Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 385
Filter
1.
Exp Dermatol ; 33(5): e15083, 2024 May.
Article in English | MEDLINE | ID: mdl-38794808

ABSTRACT

Interferons (IFNs) are signalling proteins primarily involved in initiating innate immune responses against pathogens and promoting the maturation of immune cells. Interferon Regulatory Factor 7 (IRF7) plays a pivotal role in the IFNs signalling pathway. The activation process of IRF7 is incited by exogenous or abnormal nucleic acids, which is followed by the identification via pattern recognition receptors (PRRs) and the ensuing signalling cascades. Upon activation, IRF7 modulates the expression of both IFNs and inflammatory gene regulation. As a multifunctional transcription factor, IRF7 is mainly expressed in immune cells, yet its presence is also detected in keratinocytes, fibroblasts, and various dermal cell types. In these cells, IRF7 is critical for skin immunity, inflammation, and fibrosis. IRF7 dysregulation may lead to autoimmune and inflammatory skin conditions, including systemic scleroderma (SSc), systemic lupus erythematosus (SLE), Atopic dermatitis (AD) and Psoriasis. This comprehensive review aims to extensively elucidate the role of IRF7 and its signalling pathways in immune cells and keratinocytes, highlighting its significance in skin-related and connective tissue diseases.


Subject(s)
Connective Tissue Diseases , Interferon Regulatory Factor-7 , Keratinocytes , Signal Transduction , Skin Diseases , Humans , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Skin Diseases/immunology , Skin Diseases/metabolism , Keratinocytes/metabolism , Keratinocytes/immunology , Connective Tissue Diseases/metabolism , Connective Tissue Diseases/immunology , Psoriasis/immunology , Psoriasis/metabolism , Animals , Skin/metabolism , Skin/immunology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/immunology , Scleroderma, Systemic/genetics , Immunity, Innate
2.
J Immunol ; 212(12): 1932-1944, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38709167

ABSTRACT

IFN regulatory factor 7 (IRF7) exerts anti-infective effects by promoting the production of IFNs in various bacterial and viral infections, but its role in highly morbid and fatal Candida albicans infections is unknown. We unexpectedly found that Irf7 gene expression levels were significantly upregulated in tissues or cells after C. albicans infection in humans and mice and that IRF7 actually exacerbates C. albicans infection in mice independent of its classical function in inducing IFNs production. Compared to controls, Irf7-/- mice showed stronger phagocytosis of fungus, upregulation of C-type lectin receptor CD209 expression, and enhanced P53-AMPK-mTOR-mediated autophagic signaling in macrophages after C. albicans infection. The administration of the CD209-neutralizing Ab significantly hindered the phagocytosis of Irf7-/- mouse macrophages, whereas the inhibition of p53 or autophagy impaired the killing function of these macrophages. Thus, IRF7 exacerbates C. albicans infection by compromising the phagocytosis and killing capacity of macrophages via regulating CD209 expression and p53-AMPK-mTOR-mediated autophagy, respectively. This finding reveals a novel function of IRF7 independent of its canonical IFNs production and its unexpected role in enhancing fungal infections, thus providing more specific and effective targets for antifungal therapy.


Subject(s)
Autophagy , Candida albicans , Candidiasis , Interferon Regulatory Factor-7 , Lectins, C-Type , Macrophages , Mice, Knockout , Phagocytosis , Receptors, Cell Surface , TOR Serine-Threonine Kinases , Animals , Mice , Phagocytosis/immunology , Autophagy/immunology , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Candidiasis/immunology , Candida albicans/immunology , Candida albicans/physiology , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/immunology , Macrophages/immunology , Humans , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice, Inbred C57BL , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Signal Transduction/immunology
3.
Cell Mol Biol Lett ; 29(1): 61, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38671352

