP; and 5) OxPhos stalls before membrane depolarization and increases after. Although several key experiments remain to evaluate this model, the 1984 model is based purely on circumstantial evidence and must be rescued by causal, mechanistic experiments if it is to endure.


Subject(s)
Glucose , Insulin Secretion , Insulin-Secreting Cells , Insulin , KATP Channels , Oxidative Phosphorylation , Insulin-Secreting Cells/metabolism , Humans , Glucose/metabolism , KATP Channels/metabolism , KATP Channels/genetics , Insulin Secretion/physiology , Animals , Insulin/metabolism , Glycolysis/physiology , Models, Biological , Adenosine Triphosphate/metabolism
13.
Diabetes ; 73(6): 849-855, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38768365

ABSTRACT

The canonical model of glucose-induced increase in insulin secretion involves the metabolism of glucose via glycolysis and the citrate cycle, resulting in increased ATP synthesis by the respiratory chain and the closure of ATP-sensitive K+ (KATP) channels. The resulting plasma membrane depolarization, followed by Ca2+ influx through L-type Ca2+ channels, then induces insulin granule fusion. Merrins and colleagues have recently proposed an alternative model whereby KATP channels are controlled by pyruvate kinase, using glycolytic and mitochondrial phosphoenolpyruvate (PEP) to generate microdomains of high ATP/ADP immediately adjacent to KATP channels. This model presents several challenges. First, how mitochondrially generated PEP, but not ATP produced abundantly by the mitochondrial F1F0-ATP synthase, can gain access to the proposed microdomains is unclear. Second, ATP/ADP fluctuations imaged immediately beneath the plasma membrane closely resemble those in the bulk cytosol. Third, ADP privation of the respiratory chain at high glucose, suggested to drive alternating, phased-locked generation by mitochondria of ATP or PEP, has yet to be directly demonstrated. Finally, the approaches used to explore these questions may be complicated by off-target effects. We suggest instead that Ca2+ changes, well known to affect both ATP generation and consumption, likely drive cytosolic ATP/ADP oscillations that in turn regulate KATP channels and membrane potential. Thus, it remains to be demonstrated that a new model is required to replace the existing, mitochondrial bioenergetics-based model.


Subject(s)
Glucose , Insulin-Secreting Cells , KATP Channels , Insulin-Secreting Cells/metabolism , KATP Channels/metabolism , Glucose/metabolism , Humans , Animals , Adenosine Triphosphate/metabolism , Mitochondria/metabolism , Insulin/metabolism , Adenosine Diphosphate/metabolism , Models, Biological , Insulin Secretion/physiology
14.
Nat Commun ; 15(1): 3740, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702347

ABSTRACT

Insufficient functional ß-cell mass causes diabetes; however, an effective cell replacement therapy for curing diabetes is currently not available. Reprogramming of acinar cells toward functional insulin-producing cells would offer an abundant and autologous source of insulin-producing cells. Our lineage tracing studies along with transcriptomic characterization demonstrate that treatment of adult mice with a small molecule that specifically inhibits kinase activity of focal adhesion kinase results in trans-differentiation of a subset of peri-islet acinar cells into insulin producing ß-like cells. The acinar-derived insulin-producing cells infiltrate the pre-existing endocrine islets, partially restore ß-cell mass, and significantly improve glucose homeostasis in diabetic mice. These findings provide evidence that inhibition of the kinase activity of focal adhesion kinase can convert acinar cells into insulin-producing cells and could offer a promising strategy for treating diabetes.


Subject(s)
Acinar Cells , Diabetes Mellitus, Experimental , Insulin-Secreting Cells , Animals , Insulin-Secreting Cells/metabolism , Mice , Acinar Cells/metabolism , Male , Insulin/metabolism , Cell Transdifferentiation , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Mice, Inbred C57BL , Protein Kinase Inhibitors/pharmacology , Islets of Langerhans/metabolism
15.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731945

