Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.281
Filter
1.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 563-569, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825901

ABSTRACT

Objective: To analyze the clinicopathological features and differential diagnosis of large B-cell lymphoma with IRF4 rearrangement, aiming enhance its recognition and prevent misdiagnosis. Methods: The clinicopathological features, immunophenotype, and fluorescence in situ hybridization (FISH) results of six cases diagnosed with IRF4 rearrangement-positive B-cell lymphoma at the Affiliated Hospital of Xuzhou Medical University from 2015 to 2023 were retrospectively analyzed. Additionally, a comprehensive review of the literature was conducted. Results: Six patients with IRF4 rearrangement-positive large B-cell lymphoma were included. Patients 1 to 5 included three males and two females with a median age of 19 years ranging from 11 to 34 years. Four patients presented with head and neck lesions, while the other one had a breast nodule; all were in clinical Ann Arbor stages I to Ⅱ. Morphologically, entirely diffuse pattern was present in two cases, purely follicular pattern in one case, and diffuse and follicular patterns in other two cases. The tumor cells, predominantly centroblasts mixed with some irregular centrocytes, were of medium to large size, with a starry sky appearance observed in two cases. Immunophenotyping revealed all cases were positive for bcl-6 and MUM1, with a Ki-67 index ranging from 70% to 90%, and CD10 was positive in two cases. IRF4 rearrangement was confirmed in all cases by FISH analysis, with dual IRF4/bcl-6 rearrangements identified in two cases, leading to a diagnosis of LBCL-IRF4. Case 6, a 39-year-old female with a tonsillar mass and classified as clinical Ann Arbor stage Ⅳ, displayed predominantly diffuse large B-cell lymphoma (DLBCL) morphology with 20% high-grade follicular lymphoma characteristics. Immunohistochemistry showed negative CD10 and positive bcl-6/MUM1, with a Ki-67 index of approximately 80%. Triple rearrangements of IRF4/bcl-2/bcl-6 were identified by FISH, leading to a diagnosis of DLBCL with 20% follicular lymphoma (FL). All six patients achieved complete remission after treatment, with no progression or relapse during a follow-up period of 31-100 months. Conclusions: Large B-cell lymphoma with IRF4 rearrangement is a rare entity with pathological features that overlap with those of FL and DLBCL. While IRF4 rearrangement is necessary for diagnosing LBCL-IRF4, it is not specific and requires differentiation from other aggressive B-cell lymphomas with IRF4 rearrangement.


Subject(s)
Gene Rearrangement , In Situ Hybridization, Fluorescence , Interferon Regulatory Factors , Lymphoma, Large B-Cell, Diffuse , Proto-Oncogene Proteins c-bcl-6 , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Diagnosis, Differential , Female , Male , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/metabolism , Adult , Adolescent , Retrospective Studies , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Child , Young Adult , Immunophenotyping , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
2.
Front Cell Infect Microbiol ; 14: 1395716, 2024.
Article in English | MEDLINE | ID: mdl-38716195

ABSTRACT

Objective: The relationship between macrophages and the gut microbiota in patients with atherosclerosis remains poorly defined, and effective biological markers are lacking. This study aims to elucidate the interplay between gut microbial communities and macrophages, and to identify biomarkers associated with the destabilization of atherosclerotic plaques. The goal is to enhance our understanding of the underlying molecular pathways and to pave new avenues for diagnostic approaches and therapeutic strategies in the disease. Methods: This study employed Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis on atherosclerosis datasets to identify macrophage-associated genes and quantify the correlation between these genes and gut microbiota gene sets. The Random Forest algorithm was utilized to pinpoint PLEK, IRF8, BTK, CCR1, and CD68 as gut microbiota-related macrophage genes, and a nomogram was constructed. Based on the top five genes, a Non-negative Matrix Factorization (NMF) algorithm was applied to construct gut microbiota-related macrophage clusters and analyze their potential biological alterations. Subsequent single-cell analyses were conducted to observe the expression patterns of the top five genes and the interactions between immune cells. Finally, the expression profiles of key molecules were validated using clinical samples from atherosclerosis patients. Results: Utilizing the Random Forest algorithm, we ultimately identified PLEK, IRF8, CD68, CCR1, and BTK as gut microbiota-associated macrophage genes that are upregulated in atherosclerotic plaques. A nomogram based on the expression of these five genes was constructed for use as an auxiliary tool in clinical diagnosis. Single-cell analysis confirmed the specific expression of gut microbiota-associated macrophage genes in macrophages. Clinical samples substantiated the high expression of PLEK in unstable atherosclerotic plaques. Conclusion: Gut microbiota-associated macrophage genes (PLEK, IRF8, CD68, CCR1, and BTK) may be implicated in the pathogenesis of atherosclerotic plaques and could serve as diagnostic markers to aid patients with atherosclerosis.


