Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.096
Filter
1.
Virol J ; 21(1): 109, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734674

ABSTRACT

BACKGROUND: Syndrome coronavirus-2 (SARS-CoV-2) has developed various strategies to evade the antiviral impact of type I IFN. Non-structural proteins and auxiliary proteins have been extensively researched on their role in immune escape. Nevertheless, the detailed mechanisms of structural protein-induced immune evasion have not been well elucidated. METHODS: Human alveolar basal epithelial carcinoma cell line (A549) was stimulated with polyinosinic-polycytidylic acid (PIC) and independently transfected with four structural proteins expression plasmids, including nucleocapsid (N), spike (S), membrane (M) and envelope (E) proteins. By RT-qPCR and ELISA, the structural protein with the most pronounced inhibitory effects on IFN-ß induction was screened. RNA-sequencing (RNA-Seq) and two differential analysis strategies were used to obtain differentially expressed genes associated with N protein inhibition of IFN-ß induction. Based on DIANA-LncBase and StarBase databases, the interactive competitive endogenous RNA (ceRNA) network for N protein-associated genes was constructed. By combining single-cell sequencing data (GSE158055), lncRNA-miRNA-mRNA axis was further determined. Finally, RT-qPCR was utilized to illustrate the regulatory functions among components of the ceRNA axis. RESULTS: SARS-CoV-2 N protein inhibited IFN-ß induction in human alveolar epithelial cells most significantly compared with other structural proteins. RNA-Seq data analysis revealed genes related to N protein inhibiting IFNs induction. The obtained 858 differentially expressed genes formed the reliable ceRNA network. The function of LINC01002-miR-4324-FRMD8 axis in the IFN-dominated immune evasion was further demonstrated through integrating single-cell sequencing data. Moreover, we validated that N protein could reverse the effect of PIC on LINC01002, FRMD8 and miR-4324 expression, and subsequently on IFN-ß expression level. And LINC01002 could regulate the production of FRMD8 by inhibiting miR-4324. CONCLUSION: SARS-CoV-2 N protein suppressed the induction of IFN-ß by regulating LINC01002 which was as a ceRNA, sponging miR-4324 and participating in the regulation of FRMD8 mRNA. Our discovery provides new insights into early intervention therapy and drug development on SARS-CoV-2 infection.


Subject(s)
COVID-19 , MicroRNAs , RNA, Long Noncoding , SARS-CoV-2 , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , COVID-19/virology , COVID-19/immunology , SARS-CoV-2/genetics , A549 Cells , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Immune Evasion , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , RNA, Competitive Endogenous , Phosphoproteins
2.
FASEB J ; 38(10): e23651, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752537

ABSTRACT

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Subject(s)
Autophagy , Interferon-beta , Intraocular Pressure , Trabecular Meshwork , Autophagy/drug effects , Trabecular Meshwork/metabolism , Trabecular Meshwork/drug effects , Humans , Animals , Mice , Intraocular Pressure/physiology , Interferon-beta/metabolism , Male , Female , Glaucoma/pathology , Glaucoma/metabolism , Glaucoma/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Hearing Loss, Sensorineural/metabolism , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , Mice, Inbred C57BL , Mutation , Optic Atrophy/genetics , Optic Atrophy/metabolism , Optic Atrophy/pathology , Pedigree , Odontodysplasia , Vascular Calcification , Dental Enamel Hypoplasia , Metacarpus/abnormalities , Osteoporosis , Muscular Diseases , Aortic Diseases , Receptors, Immunologic
3.
PLoS Pathog ; 20(5): e1012125, 2024 May.
Article in English | MEDLINE | ID: mdl-38696536

ABSTRACT

Major 5'-terminally deleted (5'TD) RNA forms of group-B coxsackievirus (CVB-5'TD) has been associated with myocarditis in both mice and humans. Although it is known that interferon-ß (IFN-ß) signaling is critical for an efficient innate immune response against CVB-induced myocarditis, the link between CVB-5'TD RNA forms and type I IFN signaling in cardiomyocytes remains to be explored. In a mouse model of CVB3/28-induced myocarditis, major early-emerging forms of CVB-5'TD RNA have been characterized as replicative viral populations that impair IFN-ß production in the heart. Synthetic CVB3/28 RNA forms mimicking each of these major 5'TD virus populations were transfected in mice and have been shown to modulate innate immune responses in the heart and to induce myocarditis in mice. Remarkably, transfection of synthetic viral RNA with deletions in the secondary structures of the 5'-terminal CVB3 RNA domain I, modifying stem-loops "b", "c" or "d", were found to impair IFN-ß production in human cardiomyocytes. In addition, the activation of innate immune response by Poly(I:C), was found to restore IFN-ß production and to reduce the burden of CVB-5'TD RNA-forms in cardiac tissues, thereby reducing the mortality rate of infected mice. Overall, our results indicate that major early-emerging CVB3 populations deleted in the domain I of genomic RNA, in the 5' noncoding region, modulate the activation of the type I IFN pathway in cardiomyocytes and induce myocarditis in mice. These findings shed new light on the role of replicative CVB-5'TD RNA forms as key pathophysiological factors in CVB-induced human myocarditis.


