Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.482
Filter
1.
Nat Commun ; 15(1): 4484, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802340

ABSTRACT

Deciphering the intricate dynamic events governing type I interferon (IFN) signaling is critical to unravel key regulatory mechanisms in host antiviral defense. Here, we leverage TurboID-based proximity labeling coupled with affinity purification-mass spectrometry to comprehensively map the proximal human proteomes of all seven canonical type I IFN signaling cascade members under basal and IFN-stimulated conditions. This uncovers a network of 103 high-confidence proteins in close proximity to the core members IFNAR1, IFNAR2, JAK1, TYK2, STAT1, STAT2, and IRF9, and validates several known constitutive protein assemblies, while also revealing novel stimulus-dependent and -independent associations between key signaling molecules. Functional screening further identifies PJA2 as a negative regulator of IFN signaling via its E3 ubiquitin ligase activity. Mechanistically, PJA2 interacts with TYK2 and JAK1, promotes their non-degradative ubiquitination, and limits the activating phosphorylation of TYK2 thereby restraining downstream STAT signaling. Our high-resolution proximal protein landscapes provide global insights into the type I IFN signaling network, and serve as a valuable resource for future exploration of its functional complexities.


Subject(s)
Interferon Type I , Janus Kinase 1 , Receptor, Interferon alpha-beta , STAT2 Transcription Factor , Signal Transduction , TYK2 Kinase , Ubiquitination , Humans , Interferon Type I/metabolism , TYK2 Kinase/metabolism , Receptor, Interferon alpha-beta/metabolism , Janus Kinase 1/metabolism , Phosphorylation , STAT2 Transcription Factor/metabolism , HEK293 Cells , STAT1 Transcription Factor/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Proteome/metabolism , Ubiquitin-Protein Ligases/metabolism
2.
Anticancer Res ; 44(6): 2577-2585, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821598

ABSTRACT

BACKGROUND/AIM: Nuclear factor erythroid-derived 2-related factor-2 (NRF2) is a transcription factor that regulates stress response genes. It negatively regulates the immune system by acting as a transcriptional repressor of inflammatory genes or suppressing type I interferon (IFN) production pathways. NRF2 is often over-expressed in some tumors, including non-small cell lung cancer, and modulates these tumors via an immune-cold microenvironment. Thus, strategies to convert cold tumors into hot tumors are effective for cancer treatment. MATERIALS AND METHODS: NRF2 was knocked-down or over-expressed in human cancer cells (A549, HeLa, H1299, H1650) and mouse mammary adenocarcinoma TS/A cells. Cells were irradiated or transfected with poly(I:C), and changes in type I IFN levels were examined using quantitative real-time polymerase chain reaction and western blotting. Cytosolic DNA was assayed via PicoGreen staining and immune and cancer cells were co-cultured. RESULTS: Regulation of NRF2 expression altered type I IFN levels in the human lung cancer cell line A549 and several solid tumors. Down-regulation of NRF2 resulted in increased levels of cytosolic DNA and activated the cGAS-STING pathway. We confirmed that type I IFN was induced in NRF2-down-regulated tumor cells using ionizing radiation (IR). Furthermore, when dendritic cells and macrophages were co-cultured with IR-exposed NRF2 knockdown tumor cells, the immune cells produced more IFNB1 and CXCL10. CONCLUSION: The immunosuppressive tumor cell environment is improved by NRF2 down-regulation, and IR treatment may promote immune cell signaling activation.


Subject(s)
Interferon Type I , NF-E2-Related Factor 2 , Radiation, Ionizing , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Interferon Type I/metabolism , Animals , Mice , Cell Line, Tumor , A549 Cells , Lung Neoplasms/radiotherapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Tumor Microenvironment/immunology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Macrophages/immunology , Macrophages/metabolism
3.
PLoS Pathog ; 20(5): e1012125, 2024 May.
Article in English | MEDLINE | ID: mdl-38696536