Subject(s)
Algorithms , Atherosclerosis , Biomarkers , Gastrointestinal Microbiome , Machine Learning , Macrophages , Plaque, Atherosclerotic , Receptors, CCR1 , Single-Cell Analysis , Humans , Macrophages/metabolism , Macrophages/microbiology , Plaque, Atherosclerotic/microbiology , Biomarkers/metabolism , Single-Cell Analysis/methods , Receptors, CCR1/metabolism , Receptors, CCR1/genetics , Atherosclerosis/microbiology , Atherosclerosis/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Gene Expression Profiling , Gene Regulatory Networks , CD68 Molecule , Interferon Regulatory Factors
3.
Clin Exp Pharmacol Physiol ; 51(7): e13868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38745265

ABSTRACT

Cervical cancer (CC) is a gynaecological malignancy tumour that seriously threatens women's health. Recent evidence has identified that interferon regulatory factor 5 (IRF5), a nucleoplasm shuttling protein, is a pivotal transcription factor regulating the growth and metastasis of various human tumours. This study aimed to investigate the function and molecular basis of IRF5 in CC development. IRF5, protein phosphatase 6 catalytic subunit (PPP6C) and methyltransferase-like 3 (METTL3) mRNA levels were evaluated by quantitative real-time (qRT)-polymerase chain reaction (PCR). IRF5, PPP6C, METTL3, B-cell lymphoma 2 and Bax protein levels were detected using western blot. Cell proliferation, migration, invasion, angiogenesis and apoptosis were determined by using colony formation, 5-ethynyl-2'-deoxyuridine (EdU), transwell, tube formation assay and flow cytometry assay, respectively. Glucose uptake and lactate production were measured using commercial kits. Xenograft tumour assay in vivo was used to explore the role of IRF5. After JASPAR predication, binding between IRF5 and PPP6C promoter was verified using chromatin immunoprecipitation and dual-luciferase reporter assays. Moreover, the interaction between METTL3 and IRF5 was verified using methylated RNA immunoprecipitation (MeRIP). IRF5, PPP6C and METTL3 were highly expressed in CC tissues and cells. IRF5 silencing significantly inhibited cell proliferation, migration, invasion, angiogenesis and glycolytic metabolism in CC cells, while induced cell apoptosis. Furthermore, the absence of IRF5 hindered tumour growth in vivo. At the molecular level, IRF5 might bind with PPP6C to positively regulate the expression of PPP6C mRNA. Meanwhile, IRF5 was identified as a downstream target of METTL3-mediated m6A modification. METTL3-mediated m6A modification of mRNA might promote CC malignant progression by regulating PPP6C, which might provide a promising therapeutic target for CC treatment.


Subject(s)
Cell Proliferation , Disease Progression , Interferon Regulatory Factors , Methyltransferases , Up-Regulation , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Cell Line, Tumor , Animals , Cell Proliferation/genetics , Mice , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Cell Movement/genetics , Mice, Nude , Neoplasm Invasiveness , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism
4.
Nat Commun ; 15(1): 4232, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762479

ABSTRACT

Toll-like receptor 9 (TLR9) recognizes bacterial, viral and self DNA and play an important role in immunity and inflammation. However, the role of TLR9 in obesity is less well-studied. Here, we generate B-cell-specific Tlr9-deficient (Tlr9fl/fl/Cd19Cre+/-, KO) B6 mice and model obesity using a high-fat diet. Compared with control mice, B-cell-specific-Tlr9-deficient mice exhibited increased fat tissue inflammation, weight gain, and impaired glucose and insulin tolerance. Furthermore, the frequencies of IL-10-producing-B cells and marginal zone B cells were reduced, and those of follicular and germinal center B cells were increased. This was associated with increased frequencies of IFNγ-producing-T cells and increased follicular helper cells. In addition, gut microbiota from the KO mice induced a pro-inflammatory state leading to immunological and metabolic dysregulation when transferred to germ-free mice. Using 16 S rRNA gene sequencing, we identify altered gut microbial communities including reduced Lachnospiraceae, which may play a role in altered metabolism in KO mice. We identify an important network involving Tlr9, Irf4 and Il-10 interconnecting metabolic homeostasis, with the function of B and T cells, and gut microbiota in obesity.