ABSTRACT

BACKGROUND: Macrophage proinflammatory activation contributes to the pathology of severe acute pancreatitis (SAP) and, simultaneously, macrophage functional changes, and increased pyroptosis/necrosis can further exacerbate the cellular immune suppression during the process of SAP, where cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) plays an important role. However, the function and mechanism of cGAS-STING in SAP-induced lung injury (LI) remains unknown. METHODS: Lipopolysaccharide (LPS) was combined with caerulein-induced SAP in wild type, cGAS -/- and sting -/- mice. Primary macrophages were extracted via bronchoalveolar lavage and peritoneal lavage. Ana-1 cells were pretreated with LPS and stimulated with nigericin sodium salt to induce pyroptosis in vitro. RESULTS: SAP triggered NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation-mediated pyroptosis of alveolar and peritoneal macrophages in mouse model. Knockout of cGAS/STING could ameliorate NLRP3 activation and macrophage pyroptosis. In addition, mitochondrial (mt)DNA released from damaged mitochondria further induced macrophage STING activation in a cGAS- and dose-dependent manner. Upregulated STING signal can promote NLRP3 inflammasome-mediated macrophage pyroptosis and increase serum interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α levels and, thus, exacerbate SAP-associated LI (SAP-ALI). Downstream molecules of STING, IRF7, and IRF3 connect the mtDNA-cGAS-STING axis and the NLRP3-pyroptosis axis. CONCLUSIONS: Negative regulation of any molecule in the mtDNA-cGAS-STING-IRF7/IRF3 pathway can affect the activation of NLRP3 inflammasomes, thereby reducing macrophage pyroptosis and improving SAP-ALI in mouse model.


Subject(s)
DNA, Mitochondrial , Interferon Regulatory Factor-3 , Lung Injury , Macrophages , Membrane Proteins , Nucleotidyltransferases , Pancreatitis , Pyroptosis , Signal Transduction , Animals , Pyroptosis/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Mice , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Pancreatitis/metabolism , Pancreatitis/genetics , Pancreatitis/pathology , Pancreatitis/chemically induced , Macrophages/metabolism , Lung Injury/pathology , Lung Injury/genetics , Lung Injury/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/metabolism , Lipopolysaccharides , Male , Disease Models, Animal
4.
Biochem Biophys Res Commun ; 712-713: 149915, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38663038

ABSTRACT

Viral infections pose a significant threat to public health, and the production of interferons represents one of the most critical antiviral innate immune responses of the host. Consequently, the screening and identification of compounds or reagents that induce interferon production are of paramount importance. This study commenced with the cultivation of host bacterium 15,597, followed by the infection of Escherichia coli with the MS2 bacteriophage. Utilizing the J2 capture technique, a class of dsRNA mixtures (MS2+15,597) was isolated from the E. coli infected with the MS2 bacteriophage. Subsequent investigations were conducted on the immunostimulatory activity of the MS2+15,597 mixture. The results indicated that the dsRNA mixtures (MS2+15,597) extracted from E. coli infected with the MS2 bacteriophage possess the capability to activate innate immunity, thereby inducing the production of interferon-ß. These dsRNA mixtures can activate the RIG-I and TLR3 pattern recognition receptors, stimulating the expression of interferon stimulatory factors 3/7, which in turn triggers the NF-κB signaling pathway, culminating in the cellular production of interferon-ß to achieve antiviral effects. This study offers novel insights and strategies for the development of broad-spectrum antiviral drugs, potentially providing new modalities for future antiviral therapies.


Subject(s)
Escherichia coli , Levivirus , RNA, Double-Stranded , Escherichia coli/virology , Escherichia coli/genetics , Escherichia coli/metabolism , RNA, Double-Stranded/metabolism , Humans , Levivirus/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/genetics , Immunity, Innate , Interferon-beta/metabolism , Interferon-beta/genetics , NF-kappa B/metabolism , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , Signal Transduction , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Receptors, Immunologic , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics
5.
Dev Comp Immunol ; 156: 105181, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636698

ABSTRACT

Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.


Subject(s)
Autophagy , Interferon Regulatory Factor-7 , Interferon Regulatory Factors , Lysosomes , Rhabdoviridae , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/immunology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Autophagy/immunology , Lysosomes/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Rhabdoviridae/physiology , Rhabdoviridae/immunology , Interferons/metabolism , Poly I-C/immunology , Rhabdoviridae Infections/immunology , Proteolysis , Fish Diseases/immunology , Fish Diseases/virology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Humans , Immunity, Innate
6.
J Innate Immun ; 16(1): 226-247, 2024.
Article in English | MEDLINE | ID: mdl-38527452

ABSTRACT

INTRODUCTION: While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αß) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients. METHODS: Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-ß was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αß, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αßR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction. RESULTS: We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αß by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αß-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αß-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-ß pretreatment enhances the subsequent induction of IFN-αß in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αß overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice. CONCLUSION: Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological responses to pathogens. Being able to measure the current reactivity state of the immune system would have important benefits for infection-specific therapies and for the prevention of vaccination-elicited adverse effects.