ABSTRACT

Major 5'-terminally deleted (5'TD) RNA forms of group-B coxsackievirus (CVB-5'TD) has been associated with myocarditis in both mice and humans. Although it is known that interferon-ß (IFN-ß) signaling is critical for an efficient innate immune response against CVB-induced myocarditis, the link between CVB-5'TD RNA forms and type I IFN signaling in cardiomyocytes remains to be explored. In a mouse model of CVB3/28-induced myocarditis, major early-emerging forms of CVB-5'TD RNA have been characterized as replicative viral populations that impair IFN-ß production in the heart. Synthetic CVB3/28 RNA forms mimicking each of these major 5'TD virus populations were transfected in mice and have been shown to modulate innate immune responses in the heart and to induce myocarditis in mice. Remarkably, transfection of synthetic viral RNA with deletions in the secondary structures of the 5'-terminal CVB3 RNA domain I, modifying stem-loops "b", "c" or "d", were found to impair IFN-ß production in human cardiomyocytes. In addition, the activation of innate immune response by Poly(I:C), was found to restore IFN-ß production and to reduce the burden of CVB-5'TD RNA-forms in cardiac tissues, thereby reducing the mortality rate of infected mice. Overall, our results indicate that major early-emerging CVB3 populations deleted in the domain I of genomic RNA, in the 5' noncoding region, modulate the activation of the type I IFN pathway in cardiomyocytes and induce myocarditis in mice. These findings shed new light on the role of replicative CVB-5'TD RNA forms as key pathophysiological factors in CVB-induced human myocarditis.


Subject(s)
Coxsackievirus Infections , Enterovirus B, Human , Interferon Type I , Myocarditis , Myocytes, Cardiac , RNA, Viral , Myocarditis/virology , Myocarditis/immunology , Myocarditis/genetics , Animals , Myocytes, Cardiac/virology , Myocytes, Cardiac/metabolism , Mice , Enterovirus B, Human/immunology , Coxsackievirus Infections/immunology , Coxsackievirus Infections/virology , Coxsackievirus Infections/genetics , Interferon Type I/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Immunity, Innate , Signal Transduction , Interferon-beta/metabolism , Interferon-beta/genetics , Interferon-beta/immunology , Male , 5' Untranslated Regions
4.
Front Immunol ; 15: 1380220, 2024.
Article in English | MEDLINE | ID: mdl-38799458

ABSTRACT

African swine fever (ASF) is an acute hemorrhagic and devastating infectious disease affecting domestic pigs and wild boars. It is caused by the African swine fever virus (ASFV), which is characterized by genetic diversity and sophisticated immune evasion strategies. To facilitate infection, ASFV encodes multiple proteins to antagonize host innate immune responses, thereby contributing to viral virulence and pathogenicity. The molecular mechanisms employed by ASFV-encoded proteins to modulate host antiviral responses have not been comprehensively elucidated. In this study, it was observed that the ASFV MGF505-6R protein, a member of the multigene family 505 (MGF505), effectively suppressed the activation of the interferon-beta (IFN-ß) promoter, leading to reduced mRNA levels of antiviral genes. Additional evidence has revealed that MGF505-6R antagonizes the cGAS-STING signaling pathway by interacting with the stimulator of interferon genes (STING) for degradation in the autophagy-lysosomal pathway. The domain mapping revealed that the N-terminal region (1-260aa) of MGF505-6R is the primary domain responsible for interacting with STING, while the CTT domain of STING is crucial for its interaction with MGF505-6R. Furthermore, MGF505-6R also inhibits the activation of STING by reducing the K63-linked polyubiquitination of STING, leading to the disruption of STING oligomerization and TANK binding kinase 1 (TBK1) recruitment, thereby impairing the phosphorylation and nuclear translocation of interferon regulatory factor 3 (IRF3). Collectively, our study elucidates a novel strategy developed by ASFV MGF505-6R to counteract host innate immune responses. This discovery may offer valuable insights for further exploration of ASFV immune evasion mechanisms and antiviral strategies.


Subject(s)
African Swine Fever Virus , African Swine Fever , Membrane Proteins , Viral Proteins , Animals , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Swine , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , African Swine Fever/immunology , African Swine Fever/virology , African Swine Fever/metabolism , Viral Proteins/immunology , Viral Proteins/metabolism , Viral Proteins/genetics , Humans , Immunity, Innate , Interferon Type I/metabolism , Interferon Type I/immunology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/immunology , Signal Transduction , Proteolysis , HEK293 Cells , Host-Pathogen Interactions/immunology , Immune Evasion , Interferon-beta/metabolism , Interferon-beta/immunology , Interferon-beta/genetics
5.
Cell Rep Med ; 5(5): 101569, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38744279