Subject(s)
B-Lymphocytes , Diet, High-Fat , Dysbiosis , Gastrointestinal Microbiome , Inflammation , Interleukin-10 , Mice, Knockout , Obesity , Toll-Like Receptor 9 , Animals , Obesity/immunology , Obesity/microbiology , Obesity/metabolism , Dysbiosis/immunology , Dysbiosis/microbiology , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Inflammation/metabolism , Mice , Diet, High-Fat/adverse effects , Interleukin-10/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Interferon Regulatory Factors
5.
Arch Microbiol ; 206(6): 249, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713385

ABSTRACT

Escherichia coli (E. coli) can induce severe clinical bovine mastitis, which is to blame for large losses experienced by dairy farms. Macrophage polarization into various states is in response to pathogen infections. Lycopene, a naturally occurring hydrocarbon carotenoid, relieved inflammation by controlling M1/M2 status of macrophages. Thus, we wanted to explore the effect of lycopene on polarization states of macrophages in E. coli-induced mastitis. Macrophages were cultivated with lycopene for 24, before E. coli inoculation for 6 h. Lycopene (0.5 µmol/L) significantly enhanced cell viabilities and significantly reduced lactic dehydrogenase (LDH) levels in macrophages, whereas 2 and 3 µmol/L lycopene significantly enhanced LDH activities. Lycopene treatment significantly reduced the increase in LDH release, iNOS, CD86, TNF-α, IL-1ß and phosphatase and tensin homolog (PTEN) expressions in E. coli group. 0.5 µmol/L lycopene significantly increased E. coli-induced downregulation of CD206, arginase I (ARG1), indoleamine 2,3-dioxygenase (IDO), chitinase 3-like 3 (YM1), PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR), p-mTOR, jumonji domain-containing protein-3 (JMJD3) and interferon regulatory factor 4 (IRF4) levels. Moreover, Ginkgolic acid C17:1 (a specific PTEN inhibitor), 740YPDGFR (a specific PI3K activator), SC79 (a specific AKT activator) or CHPG sodium salt (a specific NF-κB activator) significantly decreased CD206, AGR1, IDO and YM1 expressions in lycopene and E. coli-treated macrophages. Therefore, lycopene increased M2 macrophages via inhibiting NOTCH1-PI3K-mTOR-NF-κB-JMJD3-IRF4 pathway in response to E. coli infection in macrophages. These results contribute to revealing the pathogenesis of E. coli-caused bovine mastitis, providing the new angle of the prevention and management of mastitis.


Subject(s)
Escherichia coli Infections , Escherichia coli , Lycopene , Macrophages , Signal Transduction , Animals , Cattle , Female , Mice , Cell Line , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Lycopene/pharmacology , Macrophages/drug effects , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Mastitis, Bovine/microbiology , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
6.
J Immunol Res ; 2024: 8121284, 2024.
Article in English | MEDLINE | ID: mdl-38799117

ABSTRACT

Macroalgae are considered healthy food ingredients due to their content in numerous bioactive compounds, and the traditional use of whole macroalgae in Asian cuisine suggests a contribution to longevity. Although much information is available about the bioactivity of pure algal compounds, such as different polyphenols and polysaccharides, documentation of potential effects of whole macroalgae as part of Western diets is limited. Lifestyle- and age-related diseases, which have a high impact on population health, are closely connected to underlying chronic inflammation. Therefore, we have studied crude extracts of green (Ulva fenestrata) and brown (Saccharina latissima) macroalgae, as two of the most promising food macroalgae in the Nordic countries for their effect on inflammation in vitro. Human macrophage-like reporter THP-1 cells were treated with macroalgae extracts and stimulated with lipopolysaccharide (LPS) to induce inflammatory signalling. Effects of the macroalgae extracts were assessed on transcription factor activity of NF-κB and IRF as well as secretion and/or expression of the cytokines TNF-α and IFN-ß and chemokines IL-8 and CXCL10. The crude macroalgae extracts were further separated into polyphenol-enriched and polysaccharide-enriched fractions, which were also tested for their effect on transcription factor activity. Interestingly, we observed a selective activation of NF-κB, when cells were treated with macroalgae extracts. On the other hand, pretreatment with macroalgae extracts selectively repressed IRF activation when inflammatory signaling was subsequently induced by LPS. This effect was consistent for both tested species as well as for polyphenol- and polysaccharide-enriched fractions, of which the latter had more pronounced effects. Overall, this is the first indication of how macroalgae could modulate inflammatory signaling by selective activation and subsequent repression of different pathways. Further in vitro and in vivo studies of this mechanism would be needed to understand how macroalgae consumption could influence the prevention of noncommunicable, lifestyle- and age-related diseases that are highly related to unbalanced inflammatory processes.