Subject(s)
Adenoviridae , Cytokines , Interferon Regulatory Factor-3 , Lipopolysaccharides , Macrophages , Mice, Knockout , Animals , Mice , Lipopolysaccharides/immunology , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Macrophages/immunology , Cytokines/metabolism , Mice, Inbred C57BL , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Genetic Vectors , Adenoviridae Infections/immunology , Interferon Type I/metabolism , Lipopolysaccharide Receptors/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Cells, Cultured , Dendritic Cells/immunology , Interferon-beta/metabolism
7.
J Biol Chem ; 300(4): 107200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508315

ABSTRACT

Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.


Subject(s)
Interferon Regulatory Factor-7 , NF-kappa B , Animals , Humans , Mice , HEK293 Cells , Inflammation/genetics , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Sendai virus/physiology , Transcription Factor RelA/genetics , Transcription Factor RelA/immunology , Virus Replication , Mutation , Gene Expression Regulation/genetics , Murine hepatitis virus/physiology , Coronavirus Infections/immunology , Respirovirus Infections/immunology
8.
Eur J Pharmacol ; 968: 176382, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38311277

ABSTRACT

Psoriasis is a chronic, recurrent, inflammatory dermatosis accompanied by excessive activation of dendritic cells (DCs), which are primarily responsible for initiating an immune response. The bromodomain and extraterminal domain (BET) family plays a pivotal role in the transcriptional regulation of inflammation and its inhibitors can downregulate DCs maturation and activation. Here we investigated the effect of NHWD-870, a potent BET inhibitor, on inflammation in an imiquimod (IMQ)-induced psoriasis-like mouse model and murine bone marrow-derived dendritic cells (BMDCs) stimulated by lipopolysaccharide (LPS) and IMQ. Application of NHWD-870 significantly ameliorated IMQ-triggered skin inflammation in mice, and markers associated with DC maturation (CD40, CD80 and CD86) were decreased in skin lesions, spleen and lymph nodes. Additionally, NHWD-870 reduced LPS or IMQ induced DCs maturation and activation in vitro, with lower expression of inflammatory cytokines [interleukin (IL)-12, IL-23, tumor necrosis factor-α, IL-6, IL-1ß, chemokine (C-X-C motif) ligand (CXCL)9 and CXCL10]. In addition, we found that interferon regulatory factor 7 (IRF7) significantly increased during DCs maturation, and inhibition of IRF7 could impair BMDCs maturation and activation. What's more, IRF7 was highly expressed in both psoriatic patients and IMQ-induced psoriasis-like mice. Single-cell RNA sequencing of normal and psoriatic skin demonstrated that IRF7 expression was increased in DCs of psoriatic skin. While NHWD-870 could inhibit IRF7 and phosphorylated-IRF7 expression in vivo and in vitro. These results indicate that NHWD-870 suppresses the maturation and activation of DCs by decreasing IRF7 proteins which finally alleviates psoriasis-like skin lesions, and NHWD-870 may be a potent therapeutic drug for psoriasis.


Subject(s)
Dermatitis , Psoriasis , Humans , Animals , Mice , Imiquimod/adverse effects , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/pharmacology , Lipopolysaccharides/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Skin , Dermatitis/pathology , Inflammation/pathology , Dendritic Cells , Signal Transduction , Disease Models, Animal , Mice, Inbred BALB C
9.
Mol Biol Rep ; 51(1): 114, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227268

