Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.132
Filter
1.
J Exp Med ; 221(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38836810

ABSTRACT

Coxsackievirus A10 (CV-A10) infection, a prominent cause of childhood hand-foot-and-mouth disease (HFMD), frequently manifests with the intriguing phenomenon of onychomadesis, characterized by nail shedding. However, the underlying mechanism is elusive. Here, we found that CV-A10 infection in mice could suppress Wnt/ß-catenin signaling by restraining LDL receptor-related protein 6 (LRP6) phosphorylation and ß-catenin accumulation and lead to onychomadesis. Mechanistically, CV-A10 mimics Dickkopf-related protein 1 (DKK1) to interact with Kringle-containing transmembrane protein 1 (KRM1), the CV-A10 cellular receptor. We further found that Wnt agonist (GSK3ß inhibitor) CHIR99021 can restore nail stem cell differentiation and protect against nail shedding. These findings provide novel insights into the pathogenesis of CV-A10 and related viruses in onychomadesis and guide prognosis assessment and clinical treatment of the disease.


Subject(s)
Intercellular Signaling Peptides and Proteins , Low Density Lipoprotein Receptor-Related Protein-6 , Wnt Signaling Pathway , Animals , Wnt Signaling Pathway/drug effects , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mice , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Humans , beta Catenin/metabolism , Nail Diseases/metabolism , Nail Diseases/virology , Nail Diseases/pathology , Nails/metabolism , Nails/pathology , Cell Differentiation/drug effects , Mice, Inbred C57BL , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/metabolism , Hand, Foot and Mouth Disease/pathology , Hand, Foot and Mouth Disease/complications , Phosphorylation/drug effects , Coxsackievirus Infections/complications , Coxsackievirus Infections/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Pyridines/pharmacology , Pyrimidines
2.
Sci Rep ; 14(1): 12967, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839844

ABSTRACT

Osteoporosis is a common skeletal disease affecting millions of individuals world-wide, with an increased risk of fracture, and a decreased quality of life. Despite its well-known consequences, the etiology of osteoporosis and optimal treatment methods are not fully understood. Human genetic studies have identified genetic variants within the FMN2/GREM2 locus to be associated with trabecular volumetric bone mineral density (vBMD) and vertebral and forearm fractures, but not with cortical bone parameters. GREM2 is a bone morphogenetic protein (BMP) antagonist. In this study, we employed Grem2-deficient mice to investigate whether GREM2 serves as the plausible causal gene for the fracture signal at the FMN2/GREM2 locus. We observed that Grem2 is moderately expressed in bone tissue and particularly in osteoblasts. Complete Grem2 gene deletion impacted mouse survival and body growth. Partial Grem2 inactivation in Grem2+/- female mice led to increased trabecular BMD of femur and increased trabecular bone mass in tibia due to increased trabecular thickness, with an unchanged cortical thickness, as compared with wildtype littermates. Furthermore, Grem2 inactivation stimulated osteoblast differentiation, as evidenced by higher alkaline phosphatase (Alp), osteocalcin (Bglap), and osterix (Sp7) mRNA expression after BMP-2 stimulation in calvarial osteoblasts and osteoblasts from the long bones of Grem2-/- mice compared to wildtype littermates. These findings suggest that GREM2 is a possible target for novel osteoporotic treatments, to increase trabecular bone mass and prevent osteoporotic fractures.


Subject(s)
Bone Density , Cancellous Bone , Osteoblasts , Animals , Mice , Osteoblasts/metabolism , Cancellous Bone/metabolism , Cancellous Bone/pathology , Female , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Knockout , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Osteoporosis/genetics , Osteoporosis/pathology , Osteoporosis/metabolism , Cell Differentiation , Osteogenesis/genetics
3.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 284-289, 2024 Mar 14.
Article in Chinese | MEDLINE | ID: mdl-38716601