Subject(s)
Inflammation , Macrophages , NF-kappa B , Phaeophyceae , Seaweed , Signal Transduction , Humans , NF-kappa B/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Inflammation/metabolism , Inflammation/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Cytokines/metabolism , THP-1 Cells , Plant Extracts/pharmacology , Lipopolysaccharides , Edible Seaweeds , Laminaria
7.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674095

ABSTRACT

During periodontitis, the extracellular capsule of Porphyromonas gingivalis favors alveolar bone loss by inducing Th1 and Th17 patterns of lymphocyte response in the infected periodontium. Dendritic cells recognize bacterial antigens and present them to T lymphocytes, defining their activation and polarization. Thus, dendritic cells could be involved in the Th1 and Th17 response induced against the P. gingivalis capsule. Herein, monocyte-derived dendritic cells were obtained from healthy individuals and then stimulated with different encapsulated strains of P. gingivalis or two non-encapsulated isogenic mutants. Dendritic cell differentiation and maturation were analyzed by flow cytometry. The mRNA expression levels for distinct Th1-, Th17-, or T-regulatory-related cytokines and transcription factors, as well as TLR2 and TLR4, were assessed by qPCR. In addition, the production of IL-1ß, IL-6, IL-23, and TNF-α was analyzed by ELISA. The encapsulated strains and non-encapsulated mutants of P. gingivalis induced dendritic cell maturation to a similar extent; however, the pattern of dendritic cell response was different. In particular, the encapsulated strains of P. gingivalis induced higher expression of IRF4 and NOTCH2 and production of IL-1ß, IL-6, IL-23, and TNF-α compared with the non-encapsulated mutants, and thus, they showed an increased capacity to trigger Th1 and Th17-type responses in human dendritic cells.


Subject(s)
Cytokines , Dendritic Cells , Porphyromonas gingivalis , Th17 Cells , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Porphyromonas gingivalis/immunology , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Th17 Cells/immunology , Th17 Cells/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Cytokines/metabolism , Cell Differentiation , Th1 Cells/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Cells, Cultured , Bacterial Capsules/immunology , Bacterial Capsules/metabolism , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/microbiology , Tumor Necrosis Factor-alpha/metabolism
8.
Int Immunopharmacol ; 133: 112077, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38615379

ABSTRACT

Interferon regulatory factor 4 (IRF4) is a member of IRF family of transcription factors which mainly regulates the transcription of IFN. IRF4 is restrictively expressed in immune cells such as T and B cells, macrophages, as well as DC. It is essential for the development and function of these cells. Since these cells take part in the homeostasis of the immune system and dysfunction of them contributes to the initiation and progress of systemic lupus erythematosus (SLE), the roles of IRF4 in the SLE development becomes an important topic. Here we systemically discuss the biological characteristics of IRF4 in various immune cells and analyze the pathologic effects of IRF4 alteration in SLE and the potential targeting therapeutics of SLE.


Subject(s)
Interferon Regulatory Factors , Lupus Erythematosus, Systemic , Lupus Erythematosus, Systemic/immunology , Humans , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Animals , Macrophages/immunology , T-Lymphocytes/immunology , B-Lymphocytes/immunology , Dendritic Cells/immunology
9.
Dev Comp Immunol ; 156: 105181, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636698

ABSTRACT

Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.


Subject(s)
Autophagy , Interferon Regulatory Factor-7 , Interferon Regulatory Factors , Lysosomes , Rhabdoviridae , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/immunology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Autophagy/immunology , Lysosomes/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Rhabdoviridae/physiology , Rhabdoviridae/immunology , Interferons/metabolism , Poly I-C/immunology , Rhabdoviridae Infections/immunology , Proteolysis , Fish Diseases/immunology , Fish Diseases/virology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Humans , Immunity, Innate
10.
EMBO J ; 43(10): 1947-1964, 2024 May.
Article in English | MEDLINE | ID: mdl-38605225

ABSTRACT

Transcription factors BACH2 and IRF4 are both essential for antibody class-switch recombination (CSR) in activated B lymphocytes, while they oppositely regulate the differentiation of plasma cells (PCs). Here, we investigated how BACH2 and IRF4 interact during CSR and plasma-cell differentiation. We found that BACH2 organizes heterochromatin formation of target gene loci in mouse splenic B cells, including targets of IRF4 activation such as Aicda, an inducer of CSR, and Prdm1, a master plasma-cell regulator. Release of these gene loci from heterochromatin in response to B-cell receptor stimulation was coupled to AKT-mTOR pathway activation. In Bach2-deficient B cells, PC genes' activation depended on IRF4 protein accumulation, without an increase in Irf4 mRNA. Mechanistically, a PU.1-IRF4 heterodimer in activated B cells promoted BACH2 function by inducing gene expression of Bach2 and Pten, a negative regulator of AKT signaling. Elevated AKT activity in Bach2-deficient B cells resulted in IRF4 protein accumulation. Thus, BACH2 and IRF4 mutually modulate the activity of each other, and BACH2 inhibits PC differentiation by both the repression of PC genes and the restriction of IRF4 protein accumulation.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Cell Differentiation , Interferon Regulatory Factors , Plasma Cells , Animals , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Mice , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Plasma Cells/metabolism , Plasma Cells/immunology , Plasma Cells/cytology , Immunoglobulin Class Switching/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/cytology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice, Knockout , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics , Heterochromatin/metabolism , Heterochromatin/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics
11.
Immunity ; 57(5): 1124-1140.e9, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38636522