Subject(s)
Coxsackievirus Infections , Enterovirus B, Human , Interferon Type I , Myocarditis , Myocytes, Cardiac , RNA, Viral , Myocarditis/virology , Myocarditis/immunology , Myocarditis/genetics , Animals , Myocytes, Cardiac/virology , Myocytes, Cardiac/metabolism , Mice , Enterovirus B, Human/immunology , Coxsackievirus Infections/immunology , Coxsackievirus Infections/virology , Coxsackievirus Infections/genetics , Interferon Type I/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Immunity, Innate , Signal Transduction , Interferon-beta/metabolism , Interferon-beta/genetics , Interferon-beta/immunology , Male , 5' Untranslated Regions
4.
Front Immunol ; 15: 1380220, 2024.
Article in English | MEDLINE | ID: mdl-38799458

ABSTRACT

African swine fever (ASF) is an acute hemorrhagic and devastating infectious disease affecting domestic pigs and wild boars. It is caused by the African swine fever virus (ASFV), which is characterized by genetic diversity and sophisticated immune evasion strategies. To facilitate infection, ASFV encodes multiple proteins to antagonize host innate immune responses, thereby contributing to viral virulence and pathogenicity. The molecular mechanisms employed by ASFV-encoded proteins to modulate host antiviral responses have not been comprehensively elucidated. In this study, it was observed that the ASFV MGF505-6R protein, a member of the multigene family 505 (MGF505), effectively suppressed the activation of the interferon-beta (IFN-ß) promoter, leading to reduced mRNA levels of antiviral genes. Additional evidence has revealed that MGF505-6R antagonizes the cGAS-STING signaling pathway by interacting with the stimulator of interferon genes (STING) for degradation in the autophagy-lysosomal pathway. The domain mapping revealed that the N-terminal region (1-260aa) of MGF505-6R is the primary domain responsible for interacting with STING, while the CTT domain of STING is crucial for its interaction with MGF505-6R. Furthermore, MGF505-6R also inhibits the activation of STING by reducing the K63-linked polyubiquitination of STING, leading to the disruption of STING oligomerization and TANK binding kinase 1 (TBK1) recruitment, thereby impairing the phosphorylation and nuclear translocation of interferon regulatory factor 3 (IRF3). Collectively, our study elucidates a novel strategy developed by ASFV MGF505-6R to counteract host innate immune responses. This discovery may offer valuable insights for further exploration of ASFV immune evasion mechanisms and antiviral strategies.


Subject(s)
African Swine Fever Virus , African Swine Fever , Membrane Proteins , Viral Proteins , Animals , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Swine , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , African Swine Fever/immunology , African Swine Fever/virology , African Swine Fever/metabolism , Viral Proteins/immunology , Viral Proteins/metabolism , Viral Proteins/genetics , Humans , Immunity, Innate , Interferon Type I/metabolism , Interferon Type I/immunology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/immunology , Signal Transduction , Proteolysis , HEK293 Cells , Host-Pathogen Interactions/immunology , Immune Evasion , Interferon-beta/metabolism , Interferon-beta/immunology , Interferon-beta/genetics
5.
J Immunother Cancer ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38749537