ABSTRACT

Objective: To analyze the level and clinical significance of IL-18 and IL-18-binding protein (BP) in the bone marrow of patients with myelodysplastic syndrome (MDS) . Methods: A total of 43 newly diagnosed patients with MDS who were admitted to the Department of Hematology, Tianjin Medical University General Hospital, from July 2020 to February 2021 were randomly selected. The control group consisted of 14 patients with acute myeloid leukemia (AML) and 25 patients with iron-deficiency anemia (IDA). The levels of IL-18 and IL-18 BP in the bone marrow supernatant were measured, and their correlations with MDS severity, as well as the functionality of CD8(+) T cells and natural killer cells, was analyzed. Results: The levels of IL-18, IL-18 BP, and free IL-18 (fIL-18) in the bone marrow supernatant of patients with MDS were higher than in the IDA group. The level of fIL-18 was linearly and negatively correlated with the MDS-International Prognostic Scoring System (IPSS) score. IL-18 receptor (IL-18Rα) expression on CD8(+) T cells in the MDS group was lower than in the IDA group, and the levels of fIL-18 and IL-18Rα were positively correlated with CD8(+) T-cell function in the MDS group. Conclusion: IL-18 BP antagonizes IL-18, leading to a decrease in fIL-18 in the bone marrow microenvironment of patients with MDS, affecting CD8(+) T-cell function, which is closely related to MDS severity; therefore, it may become a new target for MDS treatment.


Subject(s)
Bone Marrow , Intercellular Signaling Peptides and Proteins , Interleukin-18 , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/metabolism , Interleukin-18/metabolism , Bone Marrow/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , CD8-Positive T-Lymphocytes/metabolism , Male , Female , Killer Cells, Natural/metabolism , Middle Aged , Clinical Relevance
4.
Exp Dermatol ; 33(5): e15093, 2024 May.
Article in English | MEDLINE | ID: mdl-38742821

ABSTRACT

Senile skin hyperpigmentation displays remarkable histopathological features of dermal aging. The crosstalk between melanocytes and dermal fibroblasts plays crucial roles in aging-related pigmentation. While senescent fibroblasts can upregulate pro-melanogenic factors, the role of anti-melanogenic factors, such as dickkopf1 (DKK1), and the upstream regulatory mechanism during aging remain obscure. This study investigated the roles of yes-associated protein (YAP) and DKK1 in the regulation of dermal fibroblast senescence and melanogenesis. Our findings demonstrated decreased YAP activity and DKK1 levels in intrinsic and extrinsic senescent fibroblasts. YAP depletion induced fibroblast senescence and downregulated the expression and secretion of DKK1, whereas YAP overexpression partially reversed the effect. The transcriptional regulation of DKK1 by YAP was supported by dual-luciferase reporter and chromatin immunoprecipitation assays. Moreover, YAP depletion in fibroblasts upregulated Wnt/ß-catenin in melanocytes and stimulated melanogenesis, which was partially rescued by the re-supplementation of DKK1. Conversely, overexpression of YAP in senescent fibroblasts decreased Wnt/ß-catenin levels in melanocytes and inhibited melanogenesis. Additionally, reduced levels of YAP and DKK1 were verified in the dermis of solar lentigines. These findings suggest that, during skin aging, epidermal pigmentation may be influenced by YAP in the dermal microenvironment via the paracrine effect of DKK1.


Subject(s)
Adaptor Proteins, Signal Transducing , Cellular Senescence , Fibroblasts , Intercellular Signaling Peptides and Proteins , Melanins , Melanocytes , Paracrine Communication , Skin Aging , Transcription Factors , YAP-Signaling Proteins , Fibroblasts/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Humans , Melanocytes/metabolism , YAP-Signaling Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/metabolism , Melanins/metabolism , Melanins/biosynthesis , Wnt Signaling Pathway , Dermis/cytology , Cells, Cultured , Melanogenesis
5.
Ann Med ; 56(1): 2337871, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38738394

ABSTRACT

Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.