ABSTRACT

The main hallmark in the development of both type 1 and type 2 diabetes is a decline in functional ß-cell mass. This decline is predominantly attributed to ß-cell death, although recent findings suggest that the loss of ß-cell identity may also contribute to ß-cell dysfunction. This phenomenon is characterized by a reduced expression of key markers associated with ß-cell identity. This review delves into the insights gained from single-cell omics research specifically focused on ß-cell identity. It highlights how single-cell omics based studies have uncovered an unexpected level of heterogeneity among ß-cells and have facilitated the identification of distinct ß-cell subpopulations through the discovery of cell surface markers, transcriptional regulators, the upregulation of stress-related genes, and alterations in chromatin activity. Furthermore, specific subsets of ß-cells have been identified in diabetes, such as displaying an immature, dedifferentiated gene signature, expressing significantly lower insulin mRNA levels, and expressing increased ß-cell precursor markers. Additionally, single-cell omics has increased insight into the detrimental effects of diabetes-associated conditions, including endoplasmic reticulum stress, oxidative stress, and inflammation, on ß-cell identity. Lastly, this review outlines the factors that may influence the identification of ß-cell subpopulations when designing and performing a single-cell omics experiment.


Subject(s)
Insulin-Secreting Cells , Single-Cell Analysis , Insulin-Secreting Cells/metabolism , Humans , Single-Cell Analysis/methods , Animals , Genomics/methods , Endoplasmic Reticulum Stress/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology
16.
Life Sci ; 348: 122717, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38744419

ABSTRACT

The loss or dysfunction of pancreatic ß-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged ß-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive ß-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of ß-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of ß-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate ß-cell genetic programs for generating alternative ß-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in ß-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.


Subject(s)
Cell Differentiation , Insulin-Secreting Cells , RNA, Untranslated , Tissue Engineering , Insulin-Secreting Cells/metabolism , Tissue Engineering/methods , Humans , RNA, Untranslated/genetics , Animals , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Diabetes Mellitus/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/therapy , Hydrogels
17.
Cell Biochem Funct ; 42(4): e4038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38736214

ABSTRACT

The generation of insulin-producing cells (IPCs) is an attractive approach for replacing damaged ß cells in diabetic patients. In the present work, we introduced a hybrid platform of decellularized amniotic membrane (dAM) and fibrin encapsulation for differentiating adipose tissue-derived stem cells (ASCs) into IPCs. ASCs were isolated from healthy donors and characterized. Human AM was decellularized, and its morphology, DNA, collagen, glycosaminoglycan (GAG) contents, and biocompatibility were evaluated. ASCs were subjected to four IPC differentiation methods, and the most efficient method was selected for the experiment. ASCs were seeded onto dAM, alone or encapsulated in fibrin gel with various thrombin concentrations, and differentiated into IPCs according to a method applying serum-free media containing 2-mercaptoethanol, nicotinamide, and exendin-4. PDX-1, GLUT-2 and insulin expression were evaluated in differentiated cells using real-time PCR. Structural integrity and collagen and GAG contents of AM were preserved after decellularization, while DNA content was minimized. Cultivating ASCs on dAM augmented their attachment, proliferation, and viability and enhanced the expression of PDX-1, GLUT-2, and insulin in differentiated cells. Encapsulating ASCs in fibrin gel containing 2 mg/ml fibrinogen and 10 units/ml thrombin increased their differentiation into IPCs. dAM and fibrin gel synergistically enhanced the differentiation of ASCs into IPCs, which could be considered an appropriate strategy for replacing damaged ß cells.


Subject(s)
Adipose Tissue , Cell Differentiation , Fibrin , Insulin , Stem Cells , Humans , Cell Differentiation/drug effects , Fibrin/chemistry , Fibrin/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Insulin/metabolism , Cells, Cultured , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/metabolism , Decellularized Extracellular Matrix/pharmacology , Amnion/cytology , Amnion/metabolism , Amnion/chemistry
18.
Nutrients ; 16(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794702