ABSTRACT

BACKGROUND: Cancer-intrinsic type I interferon (IFN-I) production triggered by radiotherapy (RT) is mainly dependent on cytosolic double-stranded DNA (dsDNA)-mediated cGAS/STING signaling and increases cancer immunogenicity and enhances the antitumor immune response to increase therapeutic efficacy. However, cGAS/STING deficiency in colorectal cancer (CRC) may suppress the RT-induced antitumor immunity. Therefore, we aimed to evaluate the importance of the dsRNA-mediated antitumor immune response induced by RT in patients with CRC. METHODS: Cytosolic dsRNA level and its sensors were evaluated via cell-based assays (co-culture assay, confocal microscopy, pharmacological inhibition and immunofluorescent staining) and in vivo experiments. Biopsies and surgical tissues from patients with CRC who received preoperative chemoradiotherapy (neoCRT) were collected for multiplex cytokine assays, immunohistochemical analysis and SNP genotyping. We also generated a cancer-specific adenovirus-associated virus (AAV)-IFNß1 construct to evaluate its therapeutic efficacy in combination with RT, and the immune profiles were analyzed by flow cytometry and RNA-seq. RESULTS: Our studies revealed that RT stimulates the autonomous release of dsRNA from cancer cells to activate TLR3-mediated IFN-I signatures to facilitate antitumor immune responses. Patients harboring a dysfunctional TLR3 variant had reduced serum levels of IFN-I-related cytokines and intratumoral CD8+ immune cells and shorter disease-free survival following neoCRT treatment. The engineered cancer-targeted construct AAV-IFNß1 significantly improved the response to RT, leading to systematic eradication of distant tumors and prolonged survival in defective TLR3 preclinical models. CONCLUSION: Our results support that increasing cancer-intrinsic IFNß1 expression is an immunotherapeutic strategy that enhances the RT-induced antitumor immune response in locally patients with advanced CRC with dysfunctional TLR3.


Subject(s)
Colorectal Neoplasms , Interferon Type I , Interferon-beta , RNA, Double-Stranded , Humans , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/immunology , Interferon-beta/metabolism , Mice , Animals , Interferon Type I/metabolism , Signal Transduction , Female , Male
6.
J Transl Med ; 22(1): 463, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750559

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) have garnered significant interest for their tumor-tropic property, making them potential therapeutic delivery vehicles for cancer treatment. We have previously shown the significant anti-tumour activity in mice preclinical models and companion animals with naturally occurring cancers using non-virally engineered MSCs with a therapeutic transgene encoding cytosine deaminase and uracil phosphoribosyl transferase (CDUPRT) and green fluorescent protein (GFP). Clinical studies have shown improved response rate with combinatorial treatment of 5-fluorouracil and Interferon-beta (IFNb) in peritoneal carcinomatosis (PC). However, high systemic toxicities have limited the clinical use of such a regime. METHODS: In this study, we evaluated the feasibility of intraperitoneal administration of non-virally engineered MSCs to co-deliver CDUPRT/5-Flucytosine prodrug system and IFNb to potentially enhance the cGAS-STING signalling axis. Here, MSCs were engineered to express CDUPRT or CDUPRT-IFNb. Expression of CDUPRT and IFNb was confirmed by flow cytometry and ELISA, respectively. The anti-cancer efficacy of the engineered MSCs was evaluated in both in vitro and in vivo model. ES2, HT-29 and Colo-205 were cocultured with engineered MSCs at various ratio. The cell viability with or without 5-flucytosine was measured with MTS assay. To further compare the anti-cancer efficacy of the engineered MSCs, peritoneal carcinomatosis mouse model was established by intraperitoneal injection of luciferase expressing ES2 stable cells. The tumour burden was measured through bioluminescence tracking. RESULTS: Firstly, there was no changes in phenotypes of MSCs despite high expression of the transgene encoding CDUPRT and IFNb (CDUPRT-IFNb). Transwell migration assays and in-vivo tracking suggested the co-expression of multiple transgenes did not impact migratory capability of the MSCs. The superiority of CDUPRT-IFNb over CDUPRT expressing MSCs was demonstrated in ES2, HT-29 and Colo-205 in-vitro. Similar observations were observed in an intraperitoneal ES2 ovarian cancer xenograft model. The growth of tumor mass was inhibited by ~ 90% and 46% in the mice treated with MSCs expressing CDUPRT-IFNb or CDUPRT, respectively. CONCLUSIONS: Taken together, these results established the effectiveness of MSCs co-expressing CDUPRT and IFNb in controlling and targeting PC growth. This study lay the foundation for the development of clinical trial using multigene-armed MSCs for PC.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Pentosyltransferases , Peritoneal Neoplasms , Transgenes , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Peritoneal Neoplasms/therapy , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/pathology , Humans , Pentosyltransferases/genetics , Pentosyltransferases/metabolism , Cell Line, Tumor , Interferon-beta/metabolism , Interferon-beta/genetics , Xenograft Model Antitumor Assays , Cytosine Deaminase/genetics , Cytosine Deaminase/metabolism , Mice , Female
7.
J Clin Invest ; 134(9)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690737

ABSTRACT

Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-ß response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.