Subject(s)
Genetic Therapy , Tendon Injuries , Tissue Engineering , Wound Healing , Tendon Injuries/therapy , Tendon Injuries/physiopathology , Humans , Wound Healing/physiology , Animals , Tissue Engineering/methods , Genetic Therapy/methods , Platelet-Rich Plasma , Tendons , Stem Cell Transplantation/methods , Intercellular Signaling Peptides and Proteins/therapeutic use , Intercellular Signaling Peptides and Proteins/metabolism
6.
Cancer Lett ; 592: 216926, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38714291

ABSTRACT

Gastric cancer (GC) is one of the most common cancer worldwide. Neural invasion (NI) is considered as the symbiotic interaction between nerves and cancers, which strongly affects the prognosis of GC patients. Small extracellular vesicles (sEVs) play a key role in intercellular communication. However, whether sEVs mediate GC-NI remains unexplored. In this study, sEVs release inhibitor reduces the NI potential of GC cells. Muscarinic receptor M3 on GC-derived sEVs regulates their absorption by neuronal cells. The enrichment of sEV-circVAPA in NI-positive patients' serum is validated by serum high throughput sEV-circRNA sequencing and clinical samples. sEV-circVAPA promotes GC-NI in vitro and in vivo. Mechanistically, sEV-circVAPA decreases SLIT2 transcription by miR-548p/TGIF2 and inhibits SLIT2 translation via binding to eIF4G1, thereby downregulates SLIT2 expression in neuronal cells and finally induces GC-NI. Together, this work identifies the preferential absorption mechanism of GC-derived sEVs by neuronal cells and demonstrates a previously undefined role of GC-derived sEV-circRNA in GC-NI, which provides new insight into sEV-circRNA based diagnostic and therapeutic strategies for NI-positive GC patients.


Subject(s)
Extracellular Vesicles , Intercellular Signaling Peptides and Proteins , Neoplasm Invasiveness , Nerve Tissue Proteins , Neurons , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Extracellular Vesicles/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Animals , Neurons/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Female , Cell Proliferation , Repressor Proteins/genetics , Repressor Proteins/metabolism
7.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786095

ABSTRACT

The TAM receptor ligand Gas6 is known for regulating inflammatory and immune pathways in various organs including the brain. Gas6 becomes fully functional through the post-translational modification of multiple glutamic acid residues into γ-carboxyglutamic in a vitamin K-dependent manner. However, the significance of this mechanism in the brain is not known. We report here the endogenous expression of multiple components of the vitamin K cycle within the mouse brain at various ages as well as in distinct brain glial cells. The brain expression of all genes was increased in the postnatal ages, mirroring their profiles in the liver. In microglia, the proinflammatory agent lipopolysaccharide caused the downregulation of all key vitamin K cycle genes. A secreted Gas6 protein was detected in the medium of both mouse cerebellar slices and brain glial cell cultures. Furthermore, the endogenous Gas6 γ-carboxylation level was abolished through incubation with the vitamin K antagonist warfarin and could be restored through co-incubation with vitamin K1. Finally, the γ-carboxylation level of the Gas6 protein within the brains of warfarin-treated rats was found to be significantly reduced ex vivo compared to the control brains. In conclusion, we demonstrated for the first time the existence of a functional vitamin K cycle within rodent brains, which regulates the functional modification of endogenous brain Gas6. These results indicate that vitamin K is an important nutrient for the brain. Furthermore, the measurement of vitamin K-dependent Gas6 functionality could be an indicator of homeostatic or disease mechanisms in the brain, such as in neurological disorders where Gas6/TAM signalling is impaired.


Subject(s)
Brain , Intercellular Signaling Peptides and Proteins , Vitamin K , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Vitamin K/metabolism , Vitamin K/pharmacology , Brain/metabolism , Mice , Mice, Inbred C57BL , Rats , Male , Warfarin/pharmacology , Microglia/metabolism , Lipopolysaccharides/pharmacology , Neuroglia/metabolism
8.
Gynecol Endocrinol ; 40(1): 2353733, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38818662