ABSTRACT

BACKGROUND: The production of interferons (IFNs) is essential for the control of viral infections, and interferon regulatory factor 7 (IRF7) is considered as a vital regulator for the transcription of type I IFNs. Amphibians appear to possess a highly expanded type I IFN repertoire, consisting of intron-containing genes as observed in fish, and intronless genes as in other higher vertebrates. However, the knowledge on transcriptional regulatory mechanism of these two types of type I IFN genes is rather scarce in amphibians. METHODS AND RESULTS: A IRF7 gene named as Np-IRF7 was identified in Tibetan frog (Nanorana parkeri), and bioinformatic analysis revealed that the predicted protein of Np-IRF7 contains several important structural features known in IRF7. Expression analysis showed that Np-IRF7 gene was widely expressed and rapidly induced by poly(I:C) in different organs/tissues. Interestingly, luciferase reporter assay revealed that intronless IFN promoters were more effectively activated than intron-containing IFN promoter in Np-IRF7-transfected cells. Moreover, the overexpression of Np-IRF7 could induce the expression of ISGs and suppress the replication of FV3 in A6 cells. CONCLUSION: Np-IRF7 is indeed the ortholog of known IRF7, and IRF7 is structurally conserved in different lineages of vertebrates. Np-IRF7 played distinct roles in the activation of intron-containing and intronless type I IFN promoters, thus inducing the expression of interferon-stimulated antiviral effectors and providing a protection against ranavirus infection. The present research thus contributes to a better understanding of regulatory function of IRF7 in the IFN-mediated antiviral response of anuran amphibians.


Subject(s)
Interferon Regulatory Factor-7 , Interferon Type I , Animals , Humans , Interferon Regulatory Factor-7/genetics , Tibet , Anura/genetics , Introns/genetics , Interferon Type I/genetics
10.
J Biol Chem ; 300(1): 105525, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043800

ABSTRACT

The innate antiviral response to RNA viruses is initiated by sensing of viral RNAs by RIG-I-like receptors and elicits type I interferon (IFN) production, which stimulates the expression of IFN-stimulated genes that orchestrate the antiviral response to prevent systemic infection. Negative regulation of type I IFN and its master regulator, transcription factor IRF7, is essential to maintain immune homeostasis. We previously demonstrated that AIP (aryl hydrocarbon receptor interacting protein) functions as a negative regulator of the innate antiviral immune response by binding to and sequestering IRF7 in the cytoplasm, thereby preventing IRF7 transcriptional activation and type I IFN production. However, it remains unknown how AIP inhibition of IRF7 is regulated. We show here that the kinase TBK1 phosphorylates AIP and Thr40 serves as the primary target for TBK1 phosphorylation. AIP Thr40 plays critical roles in regulating AIP stability and mediating its interaction with IRF7. The AIP phosphomimetic T40E exhibited increased proteasomal degradation and enhanced interaction with IRF7 compared with wildtype AIP. AIP T40E also blocked IRF7 nuclear translocation, which resulted in reduced type I IFN production and increased viral replication. In sharp contrast, AIP phosphonull mutant T40A had impaired IRF7 binding, and stable expression of AIP T40A in AIP-deficient mouse embryonic fibroblasts elicited a heightened type I IFN response and diminished RNA virus replication. Taken together, these results demonstrate that TBK1-mediated phosphorylation of AIP at Thr40 functions as a molecular switch that enables AIP to interact with and inhibit IRF7, thus preventing overactivation of type I IFN genes by IRF7.


Subject(s)
Immunity, Innate , Interferon Regulatory Factor-7 , Interferon Type I , Protein Serine-Threonine Kinases , RNA Virus Infections , RNA Viruses , Receptors, Aryl Hydrocarbon , Animals , Mice , Fibroblasts , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Type I/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Receptors, Aryl Hydrocarbon/metabolism , RNA Viruses/immunology , RNA Virus Infections/immunology , Humans , HEK293 Cells
11.
Front Med ; 18(2): 357-374, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38157193

ABSTRACT

p53 is mutated in half of cancer cases. However, no p53-targeting drugs have been approved. Here, we reposition decitabine for triple-negative breast cancer (TNBC), a subtype with frequent p53 mutations and extremely poor prognosis. In a retrospective study on tissue microarrays with 132 TNBC cases, DNMT1 overexpression was associated with p53 mutations (P = 0.037) and poor overall survival (OS) (P = 0.010). In a prospective DEciTabinE and Carboplatin in TNBC (DETECT) trial (NCT03295552), decitabine with carboplatin produced an objective response rate (ORR) of 42% in 12 patients with stage IV TNBC. Among the 9 trialed patients with available TP53 sequencing results, the 6 patients with p53 mutations had higher ORR (3/6 vs. 0/3) and better OS (16.0 vs. 4.0 months) than the patients with wild-type p53. In a mechanistic study, isogenic TNBC cell lines harboring DETECT-derived p53 mutations exhibited higher DNMT1 expression and decitabine sensitivity than the cell line with wild-type p53. In the DETECT trial, decitabine induced strong immune responses featuring the striking upregulation of the innate immune player IRF7 in the p53-mutated TNBC cell line (upregulation by 16-fold) and the most responsive patient with TNBC. Our integrative studies reveal the potential of repurposing decitabine for the treatment of p53-mutated TNBC and suggest IRF7 as a potential biomarker for decitabine-based treatments.