ABSTRACT

Systemic lupus erythematosus (SLE) displays a hallmark interferon (IFN) signature. Yet, clinical trials targeting type I IFN (IFN-I) have shown variable efficacy, and blocking IFN-II failed to treat SLE. Here, we show that IFN type levels in SLE vary significantly across clinical and transcriptional endotypes. Whereas skin involvement correlated with IFN-I alone, systemic features like nephritis associated with co-elevation of IFN-I, IFN-II, and IFN-III, indicating additive IFN effects in severe SLE. Notably, while high IFN-II/-III levels without IFN-I had a limited effect on disease activity, IFN-II was linked to IFN-I-independent transcriptional profiles (e.g., OXPHOS and CD8+GZMH+ cells), and IFN-III enhanced IFN-induced gene expression when co-elevated with IFN-I. Moreover, dysregulated IFNs do not explain the IFN signature in 64% of patients or clinical manifestations including cytopenia, serositis, and anti-phospholipid syndrome, implying IFN-independent endotypes in SLE. This study sheds light on mechanisms underlying SLE heterogeneity and the variable response to IFN-targeted therapies in clinical trials.


Subject(s)
Interferons , Lupus Erythematosus, Systemic , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Interferons/metabolism , Interferons/genetics , Female , Adult , Male , Transcriptome/genetics , Interferon Type I/metabolism , Interferon Type I/genetics , Middle Aged , Transcription, Genetic , Gene Expression Regulation
6.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791547

ABSTRACT

The COVID-19 pandemic has made assessing vaccine efficacy more challenging. Besides neutralizing antibody assays, systems vaccinology studies use omics technology to reveal immune response mechanisms and identify gene signatures in human peripheral blood mononuclear cells (PBMCs). However, due to their low proportion in PBMCs, profiling the immune response signatures of dendritic cells (DCs) is difficult. Here, we develop a predictive model for evaluating early immune responses in dendritic cells. We establish a THP-1-derived dendritic cell (TDDC) model and stimulate their maturation in vitro with an optimal dose of attenuated yellow fever 17D (YF-17D). Transcriptomic analysis reveals that type I interferon (IFN-I)-induced immunity plays a key role in dendritic cells. IFN-I regulatory biomarkers (IRF7, SIGLEC1) and IFN-I-inducible biomarkers (IFI27, IFI44, IFIT1, IFIT3, ISG15, MX1, OAS2, OAS3) are identified and validated in vitro and in vivo. Furthermore, we apply this TDDC approach to various types of vaccines, providing novel insights into their early immune response signatures and their heterogeneity in vaccine recipients. Our findings suggest that a standardizable TDDC model is a promising predictive approach to assessing early immunity in DCs. Further research into vaccine efficacy assessment approaches on various types of immune cells could lead to a systemic regimen for vaccine development in the future.


Subject(s)
Dendritic Cells , Vaccination , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Vaccination/methods , Interferon Type I/metabolism , Interferon Type I/immunology , THP-1 Cells , COVID-19/immunology , COVID-19/prevention & control , Animals , SARS-CoV-2/immunology , Biomarkers , COVID-19 Vaccines/immunology , Gene Expression Profiling , Mice , Transcriptome , Yellow Fever Vaccine/immunology
7.
Hum Mol Genet ; 33(R1): R80-R91, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38779772

ABSTRACT

Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.


Subject(s)
DNA, Mitochondrial , Immunity, Innate , Mitochondria , Signal Transduction , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/immunology , Mitochondria/metabolism , Mitochondria/immunology , Mitochondria/genetics , Animals , Signal Transduction/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Interferon Type I/genetics , Inflammation/immunology , Inflammation/genetics
8.
Nat Commun ; 15(1): 4153, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755212

ABSTRACT

Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis. ADAM9 is implicated in a range of human diseases, including inflammatory diseases; however, its role in viral infection is unknown. Here, we demonstrate that mice lacking ADAM9 are more susceptible to encephalomyocarditis virus (EMCV)-induced death and fail to mount a characteristic type I IFN response. This defect in type I IFN induction is specific to positive-sense, single-stranded RNA (+ ssRNA) viruses and involves melanoma differentiation-associated protein 5 (MDA5)-a key receptor for +ssRNA viruses. Mechanistically, ADAM9 binds to MDA5 and promotes its oligomerization and thereby downstream mitochondrial antiviral-signaling protein (MAVS) activation in response to EMCV RNA stimulation. Our findings identify a role for ADAM9 in the innate antiviral response, specifically MDA5-mediated IFN production, which protects against virus-induced cardiac damage, and provide a potential therapeutic target for treatment of viral myocarditis.