ABSTRACT

BACKGROUND: Polycystic ovarian syndrome (PCOS) is a prevalent metabolic and endocrine condition in females of reproductive age. This work was to discover the underlying role of Dickkopf 1 (DKK1) and its putative regulating mechanism in P COS. METHODS: Mice recieved dehydroepiandrosterone (DHEA) injection to establish the in vivo P COS model.Hematoxylin and eosin (H&E) staining was performed for histological analysis. RT-qP CR and Western blotting were used to detect gene and protein expression. CCK-8 and flow cytometry assays were applied to detect cell viability and apoptosis. Co-immunoprecipitation (Co-IP) and immunoprecipitation (IP) were applied to assess association between DKK1 and SIRT2. RESULTS: In this work, DKK1 is downregulated in P COS rats. It was revealed that DKK1 knockdown induced apoptosis and suppressed proliferation in KGN cells, whereas DKK1 overexpression had exactly the opposite effects. In addition, DKK1 deactivates the T GF-ß1/SMad3 signaling pathway, thereby controlling KGN cell proliferation and apoptosis. Besides, SIRT2 inhibition reversed the impact of DKK1 overexpression on KGN cell proliferation and apoptosis. Furthermore, SIRT2 downregulated DKK1 expression by deacetylating DKK1 in KGN cells. DISCUSSION: Altogether, we concluded that SIRT2-induced deacetylation of DKK1 triggers T GF-ß1/Smad3 hyperactivation, thereby inhibiting proliferation and promoting apoptosis of KGN cells. The above results indicated that DKK1 might function as a latent target for P COS treatment.


Subject(s)
Intercellular Signaling Peptides and Proteins , Polycystic Ovary Syndrome , Signal Transduction , Sirtuin 2 , Smad3 Protein , Transforming Growth Factor beta1 , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Female , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Mice , Sirtuin 2/metabolism , Sirtuin 2/genetics , Rats , Apoptosis , Acetylation , Cell Proliferation , Disease Models, Animal , Humans
9.
Arch Dermatol Res ; 316(6): 290, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809465

ABSTRACT

Enz_MoriL is a naturally occurring substance extracted from the leaves of Morus alba L. through enzymatic conversion. Historically, M. alba L. has been recognized for its potential to promote hair regrowth. However, the precise mechanism by which Enz_MoriL affects human hair follicle dermal papilla cells (hDPCs) remains unclear. The aim of this study was to investigate the molecular basis of Enz_MoriL's effect on hair growth in hDPCs. Interferon-gamma (IFN-γ) was used to examine the effects of Enz_MoriL on hDPCs during the anagen and catagen phases, as well as under conditions mimicking alopecia areata (AA). Enz_MoriL demonstrated the ability to promote cell proliferation in both anagen and catagen stages. It increased the levels of active ß-catenin in the catagen stage induced by IFN-γ, leading to its nuclear translocation. This effect was achieved by increasing the phosphorylation of GSK3ß and decreasing the expression of DKK-1. This stimulation induced proliferation in hDPCs and upregulated the expression of the Wnt family members 3a, 5a, and 7a at the transcript level. Additionally, Enz_MoriL suppressed JAK1 and STAT3 phosphorylation, contrasting with IFN-γ, which induced them in the catagen stage. In conclusion, Enz_MoriL directly induced signals for anagen re-entry into hDPCs by affecting the Wnt/ß-catenin pathway and enhancing the production of growth factors. Furthermore, Enz_MoriL attenuated and reversed the interferon-induced AA-like environment by blocking the JAK-STAT pathway in hDPCs.


Subject(s)
Alopecia Areata , Cell Proliferation , Hair Follicle , Interferon-gamma , Wnt Signaling Pathway , beta Catenin , Humans , Hair Follicle/drug effects , Hair Follicle/cytology , Hair Follicle/metabolism , Cell Proliferation/drug effects , Wnt Signaling Pathway/drug effects , Interferon-gamma/metabolism , beta Catenin/metabolism , Alopecia Areata/metabolism , Alopecia Areata/drug therapy , Alopecia Areata/pathology , Cells, Cultured , Glycogen Synthase Kinase 3 beta/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Janus Kinases/metabolism , Dermis/cytology , Dermis/drug effects , Phosphorylation/drug effects , STAT3 Transcription Factor/metabolism , Hair/drug effects , Hair/growth & development , Wnt-5a Protein/metabolism , Janus Kinase 1/metabolism , Signal Transduction/drug effects , STAT Transcription Factors/metabolism
10.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791516