Subject(s)
Decitabine , Interferon Regulatory Factor-7 , Mutation , Triple Negative Breast Neoplasms , Tumor Suppressor Protein p53 , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Female , Decitabine/therapeutic use , Decitabine/pharmacology , Tumor Suppressor Protein p53/genetics , Middle Aged , Retrospective Studies , Interferon Regulatory Factor-7/genetics , Carboplatin/therapeutic use , Carboplatin/pharmacology , Cell Line, Tumor , Adult , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Prospective Studies , Aged , Antimetabolites, Antineoplastic/therapeutic use , Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
12.
J Neuroinflammation ; 20(1): 213, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737190

ABSTRACT

BACKGROUND: Type I interferons (IFN-I) are fundamental in controlling viral infections but fatal interferonopathy is restricted in the immune-privileged central nervous system (CNS). In contrast to the well-established role of Interferon Regulatory Factor 7 (IRF7) in the regulation of IFN-I response in the periphery, little is known about the specific function in the CNS. METHODS: To investigate the role for IRF7 in antiviral response during neurotropic virus infection, mice deficient for IRF3 and IRF7 were infected systemically with Langat virus (LGTV). Viral burden and IFN-I response was analyzed in the periphery and the CNS by focus formation assay, RT-PCR, immunohistochemistry and in vivo imaging. Microglia and infiltration of CNS-infiltration of immune cells were characterized by flow cytometry. RESULTS: Here, we demonstrate that during infection with the neurotropic Langat virus (LGTV), an attenuated member of the tick-borne encephalitis virus (TBEV) subgroup, neurons do not rely on IRF7 for cell-intrinsic antiviral resistance and IFN-I induction. An increased viral replication in IRF7-deficient mice suggests an indirect antiviral mechanism. Astrocytes rely on IRF7 to establish a cell-autonomous antiviral response. Notably, the loss of IRF7 particularly in astrocytes resulted in a high IFN-I production. Sustained production of IFN-I in astrocytes is independent of an IRF7-mediated positive feedback loop. CONCLUSION: IFN-I induction in the CNS is profoundly regulated in a cell type-specific fashion.


Subject(s)
Encephalitis, Tick-Borne , Interferon Regulatory Factor-7 , Interferon Type I , Animals , Mice , Antibodies , Astrocytes , Central Nervous System , Interferon Regulatory Factor-7/genetics , Encephalitis, Tick-Borne/immunology
13.
J Virol ; 97(10): e0095923, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37772825

ABSTRACT

IMPORTANCE: Viral encephalomyelitis outcome is dependent on host responses to neuronal infection. Interferon (IFN) is an important component of the innate response, and IFN regulatory factor (IRF) 7 is an inducible transcription factor for the synthesis of IFN-α. IRF7-deficient mice develop fatal paralysis after CNS infection with Sindbis virus, while wild-type mice recover. Irf7 -/- mice produce low levels of IFN-α but high levels of IFN-ß with induction of IFN-stimulated genes, so the reason for this difference is not understood. The current study shows that Irf7 -/- mice developed inflammation earlier but failed to clear virus from motor neuron-rich regions of the brainstem and spinal cord. Levels of IFN-γ and virus-specific antibody were comparable, indicating that IRF7 deficiency does not impair expression of these known viral clearance factors. Therefore, IRF7 is either necessary for the neuronal response to currently identified mediators of clearance or enables the production of additional antiviral factor(s) needed for clearance.