Subject(s)
ADAM Proteins , Cardiovirus Infections , Encephalomyocarditis virus , Immunity, Innate , Interferon Type I , Interferon-Induced Helicase, IFIH1 , Membrane Proteins , Mice, Knockout , Myocarditis , Animals , Encephalomyocarditis virus/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon Type I/metabolism , Interferon Type I/immunology , Cardiovirus Infections/immunology , Cardiovirus Infections/virology , ADAM Proteins/metabolism , ADAM Proteins/genetics , ADAM Proteins/immunology , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , Myocarditis/immunology , Myocarditis/virology , Humans , Mice, Inbred C57BL , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Signal Transduction/immunology , Male , HEK293 Cells
9.
Sci Adv ; 10(20): eadj5428, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748789

ABSTRACT

High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.


Subject(s)
Immunity, Innate , Interferon Type I , Ovarian Neoplasms , Signal Transduction , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Interferon Type I/metabolism , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/immunology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neoplasm Grading , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
10.
J Immunother Cancer ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38749537

ABSTRACT

BACKGROUND: Cancer-intrinsic type I interferon (IFN-I) production triggered by radiotherapy (RT) is mainly dependent on cytosolic double-stranded DNA (dsDNA)-mediated cGAS/STING signaling and increases cancer immunogenicity and enhances the antitumor immune response to increase therapeutic efficacy. However, cGAS/STING deficiency in colorectal cancer (CRC) may suppress the RT-induced antitumor immunity. Therefore, we aimed to evaluate the importance of the dsRNA-mediated antitumor immune response induced by RT in patients with CRC. METHODS: Cytosolic dsRNA level and its sensors were evaluated via cell-based assays (co-culture assay, confocal microscopy, pharmacological inhibition and immunofluorescent staining) and in vivo experiments. Biopsies and surgical tissues from patients with CRC who received preoperative chemoradiotherapy (neoCRT) were collected for multiplex cytokine assays, immunohistochemical analysis and SNP genotyping. We also generated a cancer-specific adenovirus-associated virus (AAV)-IFNß1 construct to evaluate its therapeutic efficacy in combination with RT, and the immune profiles were analyzed by flow cytometry and RNA-seq. RESULTS: Our studies revealed that RT stimulates the autonomous release of dsRNA from cancer cells to activate TLR3-mediated IFN-I signatures to facilitate antitumor immune responses. Patients harboring a dysfunctional TLR3 variant had reduced serum levels of IFN-I-related cytokines and intratumoral CD8+ immune cells and shorter disease-free survival following neoCRT treatment. The engineered cancer-targeted construct AAV-IFNß1 significantly improved the response to RT, leading to systematic eradication of distant tumors and prolonged survival in defective TLR3 preclinical models. CONCLUSION: Our results support that increasing cancer-intrinsic IFNß1 expression is an immunotherapeutic strategy that enhances the RT-induced antitumor immune response in locally patients with advanced CRC with dysfunctional TLR3.


Subject(s)
Colorectal Neoplasms , Interferon Type I , Interferon-beta , RNA, Double-Stranded , Humans , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/immunology , Interferon-beta/metabolism , Mice , Animals , Interferon Type I/metabolism , Signal Transduction , Female , Male
11.
Nat Commun ; 15(1): 4096, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750019

ABSTRACT

The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKß independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Succinates , Animals , Humans , Oncolytic Virotherapy/methods , Succinates/pharmacology , Mice , Cell Line, Tumor , Interferon Type I/metabolism , NF-E2-Related Factor 2/metabolism , Colonic Neoplasms/therapy , Colonic Neoplasms/immunology , Colonic Neoplasms/drug therapy , Antiviral Agents/pharmacology , NF-kappa B/metabolism , I-kappa B Kinase/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Inflammation/drug therapy , Female , Vesicular stomatitis Indiana virus/physiology , Vesicular stomatitis Indiana virus/drug effects , Signal Transduction/drug effects
12.
Proc Natl Acad Sci U S A ; 121(23): e2403796121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38809710