ABSTRACT

Relapse to alcohol abuse, often caused by cue-induced alcohol craving, is a major challenge in alcohol addiction treatment. Therefore, disrupting the cue-alcohol memories can suppress relapse. Upon retrieval, memories transiently destabilize before they reconsolidate in a process that requires protein synthesis. Evidence suggests that the mammalian target of rapamycin complex 1 (mTORC1), governing the translation of a subset of dendritic proteins, is crucial for memory reconsolidation. Here, we explored the involvement of two regulatory pathways of mTORC1, phosphoinositide 3-kinase (PI3K)-AKT and extracellular regulated kinase 1/2 (ERK1/2), in the reconsolidation process in a rat (Wistar) model of alcohol self-administration. We found that retrieval of alcohol memories using an odor-taste cue increased ERK1/2 activation in the amygdala, while the PI3K-AKT pathway remained unaffected. Importantly, ERK1/2 inhibition after alcohol memory retrieval impaired alcohol-memory reconsolidation and led to long-lasting relapse suppression. Attenuation of relapse was also induced by post-retrieval administration of lacosamide, an inhibitor of collapsin response mediator protein-2 (CRMP2)-a translational product of mTORC1. Together, our findings indicate the crucial role of ERK1/2 and CRMP2 in the reconsolidation of alcohol memories, with their inhibition as potential treatment targets for relapse prevention.


Subject(s)
Intercellular Signaling Peptides and Proteins , Nerve Tissue Proteins , Animals , Rats , Male , Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Rats, Wistar , Memory/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Ethanol , Alcoholism/metabolism , Alcoholism/drug therapy , MAP Kinase Signaling System/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Recurrence , Amygdala/metabolism , Amygdala/drug effects , Memory Consolidation/drug effects , Mitogen-Activated Protein Kinase 3/metabolism , Self Administration , Mitogen-Activated Protein Kinase 1/metabolism , Phosphatidylinositol 3-Kinases/metabolism
11.
Front Immunol ; 15: 1404228, 2024.
Article in English | MEDLINE | ID: mdl-38812519

ABSTRACT

Introduction: Adipose tissue mesenchymal stem/stromal cells (ASC) can be used as advanced therapy medicinal product in regenerative and cancer medicine. We previously demonstrated Supernatant Rich in Growth Factors (SRGF) can replace fetal bovine serum (FBS) to expand ASC by a clinical grade compliant protocol. The therapeutic potential of ASC is based also on their homing capacity toward inflammatory/cancer sites: oriented cell migration is a fundamental process in this scenario. We investigated the impact of SRGF on ASC migration properties. Methods: The motility/migration potential of ASC expanded in 5% SRGF was analyzed, in comparison to 10% FBS, by standard wound healing, bidimensional chemotaxis and transwell assays, and by millifluidic transwell tests. Mechanisms involved in the migration process were investigated by transient protein overexpression. Results: In comparison to standard 10% FBS, supplementation of the cell culture medium with 5% SRGF, strongly increased migration properties of ASC along the chemotactic gradient and toward cancer cell derived soluble factors, both in static and millifluidic conditions. We showed that, independently from applied migratory stimulus, SRGF expanded ASC were characterized by far lower expression of α-smooth muscle actin (αSMA), a protein involved in the cell migration machinery. Overexpression of αSMA induced a significant and marked decrease in migration capacity of SRGF expanded ASC. Discussion: In conclusion, 5% SRGF addition in the cell culture medium increases the migration potential of ASC, reasonably through appropriate downregulation of αSMA. Thus, SRGF could potentially improve the therapeutic impact of ASC, both as modulators of the immune microenviroment or as targeted drug delivery vehicles in oncology.