ABSTRACT

Signaling through Notch receptors intrinsically regulates tumor cell development and growth. Here, we studied the role of the Notch ligand Jagged2 on immune evasion in non-small cell lung cancer (NSCLC). Higher expression of JAG2 in NSCLC negatively correlated with survival. In NSCLC pre-clinical models, deletion of Jag2, but not Jag1, in cancer cells attenuated tumor growth and activated protective anti-tumor T cell responses. Jag2-/- lung tumors exhibited higher frequencies of macrophages that expressed immunostimulatory mediators and triggered T cell-dependent anti-tumor immunity. Mechanistically, Jag2 ablation promoted Nr4a-mediated induction of Notch ligands DLL1/4 on cancer cells. DLL1/4-initiated Notch1/2 signaling in macrophages induced the expression of transcription factor IRF4 and macrophage immunostimulatory functionality. IRF4 expression was required for the anti-tumor effects of Jag2 deletion in lung tumors. Antibody targeting of Jagged2 inhibited tumor growth and activated IRF4-driven macrophage-mediated anti-tumor immunity. Thus, Jagged2 orchestrates immunosuppressive systems in NSCLC that can be overcome to incite macrophage-mediated anti-tumor immunity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Interferon Regulatory Factors , Jagged-2 Protein , Lung Neoplasms , Mice, Knockout , Tumor-Associated Macrophages , Jagged-2 Protein/metabolism , Jagged-2 Protein/genetics , Jagged-2 Protein/immunology , Animals , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Mice , Humans , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Signal Transduction , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Receptors, Notch/metabolism , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Macrophages/immunology , Macrophages/metabolism , Jagged-1 Protein/metabolism , Jagged-1 Protein/genetics , Tumor Escape/immunology
12.
Br J Haematol ; 204(5): 1862-1871, 2024 May.
Article in English | MEDLINE | ID: mdl-38613165

ABSTRACT

Peripheral T-cell lymphomas (PTCL) are morphologically and biologically heterogeneous and a subset expresses CD30, including anaplastic large cell lymphomas (ALCL) and a minority of PTCL, not otherwise specified (PTCL, NOS). ALCL with ALK translocations (ALCL, ALK+) are readily identified by routine diagnostic methods, but differentiating ALCL without ALK translocation (ALCL, ALK-) and PTCL, NOS expressing CD30 (PTCL CD30+) can be challenging. Furthermore, rare PTCL co-express CD30 and CD15 (PTCL CD30+CD15+); some resemble ALCL, ALK- while others resemble classic Hodgkin lymphoma. To explore the relationship between PTCL CD30+CD15+ and ALCL, ALK-, we analysed 19 cases of PTCL with CD30 expression, previously diagnosed as ALCL, ALK- (nine cases) and PTCL CD30+CD15+ (10 cases) for DUSP22/IRF4 rearrangements, coding RNA expression and selected transcriptome analysis using the NanoString nCounter gene expression analysis platform. Unsupervised clustering showed no clear segregation between ALCL, ALK- and PTCL CD30+CD15+. Three cases previously classified as PTCL CD30+CD15+ showed DUSP22/IRF4 rearrangements, favouring a diagnosis of ALCL, ALK-. Our results suggest that cases previously designated PTCL CD30+CD15+, likely fall within the spectrum of ALCL, ALK-; additionally, a subset of ALCL, ALK- with DUSP22/IRF4 rearrangement expresses CD15, consistent with previous reports and expands the immunophenotypic spectrum of this lymphoma subgroup.