Subject(s)
Alphavirus Infections , Encephalomyelitis , Interferon Regulatory Factor-7 , Sindbis Virus , Animals , Mice , Alphavirus Infections/immunology , Alphavirus Infections/virology , Brain Stem/virology , Encephalomyelitis/immunology , Encephalomyelitis/virology , Inflammation/virology , Interferon Regulatory Factor-7/deficiency , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon-beta/immunology , Interferon-beta/metabolism , Motor Neurons/virology , Sindbis Virus/immunology , Spinal Cord/virology
14.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446070

ABSTRACT

Rabies, a highly fatal zoonotic disease, is a significant global public health threat. Currently, the pathogenic mechanism of rabies has not been fully elucidated, and no effective treatment for rabies is available. Increasing evidence shows that the tripartite-motif protein (TRIM) family of proteins participates in the host's regulation of viral replication. Studies have demonstrated the upregulated expression of tripartite-motif protein 21 (TRIM21) in the brain tissue of mice infected with the rabies virus. Related studies have shown that TRIM21 knockdown inhibits RABV replication, while overexpression of TRIM21 exerted the opposite effect. Knockdown of interferon-alpha and interferon-beta modulates the inhibition of RABV replication caused by TRIM21 knockdown and promotes the replication of the virus. Furthermore, our previous study revealed that TRIM21 regulates the secretion of type I interferon during RABV infection by targeting interferon regulatory factor 7 (IRF7). IRF7 knockdown reduced the inhibition of RABV replication caused by the knockdown of TRIM21 and promoted viral replication. TRIM21 regulates RABV replication via the IRF7-IFN axis. Our study identified TRIM21 as a novel host factor required by RABV for replication. Thus, TRIM21 is a potential target for rabies treatment or management.


Subject(s)
Rabies virus , Rabies , Animals , Mice , Rabies virus/metabolism , Rabies/genetics , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitination , Virus Replication
15.
Int J Biol Macromol ; 247: 125635, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37399879

ABSTRACT

Interferon regulatory factor 7 (IRF7) regulates type I interferon (IFN) genes via combining to the ISRE region in the immune response against bacteria. Streptococcus iniae is one of the dominant pathogenic bacteria of yellowfin seabream, Acanthopagrus latus. However, the regulatory mechanisms of A. latus IRF7 (AlIRF7) mediated by the type I IFN signalling pathway against S. iniae was ambiguously. In the present study, IRF7, and two IFNa3s (IFNa3 and IFNa3-like) were authenticated from A. latus. The total length of AlIRF7 cDNA is 2142 bp, containing a 1314 bp open reading frame (ORF) encoding an inferred 437 amino acids (aa). Three typical regions, a serine-rich domain (SRD), a DNA-binding domain (DBD), and an IRF association domain (IAD), are conserved in AlIRF7. Furthermore, AlIRF7 is fundamentally expressed in various kinds of organs, with high levels in the spleen and liver. Additionally, S. iniae challenge promoted AlIRF7 expression in the spleen, liver, kidney, and brain. AlIRF7 is confirmed to be located at the nucleus and cytoplasm by overexpression of AlIRF7. Moreover, truncation mutation analyses shows that the regions, -821 bp to +192 bp and -928 bp to +196 bp, were known as core promoters from AlIFNa3 and AlIFNa3-like, respectively. The point mutation analyses and electrophoretic mobile shift assay (EMSA) verified that AlIFNa3 and AlIFNa3-like transcriptions are depended on the M2/5 and M2/3/4 binding sites with AlIRF7 regulation, respectively. Additionally, an overexpression experiment showed that AlIRF7 can dramatically decrease the mRNA levels of two AlIFNa3s and interferon signalling molecules. These results suggest that two IFNa3s may mediate the regulation of AlIRF7 in the immune responses of A. latus against S. iniae infection.


Subject(s)
Interferon Type I , Perciformes , Sea Bream , Animals , Interferon Regulatory Factor-7/genetics , Sea Bream/genetics , Gene Expression Regulation , Streptococcus iniae/genetics , Fish Proteins/chemistry , Base Sequence , Amino Acid Sequence , Perciformes/genetics , Interferon Type I/genetics
16.
J Biol Chem ; 299(7): 104925, 2023 07.
Article in English | MEDLINE | ID: mdl-37328105