ABSTRACT

Olfactory receptors (Olfr) are G protein-coupled receptors that are normally expressed on olfactory sensory neurons to detect volatile chemicals or odorants. Interestingly, many Olfrs are also expressed in diverse tissues and function in cell-cell recognition, migration, and proliferation as well as immune responses and disease processes. Here, we showed that many Olfr genes were expressed in the mouse spleen, linked to Plasmodium yoelii genetic loci significantly, and/or had genome-wide patterns of LOD scores (GPLSs) similar to those of host Toll-like receptor genes. Expression of specific Olfr genes such as Olfr1386 in HEK293T cells significantly increased luciferase signals driven by IFN-ß and NF-κB promoters, with elevated levels of phosphorylated TBK1, IRF3, P38, and JNK. Mice without Olfr1386 were generated using the CRISPR/Cas9 method, and the Olfr1386-/- mice showed significantly lower IFN-α/ß levels and longer survival than wild-type (WT) littermates after infection with P. yoelii YM parasites. Inhibition of G protein signaling and P38 activity could affect cyclic AMP-responsive element promoter-driven luciferase signals and IFN-ß mRNA levels in HEK293T cells expressing the Olfr1386 gene, respectively. Screening of malaria parasite metabolites identified nicotinamide adenine dinucleotide (NAD) as a potential ligand for Olfr1386, and NAD could stimulate IFN-ß responses and phosphorylation of TBK1 and STAT1/2 in RAW264.7 cells. Additionally, parasite RNA (pRNA) could significantly increase Olfr1386 mRNA levels. This study links multiple Olfrs to host immune response pathways, identifies a candidate ligand for Olfr1386, and demonstrates the important roles of Olfr1386 in regulating type I interferon (IFN-I) responses during malaria parasite infections.


Subject(s)
Interferon Type I , Malaria , Plasmodium yoelii , Receptors, Odorant , Animals , Mice , Malaria/immunology , Malaria/parasitology , Malaria/metabolism , Humans , HEK293 Cells , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Interferon Type I/metabolism , Interferon Type I/immunology , Mice, Knockout , Signal Transduction , Mice, Inbred C57BL
13.
Sci Adv ; 10(22): eadk5011, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38809975

ABSTRACT

Healthy behavioral patterns could modulate organ functions to enhance the body's immunity. However, how exercise regulates antiviral innate immunity remains elusive. Here, we found that exercise promotes type I interferon (IFN-I) production in the liver and enhances IFN-I immune activity of the body. Despite the possibility that many exercise-induced factors could affect IFN-I production, we identified Gpld1 as a crucial molecule, and the liver as the major organ to promote IFN-I production after exercise. Exercise largely loses the efficiency to induce IFN-I in Gpld1-/- mice. Further studies demonstrated that exercise-produced 3-hydroxybutanoic acid (3-HB) critically induces Gpld1 expression in the liver. Gpld1 blocks the PP2A-IRF3 interaction, thus enhancing IRF3 activation and IFN-I production, and eventually improving the body's antiviral ability. This study reveals that exercise improves antiviral innate immunity by linking the liver metabolism to systemic IFN-I activity and uncovers an unknown function of liver cells in innate immunity.


Subject(s)
Immunity, Innate , Interferon Regulatory Factor-3 , Interferon Type I , Liver , Physical Conditioning, Animal , Animals , Liver/metabolism , Liver/immunology , Mice , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Mice, Knockout , Antiviral Agents , Signal Transduction , Mice, Inbred C57BL , Male , Ubiquitins , Cytokines
14.
Virol J ; 21(1): 101, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693578

ABSTRACT

The Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) serves as a key innate immune signaling axis involved in the regulation of various human diseases. It has been found that cGAS-STING pathway can recognize a variety of cytosolic double-stranded DNA (dsDNA), contributing to cause a robust type I interferon response thereby affecting the occurrence and progression of viral infection. Accumulating evidence indicates RNA virus-derived components play an important role in regulating cGAS-STING signaling, either as protective or pathogenic factors in the pathogenesis of diseases. Thus, a comprehensive understanding of the function of RNA virus-derived components in regulating cGAS-STING signaling will provide insights into developing novel therapies. Here, we review the existing literature on cGAS-STING pathway regulated by RNA virus-derived components to propose insights into pharmacologic strategies targeting the cGAS-STING pathway.