Subject(s)
Anaplastic Lymphoma Kinase , Ki-1 Antigen , Lewis X Antigen , Lymphoma, Large-Cell, Anaplastic , Lymphoma, T-Cell, Peripheral , Humans , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/pathology , Lymphoma, Large-Cell, Anaplastic/diagnosis , Ki-1 Antigen/metabolism , Ki-1 Antigen/genetics , Ki-1 Antigen/analysis , Lymphoma, T-Cell, Peripheral/genetics , Lymphoma, T-Cell, Peripheral/metabolism , Lymphoma, T-Cell, Peripheral/pathology , Lymphoma, T-Cell, Peripheral/diagnosis , Male , Female , Middle Aged , Adult , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Lewis X Antigen/analysis , Lewis X Antigen/metabolism , Aged , Dual-Specificity Phosphatases/genetics , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mitogen-Activated Protein Kinase Phosphatases/genetics , Young Adult , Gene Rearrangement
13.
Cell Rep ; 43(4): 114107, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38613785

ABSTRACT

The production of type 1 conventional dendritic cells (cDC1s) requires high expression of the transcription factor IRF8. Three enhancers at the Irf8 3' region function in a differentiation stage-specific manner. However, whether and how these enhancers interact physically and functionally remains unclear. Here, we show that the Irf8 3' enhancers directly interact with each other and contact the Irf8 gene body during cDC1 differentiation. The +56 kb enhancer, which functions from multipotent progenitor stages, activates the other 3' enhancers through an IRF8-dependent transcription factor program, that is, in trans. Then, the +32 kb enhancer, which operates in cDC1-committed cells, reversely acts in cis on the other 3' enhancers to maintain the high expression of Irf8. Indeed, mice with compound heterozygous deletion of the +56 and +32 kb enhancers are unable to generate cDC1s. These results illustrate how multiple enhancers cooperate to induce a lineage-determining transcription factor gene during cell differentiation.


Subject(s)
Cell Differentiation , Dendritic Cells , Enhancer Elements, Genetic , Interferon Regulatory Factors , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Animals , Dendritic Cells/metabolism , Dendritic Cells/cytology , Enhancer Elements, Genetic/genetics , Mice , Mice, Inbred C57BL
14.
Chin J Dent Res ; 27(1): 29-38, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546517

ABSTRACT

Non-syndromic orofacial clefts (NSOCs) are the most common craniofacial malformation. In the complex aetiology and pathogenesis of NSOCs, genetic factors play a crucial role and IRF6, located at chromosome 1q32.2, is the best documented NSOC susceptibility gene. IRF6 is a key factor in oral maxillofacial development and known to contribute the most in NSOCs. It is essential to conduct a complete review of the existing results on IRF6 to further understand its role in the pathogenesis of NSOCs. Thus, the present authors summarised the research progress on the mechanism of IRF6 in NSOCs from both genetic and functional perspectives in this review.


Subject(s)
Cleft Lip , Cleft Palate , Humans , Cleft Lip/genetics , Cleft Palate/genetics , Chromosomes, Human, Pair 2 , Maxillofacial Development , Interferon Regulatory Factors/genetics
15.
Clin Immunol ; 262: 110194, 2024 May.
Article in English | MEDLINE | ID: mdl-38508295

ABSTRACT

Pathologic type I interferon (T1IFN) expression is a key feature in systemic lupus erythematosus (SLE) that associates with disease activity. When compared to adult-onset disease, juvenile-onset (j)SLE is characterized by increased disease activity and damage, which likely relates to increased genetic burden. To identify T1IFN-associated gene polymorphisms (TLR7, IRAK1, miR-3142/miR-146a, IRF5, IRF7, IFIH1, IRF8, TYK2, STAT4), identify long-range linkage disequilibrium and gene:gene interrelations, 319 jSLE patients were genotyped using panel sequencing. Coupling phenotypic quantitative trait loci (QTL) analysis identified 10 jSLE QTL that associated with young age at onset (<12 years; IRAK1 [rs1059702], TLR7 [rs3853839], IFIH1 [rs11891191, rs1990760, rs3747517], STAT4 [rs3021866], TYK2 [rs280501], IRF8 [rs1568391, rs6638]), global disease activity (SLEDAI-2 K >10; IFIH1 [rs1990760], STAT4 [rs3021866], IRF8 [rs903202, rs1568391, rs6638]), and mucocutaneous involvement (TLR7 [rs3853839], IFIH1 [rs11891191, rs1990760]). This study suggests T1IFN-associated polymorphisms and gene:gene interrelations in jSLE. Genotyping of jSLE patients may allow for individualized treatment and care.