ABSTRACT

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection by reducing the intracellular dNTP pool. We have shown that SAMHD1 suppresses nuclear factor kappa-B activation and type I interferon (IFN-I) induction by viral infection and inflammatory stimuli. However, the mechanism by which SAMHD1 inhibits IFN-I remains unclear. Here, we show that SAMHD1 inhibits IFN-I activation induced by the mitochondrial antiviral-signaling protein (MAVS). SAMHD1 interacted with MAVS and suppressed MAVS aggregation in response to Sendai virus infection in human monocytic THP-1 cells. This resulted in increased phosphorylation of TANK binding kinase 1 (TBK1), inhibitor of nuclear factor kappa-B kinase epsilon (IKKε), and IFN regulatory factor 3 (IRF3). SAMHD1 suppressed IFN-I activation induced by IKKε and prevented IRF7 binding to the kinase domain of IKKε. We found that SAMHD1 interaction with the inhibitory domain (ID) of IRF7 (IRF7-ID) was necessary and sufficient for SAMHD1 suppression of IRF7-mediated IFN-I activation in HEK293T cells. Computational docking and molecular dynamics simulations revealed possible binding sites between IRF7-ID and full-length SAMHD1. Individual substitution of F411, E416, or V460 in IRF7-ID significantly reduced IRF7 transactivation activity and SAMHD1 binding. Furthermore, we investigated the role of SAMHD1 inhibition of IRF7-mediated IFN-I induction during HIV-1 infection. We found that THP-1 cells lacking IRF7 expression had reduced HIV-1 infection and viral transcription compared to control cells, indicating a positive role of IRF7 in HIV-1 infection. Our findings suggest that SAMHD1 suppresses IFN-I induction through the MAVS, IKKε, and IRF7 signaling axis.


Subject(s)
HIV Infections , Interferon Type I , SAM Domain and HD Domain-Containing Protein 1 , Humans , HEK293 Cells , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Type I/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , HIV Infections/metabolism , Signal Transduction
17.
Oncoimmunology ; 12(1): 2213132, 2023.
Article in English | MEDLINE | ID: mdl-37235066

ABSTRACT

Among cancer immunotherapy, which has received great attention in recent years, cancer vaccines can potentially prevent recurrent tumors by using the exquisite power and specificity of the immune system. Specifically, whole tumor cell vaccines (WTCVs) based on surgically resected tumors have been considered to elicit robust anti-tumor immune responses by exposing various tumor-associated antigens to host immunity. However, most tumors have little immunogenicity because of immunoediting by continuous interactions with host immunity; thus, preparing WTCVs based on patient-derived non-modified tumors cannot prevent tumor onset. Hence, the immunogenicity of tumor cells must be improved for effective WTCVs. In this study, we indicate the importance of the interferon regulatory factor 7 (Irf7) axis, including Irf7 and its downstream factors, within tumor cells in regulating immunogenicity. Indeed, WTCVs that augmented the Irf7 axis have exerted remarkable recurrence-preventive effects when vaccinated after tumor inactivation by radiation. Most notably, vaccination with murine colon cancer cells that enhanced the Irf7 axis prevented the development of challenged tumors in all mice and resulted in a 100% survival rate during the observation period. Furthermore, the mechanism leading to vaccine effectiveness was mediated by interferon-gamma-producing B cells. This study provides novel insights into how to enhance tumor immunogenicity and use WTCVs as recurrence prophylaxis.


Subject(s)
Cancer Vaccines , Interferon-gamma , Animals , Mice , Neoplasm Recurrence, Local/prevention & control , Interferon Regulatory Factor-7/genetics , Cancer Vaccines/pharmacology , Antigens, Neoplasm
18.
J Virol ; 97(1): e0178522, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36511697

ABSTRACT

Type I interferon (IFN) response is the first line of host-based innate immune defense against viral infections. However, viruses have developed multiple strategies to counter host IFN responses, so they may continue infecting hosts via effective replication. Avian reovirus (ARV), an RNA virus, causes viral arthritis or tenosynovitis in chickens. Previous studies have shown that ARV is highly resistant to the antiviral effects of IFN. However, the underlying mechanisms that enable ARV to block the IFN pathway remain unclear. In this study, we found that ectopic expression of ARV protein, σA, significantly inhibited the production of IFN-ß induced by melanoma-differentiation-associated gene 5 (MDA5) and poly(I·C). Knockdown of σA during ARV infection enhances the IFN-ß response and suppresses viral replication. ARV σA inhibited the MDA5-mediated IFN-ß activation by targeting interferon regulatory factor 7 (IRF7). Further studies demonstrated that σA interacts with IRF7, thereby blocking IRF7 dimerization and nuclear translocation, finally leading to the inhibition of IFN-ß production. These findings reveal a novel mechanism that allows ARV to evade host antiviral immunity. IMPORTANCE ARV, the causative agent of viral arthritis or tenosynovitis in chickens, has a significant economic impact as it results in poor weight gain and increased feed conversion ratios. The MDA5-mediated IFN-ß signal pathway plays an important role in host antiviral defense. Therefore, RNA viruses have developed mechanisms to counter this signaling pathway and successfully establish infection. However, the strategies adopted by ARV to block MDA5-IRF7 signaling remain unclear. In the current study, we demonstrated that ARV σA inhibits this pathway by binding to IRF7, which blocked IRF7 dimerization and nuclear translocation. Our findings may provide insights into how avian reovirus counteracts the innate antiviral immunity of the host to ensure viral replication.