ABSTRACT

Insulin secretion from pancreatic ß cells is a key pillar of glucose homeostasis, which is impaired under obesity and aging. Growth hormone secretagogue receptor (GHSR) is the receptor of nutrient-sensing hormone ghrelin. Previously, we showed that ß-cell GHSR regulated glucose-stimulated insulin secretion (GSIS) in young mice. In the current study, we further investigated the effects of GHSR on insulin secretion in male mice under diet-induced obesity (DIO) and streptozotocin (STZ)-induced ß-cell injury in aging. ß-cell-specific-Ghsr-deficient (Ghsr-ßKO) mice exhibited no glycemic phenotype under DIO but showed significantly improved ex vivo GSIS in aging. We also detected reduced insulin sensitivity and impaired insulin secretion during aging both in vivo and ex vivo. Accordingly, there were age-related alterations in expression of glucose transporter, insulin signaling pathway, and inflammatory genes. To further determine whether GHSR deficiency affected ß-cell susceptibility to acute injury, young, middle-aged, and old Ghsr-ßKO mice were subjected to STZ. We found that middle-aged and old Ghsr-ßKO mice were protected from STZ-induced hyperglycemia and impaired insulin secretion, correlated with increased expression of insulin signaling regulators but decreased pro-inflammatory cytokines in pancreatic islets. Collectively, our findings indicate that ß-cell GHSR has a major impact on insulin secretion in aging but not obesity, and GHSR deficiency protects against STZ-induced ß-cell injury in aging.


Subject(s)
Aging , Insulin-Secreting Cells , Insulin , Mice, Knockout , Obesity , Receptors, Ghrelin , Streptozocin , Animals , Male , Insulin-Secreting Cells/metabolism , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics , Obesity/metabolism , Mice , Insulin/metabolism , Insulin Secretion , Signal Transduction , Mice, Inbred C57BL , Insulin Resistance , Blood Glucose/metabolism , Hyperglycemia , Diabetes Mellitus, Experimental
19.
J Diabetes Investig ; 15(6): 684-692, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713732

ABSTRACT

AIMS: The aim of this study was to better understand how the chemotherapy drug doxorubicin contributes to the development of ß-cell dysfunction and to explore its relationship with mitochondrial aldehyde dehydrogenase-2 (ALDH2). MATERIALS AND METHODS: In order to investigate this hypothesis, doxorubicin was administered to INS-1 cells, a rat insulinoma cell line, either with or without several target protein activators and inhibitors. ALDH2 activity was detected with a commercial kit and protein levels were determined with western blot. Mitochondrial ROS, membrane potential, and lipid ROS were determined by commercial fluorescent probes. The cell viability was measured by CCK-assay. RESULTS: Exposure of INS-1 cells to doxorubicin decreased active insulin signaling resulting in elevated ALDH2 degradation, compared with control cells by the induction of acid sphingomyelinase mediated ceramide induction. Further, ceramide induction potentiated doxorubicin induced mitochondrial dysfunction. Treatment with the ALDH2 agonist, ALDA1, blocked doxorubicin-induced acid sphingomyelinase activation which significantly blocked ceramide induction and mitochondrial dysfunction mediated cell death. Treatment with the ALDH2 agonist, ALDA1, stimulated casein kinase-2 (CK2) mediated insulin signaling activation. CK2 silencing neutralized the function of ALDH2 in the doxorubicin treated INS-1 cells. CONCLUSIONS: Mitochondrial ALDH2 activation could inhibit the progression of doxorubicin induced pancreatic ß-cell dysfunction by inhibiting the acid sphingomyelinase induction of ceramide, by regulating the activation of CK2 signaling. Our research lays the foundation of ALDH2 activation as a therapeutic target for the precise treatment of chemotherapy drug induced ß-cell dysfunction.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Apoptosis , Casein Kinase II , Cell Survival , Doxorubicin , Insulin-Secreting Cells , Mitochondria , Signal Transduction , Doxorubicin/pharmacology , Rats , Animals , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Apoptosis/drug effects , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Signal Transduction/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Cell Survival/drug effects , Casein Kinase II/metabolism , Casein Kinase II/antagonists & inhibitors , Cell Line, Tumor , Ceramides/metabolism , Reactive Oxygen Species/metabolism , Antibiotics, Antineoplastic/pharmacology
20.
JCI Insight ; 9(10)2024 May 22.
Article in English | MEDLINE | ID: mdl-38775154

ABSTRACT

MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of ß cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human ß cell line EndoC-ßH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LßT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic ß cells and pituitary gonadotropes.


Subject(s)
Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Humans , Animals , Mice , Male , Gonadotrophs/metabolism , Female , RNA Splice Sites/genetics , Cell Line , Insulin/metabolism , Siblings , Exons/genetics , rab3 GTP-Binding Proteins/metabolism , rab3 GTP-Binding Proteins/genetics , Hypogonadism/genetics , Hypogonadism/metabolism , Hypogonadism/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...