Subject(s)
Adipose Tissue , Blood Platelets , Cell Movement , Intercellular Signaling Peptides and Proteins , Mesenchymal Stem Cells , Humans , Cell Movement/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Blood Platelets/metabolism , Cells, Cultured , Culture Media/pharmacology , Actins/metabolism , Female
12.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38781447

ABSTRACT

Leukocyte cell-derived chemotaxin 2 (LECT2) is a protein initially isolated as a neutrophil chemotactic factor. We previously found that LECT2 is an obesity-associated hepatokine that senses liver fat and induces skeletal muscle insulin resistance. In addition, hepatocyte-derived LECT2 activates macrophage proinflammatory activity by reinforcing the lipopolysaccharide (LPS)-induced c-Jun N-terminal kinase signaling. Based on these findings, we examined the effect of LECT2 deletion on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) caused by bacterial translocation. We created the bacterial translocation-mediated NAFLD/NASH model using LECT2 knockout mice (LECT2 KO) with 28 times a low-dose LPS injection under high-fat diet feeding conditions. LECT2 deletion exacerbated steatosis and significantly reduced p38 phosphorylation in the liver. In addition, LECT2 deletion increased macrophage infiltration with decreased M1/M2 ratios. LECT2 might contribute to protecting against lipid accumulation and macrophage activation in the liver under pathological conditions, which might be accomplished via p38 phosphorylation. This study provides novel aspects of LECT2 in the bacterial translocation-mediated NAFLD/NASH model.


Subject(s)
Disease Models, Animal , Intercellular Signaling Peptides and Proteins , Lipopolysaccharides , Macrophages , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Animals , Male , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Mice , Lipopolysaccharides/toxicity , Macrophages/metabolism , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , Diet, High-Fat/adverse effects , Gene Deletion , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Mol Med ; 30(1): 66, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773377

ABSTRACT

BACKGROUND: The current treatment of osteogenesis imperfecta (OI) is imperfect. Our study thus delves into the potential of using Dickkopf-1 antisense (DKK1-AS) to treat OI. METHODS: We analysed serum DKK1 levels and their correlation with lumbar spine and hip T-scores in OI patients. Comparative analyses were conducted involving bone marrow stromal cells (BMSCs) and bone tissues from wild-type mice, untreated OI mice, and OI mice treated with DKK1-ASor DKK1-sense (DKK1-S). RESULTS: Significant inverse correlations were noted between serum DKK1 levels and lumbar spine (correlation coefficient = - 0.679, p = 0.043) as well as hip T-scores (correlation coefficient = - 0.689, p = 0.042) in OI patients. DKK1-AS improved bone mineral density (p = 0.002), trabecular bone volume/total volume fraction (p < 0.001), trabecular separation (p = 0.010), trabecular thickness (p = 0.001), trabecular number (p < 0.001), and cortical thickness (p < 0.001) in OI mice. DKK1-AS enhanced the transcription of collagen 1α1, osteocalcin, runx2, and osterix in BMSC from OI mice (all p < 0.001), resulting in a higher von Kossa-stained matrix area (p < 0.001) in ex vivo osteogenesis assays. DKK1-AS also reduced osteoclast numbers (p < 0.001), increased ß-catenin and T-cell factor 4 immunostaining reactivity (both p < 0.001), enhanced mineral apposition rate and bone formation rate per bone surface (both p < 0.001), and decreased osteoclast area (p < 0.001) in OI mice. DKK1-AS upregulated osteoprotegerin and downregulated nuclear factor-kappa B ligand transcription (both p < 0.001). Bone tissues from OI mice treated with DKK1-AS exhibited significantly higher breaking force compared to untreated OI mice (p < 0.001). CONCLUSIONS: Our study elucidates that DKK1-AS has the capability to enhance bone mechanical properties, restore the transcription of osteogenic genes, promote osteogenesis, and inhibit osteoclastogenesis in OI mice.


Subject(s)
Disease Models, Animal , Intercellular Signaling Peptides and Proteins , Osteogenesis Imperfecta , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Osteogenesis Imperfecta/metabolism , Mice , Humans , Female , Male , Bone Density , Osteogenesis , Mesenchymal Stem Cells/metabolism
14.
BMC Genomics ; 25(1): 501, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773369