Subject(s)
Interferon Type I , Lupus Erythematosus, Systemic , MicroRNAs , Adult , Humans , Child , Interferon-Induced Helicase, IFIH1 , Interferon Type I/genetics , Epistasis, Genetic , Toll-Like Receptor 7/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/complications , Interferon Regulatory Factors/genetics
16.
Sci Total Environ ; 927: 171969, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38547998

ABSTRACT

Frequent exposure to sea spray aerosols (SSA) containing marine microorganisms and bioactive compounds may influence human health. However, little is known about potential immunostimulation by SSA exposure. This study focuses on the effects of marine bacteria and endotoxins in SSA on several receptors and transcription factors known to play a key role in the human innate immune system. SSA samples were collected in the field (Ostend, Belgium) or generated in the lab using a marine aerosol reference tank (MART). Samples were characterized by their sodium contents, total bacterial counts, and endotoxin concentrations. Human reporter cells were exposed to SSA to investigate the activation of toll-like receptor 4 (TLR4) in HEK-Blue hTLR4 cells and TLR2/6 in HEK-Blue hTLR2/6 cells, as well as the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRF) in THP1-Dual monocytes. These responses were then correlated to the total bacterial counts and endotoxin concentrations to explore dose-effect relationships. Field SSA contained from 3.0 × 103 to 6.0 × 105 bacteria/m3 air (averaging 2.0 ± 1.9 × 105 bacteria/m3 air) and an endotoxin concentration ranging from 7 to 1217 EU/m3 air (averaging 389 ± 434 EU/m3 air). In contrast, MART SSA exhibited elevated levels of total bacterial count (from 2.0 × 105 to 2.4 × 106, averaging 7.3 ± 5.5 × 105 cells/m3 air) and endotoxin concentration from 536 to 2191 (averaging 1310 ± 513 EU/m3 air). SSA samples differentially activated TLR4, TLR2/6, NF-κB and IRF. These immune responses correlated dose-dependently with the total bacterial counts, endotoxin levels, or both. This study sheds light on the immunostimulatory potential of SSA and its underlying mechanisms, highlighting the need for further research to deepen our understanding of the health implications of SSA exposure.


Subject(s)
Aerosols , Endotoxins , NF-kappa B , Humans , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Interferon Regulatory Factors/metabolism , Toll-Like Receptor 2/metabolism , Bacteria , Air Pollutants , Belgium , Immunity, Innate
17.
BMC Pulm Med ; 24(1): 130, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491484

ABSTRACT

Bronchopulmonary dysplasia (BPD) is characterized by alveolar dysplasia, and evidence indicates that interferon regulatory factor 4 (IRF4) is involved in the pathogenesis of various inflammatory lung diseases. Nonetheless, the significance and mechanism of IRF4 in BPD remain unelucidated. Consequently, we established a mouse model of BPD through hyperoxia exposure, and ELISA was employed to measure interleukin-17 A (IL-17 A) and interleukin-6 (IL-6) expression levels in lung tissues. Western blotting was adopted to determine the expression of IRF4, surfactant protein C (SP-C), and podoplanin (T1α) in lung tissues. Flow cytometry was utilized for analyzing the percentages of FOXP3+ regulatory T cells (Tregs) and FOXP3+RORγt+ Tregs in CD4+ T cells in lung tissues to clarify the underlying mechanism. Our findings revealed that BPD mice exhibited disordered lung tissue structure, elevated IRF4 expression, decreased SP-C and T1α expression, increased IL-17 A and IL-6 levels, reduced proportion of FOXP3+ Tregs, and increased proportion of FOXP3+RORγt+ Tregs. For the purpose of further elucidating the effect of IRF4 on Treg phenotype switching induced by hyperoxia in lung tissues, we exposed neonatal mice with IRF4 knockout to hyperoxia. These mice exhibited regular lung tissue structure, increased proportion of FOXP3+ Tregs, reduced proportion of FOXP3+RORγt+ Tregs, elevated SP-C and T1α expression, and decreased IL-17 A and IL-6 levels. In conclusion, our findings demonstrate that IRF4-mediated Treg phenotype switching in lung tissues exacerbates alveolar epithelial cell injury under hyperoxia exposure.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Animals , Mice , Alveolar Epithelial Cells/pathology , T-Lymphocytes, Regulatory/metabolism , Interleukin-17/metabolism , Interleukin-6/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Hyperoxia/complications , Bronchopulmonary Dysplasia/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Phenotype , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
18.
J Ovarian Res ; 17(1): 64, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493179

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is a severe gynecological malignancy with significant diagnostic and therapeutic challenges. The discovery of reliable cancer biomarkers can be used to adjust diagnosis and improve patient care. However, serous OC lacks effective biomarkers. We aimed to identify novel biomarkers for OC and their pathogenic causes. METHODS: The present study used the differentially expressed genes (DEGs) obtained from the "Limma" package and WGCNA modules for intersection analysis to obtain DEGs in OC. Three hub genes were identified-claudin 3 (CLDN3), interferon regulatory factor 6 (IRF6), and prostasin (PRSS8)-by searching for hub genes through the PPI network and verifying them in GSE14407, GSE18520, GSE66957, and TCGA + GTEx databases. The correlation between IRF6 and the prognosis of OC patients was further confirmed in Kaplan-Miller Plotter. RT-qPCR and IHC confirmed the RNA and protein levels of IRF6 in the OC samples. The effect of IRF6 on OC was explored using transwell invasion and scratch wound assays. Finally, we constructed a ceRNA network of hub genes and used bioinformatics tools to predict drug sensitivity. RESULTS: The joint analysis results of TCGA, GTEx, and GEO databases indicated that IRF6 RNA and protein levels were significantly upregulated in serous OC and were associated with OS and PFS. Cell function experiments revealed that IRF6 knockdown inhibited SKOV3 cell proliferation, migration and invasion. CONCLUSION: IRF6 is closely correlated with OC development and progression and could be considered a novel biomarker and therapeutic target for OC patients.