Subject(s)
Interferon Regulatory Factor-7 , Interferon Type I , Orthoreovirus, Avian , Tenosynovitis , Viral Core Proteins , Animals , Cell Line , Chickens/virology , Host-Pathogen Interactions , Immunity, Innate , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Type I/metabolism , Orthoreovirus, Avian/physiology , Tenosynovitis/veterinary , Tenosynovitis/virology , Viral Core Proteins/metabolism , RNA-Binding Proteins/metabolism
19.
Poult Sci ; 102(1): 102291, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36402044

ABSTRACT

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays a vital role in sensing viral DNA in the cytosol, stimulating type I interferon (IFN) production and triggering the innate immune response against DNA virus infection. However, viruses have evolved effective inhibitors to impede this sensing pathway. Chicken anemia virus (CAV), a nonenveloped ssDNA virus, is a ubiquitous pathogen causing great economic losses to the poultry industry globally. CAV infection is reported to downregulate type I IFN induction. However, whether the cGAS-STING signal axis is used by CAV to regulate type I IFN remains unclear. Our results demonstrate that CAV infection significantly elevates the expression of cGAS and STING at the mRNA level, whereas IFN-ß levels are reduced. Furthermore, IFN-ß activation was completely blocked by the structural protein VP1 of CAV in interferon stimulatory DNA (ISD) or STING-stimulated cells. VP1 was further confirmed as an inhibitor by interacting with interferon regulatory factor 7 (IRF7) by binding its C-terminal 143-492 aa region. IRF7 dimerization induced by TANK binding kinase 1 (TBK1) could be inhibited by VP1 in a dose-dependent manner. Together, our study demonstrates that CAV VP1 is an effective inhibitor that interacts with IRF7 and antagonizes cGAS-STING pathway-mediated IFN-ß activation. These findings reveal a new mechanism of immune evasion by CAV.


Subject(s)
Chicken anemia virus , Interferon Type I , Animals , Chicken anemia virus/genetics , Interferon-beta/genetics , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Viral Proteins/genetics , Chickens/genetics , Immunity, Innate/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , DNA, Viral
20.
EMBO Rep ; 24(1): e55387, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36394357

ABSTRACT

Interferon regulatory factor (IRF) 3 and IRF7 are master regulators of type I interferon (IFN-I)-dependent antiviral innate immunity. Upon viral infection, a positive feedback loop is formed, wherein IRF7 promotes further induction of IFN-I in the later stage. Thus, it is critical to maintain a suitably low level of IRF7 to avoid the hyperproduction of IFN-I. In this study, we find that early expression of IFN-I-dependent STAT1 promotes the expression of XAF1 and that XAF1 is associated specifically with IRF7 and inhibits the activity of XIAP. XAF1-knockout and XIAP-transgenic mice display resistance to viral infection, and this resistance is accompanied by increases in IFN-I production and IRF7 stability. Mechanistically, we find that the XAF1-XIAP axis controls the activity of KLHL22, an adaptor of the BTB-CUL3-RBX1 E3 ligase complex through a ubiquitin-dependent pathway. CUL3-KLHL22 directly targets IRF7 and catalyzes its K48-linked ubiquitination and proteasomal degradation. These findings reveal unexpected functions of the XAF1-XIAP axis and KLHL22 in the regulation of IRF7 stability and highlight an important target for antiviral innate immunity.


Subject(s)
Interferon Type I , Virus Diseases , Mice , Animals , Virus Diseases/genetics , Antiviral Agents , Immunity, Innate , Ubiquitination , Interferon Regulatory Factor-7/genetics , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...