ABSTRACT

BACKGROUND: The peri-implantation period is a critical time during pregnancy that mostly defines the overall litter size. Most authors agree that the highest percentage of embryo mortality occurs during this time. Despite the brevity of the peri-implantation period, it is the most dynamic part of pregnancy in which the sequential and uninterrupted course of several processes is essential to the animal's reproductive success. Also then, the maternal uterine tissues undergo an intensive remodelling process, and their energy demand dramatically increases. It is believed that apelin, a member of the adipokine family, is involved in the control of female reproductive functions in response to the current metabolic state. The verified herein hypothesis assumed the modulatory effect of apelin on the endometrial tissue transcriptome on days 15 to 16 of gestation (beginning of implantation). RESULTS: The analysis of data obtained during RNA-seq (Illumina HiSeq2500) of endometrial slices treated and untreated with apelin (n = 4 per group) revealed changes in the expression of 68 genes (39 up-regulated and 29 down-regulated in the presence of apelin), assigned to 240 gene ontology terms. We also revealed changes in the frequency of alternative splicing events (397 cases), as well as single nucleotide variants (1,818 cases) in the presence of the adipokine. The identified genes were associated, among others, with the composition of the extracellular matrix, apoptosis, and angiogenesis. CONCLUSIONS: The obtained results indicate a potential role of apelin in the regulation of uterine tissue remodelling during the peri-implantation period.


Subject(s)
Embryo Implantation , Endometrium , Transcriptome , Animals , Female , Endometrium/metabolism , Embryo Implantation/genetics , Pregnancy , Swine , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Gene Expression Profiling , Apelin/genetics , Apelin/metabolism , Alternative Splicing
15.
Commun Biol ; 7(1): 615, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777862

ABSTRACT

Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.


Subject(s)
Adenosine Deaminase , Hematopoiesis , Hematopoietic Stem Cells , Inflammation , Zebrafish , Animals , Zebrafish/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/deficiency , Hematopoietic Stem Cells/metabolism , Inflammation/genetics , Inflammation/metabolism , Hematopoiesis/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Humans , Signal Transduction , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
20.
Am J Physiol Endocrinol Metab ; 326(6): E869-E887, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38775724

ABSTRACT

The adipokine chemerin contributes to exercise-induced improvements in glucose and lipid metabolism; however, the underlying mechanism remains unclear. We aimed to confirm the impact of reduced chemerin expression on exercise-induced improvement in glycolipid metabolism in male diabetic (DM) mice through exogenous chemerin administration. Furthermore, the underlying mechanism of chemerin involved in changes in muscle mitochondria function mediated by androgen/androgen receptor (AR) was explored by generating adipose-specific and global chemerin knockout (adipo-chemerin-/- and chemerin-/-) mice. DM mice were categorized into the DM, exercised DM (EDM), and EDM + chemerin supplementation groups. Adipo-chemerin-/- and chemerin-/- mice were classified in the sedentary or exercised groups and fed either a normal or high-fat diet. Exercise mice underwent a 6-wk aerobic exercise regimen. The serum testosterone and chemerin levels, glycolipid metabolism indices, mitochondrial function, and protein levels involved in mitochondrial biogenesis and dynamics were measured. Notably, exogenous chemerin reversed exercise-induced improvements in glycolipid metabolism, AR protein levels, mitochondrial biogenesis, and mitochondrial fusion in DM mice. Moreover, adipose-specific chemerin knockout improved glycolipid metabolism, enhanced exercise-induced increases in testosterone and AR levels in exercised mice, and alleviated the detrimental effects of a high-fat diet on mitochondrial morphology, biogenesis, and dynamics. Finally, similar improvements in glucose metabolism (but not lipid metabolism), mitochondrial function, and mitochondrial dynamics were observed in chemerin-/- mice. In conclusion, decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, likely through changes in androgen/AR signaling.NEW & NOTEWORTHY Decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, which is likely mediated by androgen/androgen receptor expression. This study is the first to report the regulatory mechanism of chemerin in muscle mitochondria.


Subject(s)
Chemokines , Glucose , Lipid Metabolism , Mice, Knockout , Receptors, Androgen , Animals , Chemokines/metabolism , Male , Mice , Lipid Metabolism/physiology , Lipid Metabolism/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Glucose/metabolism , Diet, High-Fat , Diabetes Mellitus, Experimental/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Physical Conditioning, Animal/physiology , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Mitochondria/metabolism , Androgens/metabolism , Androgens/pharmacology , Muscle, Skeletal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...