Subject(s)
Immunity, Innate , Membrane Proteins , Nucleotidyltransferases , RNA Viruses , Signal Transduction , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , RNA Viruses/physiology , RNA Viruses/immunology , Animals , Interferon Type I/metabolism
15.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690736

ABSTRACT

Pain and inflammation are biologically intertwined responses that warn the body of potential danger. In this issue of the JCI, Defaye, Bradaia, and colleagues identified a functional link between inflammation and pain, demonstrating that inflammation-induced activation of stimulator of IFN genes (STING) in dorsal root ganglia nociceptors reduced pain-like behaviors in a rodent model of inflammatory pain. Utilizing mice with a gain-of-function STING mutation, Defaye, Bradaia, and colleagues identified type I IFN regulation of voltage-gated potassium channels as the mechanism of this pain relief. Further investigation into mechanisms by which proinflammatory pathways can reduce pain may reveal druggable targets and insights into new approaches for treating persistent pain.


Subject(s)
Ganglia, Spinal , Membrane Proteins , Pain , Animals , Mice , Ganglia, Spinal/metabolism , Pain/genetics , Pain/metabolism , Pain/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Humans , Nociceptors/metabolism , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/immunology , Interferon Type I/metabolism , Interferon Type I/genetics , Interferon Type I/immunology
16.
Adv Exp Med Biol ; 1451: 125-137, 2024.
Article in English | MEDLINE | ID: mdl-38801575

ABSTRACT

Poxviruses are notorious for having acquired/evolved numerous genes to counteract host innate immunity. Chordopoxviruses have acquired/evolved at least three different inhibitors of host necroptotic death: E3, which blocks ZBP1-dependent necroptotic cell death, and vIRD and vMLKL that inhibit necroptosis downstream of initial cell death signaling. While this suggests the importance of the necroptotic cell death pathway in inhibiting chordopoxvirus replication, several chordopoxviruses have lost one or more of these inhibitory functions. Monkeypox/mpox virus (MPXV) has lost a portion of the N-terminus of its E3 homologue. The N-terminus of the vaccinia virus E3 homologue serves to inhibit activation of the interferon-inducible antiviral protein, ZBP1. This likely makes MPXV unique among the orthopoxviruses in being sensitive to interferon (IFN) treatment in many mammals, including humans, which encode a complete necroptotic cell death pathway. Thus, IFN sensitivity may be the Achille's Heel for viruses like MPXV that cannot fully inhibit IFN-inducible, ZBP1-dependent antiviral pathways.


Subject(s)
Interferon Type I , Viral Proteins , Humans , Animals , Interferon Type I/immunology , Interferon Type I/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Monkeypox virus/drug effects , Monkeypox virus/physiology , Monkeypox virus/genetics , Immunity, Innate , Necroptosis/drug effects , Signal Transduction/drug effects , Mpox (monkeypox)/virology
17.
J Clin Immunol ; 44(6): 129, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773012

ABSTRACT

Mutations in genes of the DNA polymerase complex have been linked to impaired immunological function next to distinct syndromic features. Biallelic mutations in PRIM1 are associated with a primordial dwarfism syndrome with variable hypogammaglobulinemia. The disease is mostly lethal in infancy due to pulmonary infections as well as hepatic cirrhosis. We studied 3 novel patients with PRIM1-deficiency with a focus on immunological consequences. All three shared dysmorphic features including a prominent forehead, triangular face and bilateral cryptorchidism. P1 carried the novel homozygous PRIM1 splice variant c.103+2T>G, allowing residual protein expression and associated with a mild clinical phenotype. P2 and P3 carried the known homozygous variant c.638+36C>G and died in infancy. Paradoxically, B cell lymphopenia was most pronounced in P1. No other significant lymphocyte abnormalities were detected. Interestingly, all 3 patients showed variable, but intermittently excessive Type I interferon signatures. In summary, the B-cell deficiency in PRIM1-deficiency is markedly variable and the severity of syndromic manifestations is not predictive of the immunological phenotype. We highlight a potential contribution of pathological type I interferon activation to disease pathogenesis which warrants further investigations.


Subject(s)
Alleles , B-Lymphocytes , Mutation , Child, Preschool , Female , Humans , Infant , Male , B-Lymphocytes/immunology , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/diagnosis , Interferon Type I/metabolism , Mutation/genetics , Phenotype
18.
PLoS Pathog ; 20(5): e1012230, 2024 May.
Article in English | MEDLINE | ID: mdl-38776321