Subject(s)
Biomarkers, Tumor , Ovarian Neoplasms , Humans , Female , Prognosis , Biomarkers, Tumor/genetics , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial , RNA , Interferon Regulatory Factors/genetics
19.
Biochemistry ; 63(6): 767-776, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38439718

ABSTRACT

Interferon regulatory factor 4 (IRF4) is a crucial transcription factor that plays a vital role in lymphocyte development, including in the fate-determining steps in terminal differentiation. It is also implicated in the development of lymphoid tumors such as multiple myeloma and adult T-cell leukemia. IRF4 can form a homodimer and multiple heterocomplexes with other transcription factors such as purine-rich box1 and activator protein 1. Each protein complex binds to specific DNA sequences to regulate a distinct set of genes. However, the precise relationship among these complex formations remains unclear. Herein, we investigated the abilities of IRF4 proteins with functional mutations in the IRF-association domain and autoinhibitory region to form complexes using luciferase reporter assays. The assays allowed us to selectively assess the activity of each complex. Our results revealed that certain IRF-association domain mutants, previously known to have impaired heterocomplex formation, maintained or even enhanced homodimer activity. This discrepancy suggests that the mutated amino acid residues selectively influence homodimer activity. Conversely, a phosphomimetic serine mutation in the autoinhibitory region displayed strong activating effects in all complexes. Furthermore, we observed that partner proteins involved in heterocomplex formation could disrupt the activity of the homodimer, suggesting a potential competition between homocomplexes and heterocomplexes. Our findings provide new insights into the mechanistic function of IRF4.


Subject(s)
Gene Expression Regulation , Interferon Regulatory Factors , Base Sequence , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mutation , Transcription Factor AP-1/metabolism , Humans , HEK293 Cells
20.
Blood Adv ; 8(9): 2217-2234, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38457926

ABSTRACT

ABSTRACT: Multiple myeloma (MM) cells are addicted to MYC and its direct transactivation targets IRF4 for proliferation and survival. MYC and IRF4 are still considered "undruggable," as most small-molecule inhibitors suffer from low potency, suboptimal pharmacokinetic properties, and undesirable off-target effects. Indirect inhibition of MYC/IRF4 emerges as a therapeutic vulnerability in MM. Here, we uncovered an unappreciated tumor-suppressive role of C-terminal binding protein 2 (CTBP2) in MM via strong inhibition of the MYC-IRF4 axis. In contrast to epithelial cancers, CTBP2 is frequently downregulated in MM, in association with shortened survival, hyperproliferative features, and adverse clinical outcomes. Restoration of CTBP2 exhibited potent antitumor effects against MM in vitro and in vivo, with marked repression of the MYC-IRF4 network genes. Mechanistically, CTBP2 impeded the transcription of MYC and IRF4 by histone H3 lysine 27 deacetylation (H3K27ac) and indirectly via activation of the MYC repressor IFIT3. In addition, activation of the interferon gene signature by CTBP2 suggested its concomitant immunomodulatory role in MM. Epigenetic studies have revealed the contribution of polycomb-mediated silencing and DNA methylation to CTBP2 inactivation in MM. Notably, inhibitors of Enhance of zeste homolog 2, histone deacetylase, and DNA methyltransferase, currently under evaluation in clinical trials, were effective in restoring CTBP2 expression in MM. Our findings indicated that the loss of CTBP2 plays an essential role in myelomagenesis and deciphers an additional mechanistic link to MYC-IRF4 dysregulation in MM. We envision that the identification of novel critical regulators will facilitate the development of selective and effective approaches for treating this MYC/IRF4-addicted malignancy.


Subject(s)
Alcohol Oxidoreductases , Co-Repressor Proteins , Interferon Regulatory Factors , Multiple Myeloma , Proto-Oncogene Proteins c-myc , Animals , Humans , Mice , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/antagonists & inhibitors , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Multiple Myeloma/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/drug effects , Tumor Suppressor Proteins/metabolism , Co-Repressor Proteins/antagonists & inhibitors , Co-Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...