ABSTRACT

While macrophage is one of the major type I interferon (IFN-I) producers in multiple tissues during viral infections, it also serves as an important target cell for many RNA viruses. However, the regulatory mechanism for the IFN-I response of macrophages to respond to a viral challenge is not fully understood. Here we report ADAP, an immune adaptor protein, is indispensable for the induction of the IFN-I response of macrophages to RNA virus infections via an inhibition of the conjugation of ubiquitin-like ISG15 (ISGylation) to RIG-I. Loss of ADAP increases RNA virus replication in macrophages, accompanied with a decrease in LPS-induced IFN-ß and ISG15 mRNA expression and an impairment in the RNA virus-induced phosphorylation of IRF3 and TBK1. Moreover, using Adap-/- mice, we show ADAP deficiency strongly increases the susceptibility of macrophages to RNA-virus infection in vivo. Mechanically, ADAP selectively interacts and functionally cooperates with RIG-I but not MDA5 in the activation of IFN-ß transcription. Loss of ADAP results in an enhancement of ISGylation of RIG-I, whereas overexpression of ADAP exhibits the opposite effect in vitro, indicating ADAP is detrimental to the RNA virus-induced ISGylation of RIG-I. Together, our data demonstrate a novel antagonistic activity of ADAP in the cell-intrinsic control of RIG-I ISGylation, which is indispensable for initiating and sustaining the IFN-I response of macrophages to RNA virus infections and replication.


Subject(s)
Adaptor Proteins, Signal Transducing , DEAD Box Protein 58 , Interferon Type I , Macrophages , Mice, Knockout , RNA Virus Infections , Ubiquitins , Animals , Macrophages/virology , Macrophages/metabolism , Macrophages/immunology , Mice , RNA Virus Infections/immunology , RNA Virus Infections/metabolism , Ubiquitins/metabolism , Ubiquitins/genetics , DEAD Box Protein 58/metabolism , Interferon Type I/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cytokines/metabolism , Mice, Inbred C57BL , Humans , Receptors, Immunologic/metabolism , Interferon-beta/metabolism , RNA Viruses/immunology , Interferon Regulatory Factor-3/metabolism
19.
Fish Shellfish Immunol ; 149: 109581, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670412

ABSTRACT

Deubiquitinating enzyme A (DUBA), a member of the ovarian tumor (OTU) subfamily of deubiquitinases (DUBs), is recognized for its negative regulatory role in type I interferon (IFN) expression downstream of Toll-like receptor 3 (TLR3). However, its involvement in the TLR3 signaling pathway in fish remains largely unexplored. In this study, we investigated the regulatory role of DUBA (OmDUBA) in the TLR3 response in rainbow trout (Oncorhynchus mykiss). OmDUBA features a conserved OTU domain, and its expression increased in RTH-149 cells following stimulation with the TLR3 agonist poly(I:C). Gain- and loss-of-function experiments demonstrated that OmDUBA attenuated the activation of TANK-binding kinase 1 (TBK1), resulting in a subsequent reduction in type I IFN expression and IFN-stimulated response element (ISRE) activation in poly(I:C)-stimulated cells. OmDUBA interacted with TRAF3, a crucial mediator in TLR3-mediated type I IFN production. Under poly(I:C) stimulation, there was an augmentation in the K63-linked polyubiquitination of TRAF3, a process significantly inhibited upon OmDUBA overexpression. These findings suggest that OmDUBA may function similarly to its mammalian counterparts in downregulating the poly(I:C)-induced type I IFN response in rainbow trout by removing the K63-linked ubiquitin chain on TRAF3. Our study provides novel insights into the role of fish DUBA in antiviral immunity.


Subject(s)
Fish Proteins , Interferon Type I , Oncorhynchus mykiss , Poly I-C , Signal Transduction , TNF Receptor-Associated Factor 3 , Animals , Oncorhynchus mykiss/immunology , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , TNF Receptor-Associated Factor 3/immunology , Interferon Type I/immunology , Interferon Type I/genetics , Interferon Type I/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Signal Transduction/immunology , Poly I-C/pharmacology , Immunity, Innate , Gene Expression Regulation/immunology , Ubiquitination , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/immunology
20.
Immunity ; 57(5): 1037-1055.e6, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38593796

ABSTRACT

Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.


Subject(s)
Epigenesis, Genetic , Interferon Type I , Lymphocytic Choriomeningitis , Lymphocytic choriomeningitis virus , Memory B Cells , Animals , Interferon Type I/metabolism , Interferon Type I/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Mice , Lymphocytic choriomeningitis virus/immunology , Memory B Cells/immunology , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/genetics , Immunologic Memory/immunology , Chronic Disease , B-Lymphocyte Subsets/immunology , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...