Subject(s)
Membrane Proteins , Nociceptors , Animals , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nociceptors/metabolism , Ganglia, Spinal/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Inflammation/genetics , Inflammation/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pain/metabolism , Pain/genetics , Signal Transduction , Male
8.
PLoS Pathog ; 20(5): e1012230, 2024 May.
Article in English | MEDLINE | ID: mdl-38776321

ABSTRACT

While macrophage is one of the major type I interferon (IFN-I) producers in multiple tissues during viral infections, it also serves as an important target cell for many RNA viruses. However, the regulatory mechanism for the IFN-I response of macrophages to respond to a viral challenge is not fully understood. Here we report ADAP, an immune adaptor protein, is indispensable for the induction of the IFN-I response of macrophages to RNA virus infections via an inhibition of the conjugation of ubiquitin-like ISG15 (ISGylation) to RIG-I. Loss of ADAP increases RNA virus replication in macrophages, accompanied with a decrease in LPS-induced IFN-ß and ISG15 mRNA expression and an impairment in the RNA virus-induced phosphorylation of IRF3 and TBK1. Moreover, using Adap-/- mice, we show ADAP deficiency strongly increases the susceptibility of macrophages to RNA-virus infection in vivo. Mechanically, ADAP selectively interacts and functionally cooperates with RIG-I but not MDA5 in the activation of IFN-ß transcription. Loss of ADAP results in an enhancement of ISGylation of RIG-I, whereas overexpression of ADAP exhibits the opposite effect in vitro, indicating ADAP is detrimental to the RNA virus-induced ISGylation of RIG-I. Together, our data demonstrate a novel antagonistic activity of ADAP in the cell-intrinsic control of RIG-I ISGylation, which is indispensable for initiating and sustaining the IFN-I response of macrophages to RNA virus infections and replication.


Subject(s)
Adaptor Proteins, Signal Transducing , DEAD Box Protein 58 , Interferon Type I , Macrophages , Mice, Knockout , RNA Virus Infections , Ubiquitins , Animals , Macrophages/virology , Macrophages/metabolism , Macrophages/immunology , Mice , RNA Virus Infections/immunology , RNA Virus Infections/metabolism , Ubiquitins/metabolism , Ubiquitins/genetics , DEAD Box Protein 58/metabolism , Interferon Type I/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cytokines/metabolism , Mice, Inbred C57BL , Humans , Receptors, Immunologic/metabolism , Interferon-beta/metabolism , RNA Viruses/immunology , Interferon Regulatory Factor-3/metabolism
9.
Virol J ; 21(1): 107, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38720392

ABSTRACT

Natural immunity is the first defense line of the host immune system, which plays a significant role in combating foreign pathogenic microorganisms. The IFN-ß (interferon-beta) signaling pathway, being a typical example of innate immunity, plays a vital function. This study aimed to elucidate the function of pseudorabies virus (PRV) UL38 protein (unique long region 38) in suppressing the activation of the IFN-ß signaling pathway. The findings from our study indicate that the PRV UL38 protein effectively hampers the activation of IFN-ß by poly (dA: dT) (poly(deoxyadenylic-deoxythymidylic)) and 2'3'-cGAMP (2'-3'-cyclic GMP-AMP). Furthermore, UL38 exhibits spatial co-localization with STING (stimulator of interferon genes) and effectively hinders STING dimerization. Subsequently, STING was downgraded to suppress the production of IFN-ß and ISGs (interferon stimulated genes). Immunoprecipitation analysis revealed that the interaction between UL38 and STING, which subsequently initiated the degradation of STING via selective autophagy mediated by TOLLIP (toll interacting protein). To summarize, this research elucidates the function of UL38 in counteracting the cGAS (cGAMP synthase)-STING-induced IFN-ß pathway. The PRV UL38 protein may attenuate the activation of IFN-ß as a means of regulating the virus's persistence in the host.


Subject(s)
Autophagy , Herpesvirus 1, Suid , Interferon-beta , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Animals , Humans , Cell Line , HEK293 Cells , Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/immunology , Host-Pathogen Interactions , Immunity, Innate , Interferon-beta/metabolism , Interferon-beta/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Pseudorabies/virology , Pseudorabies/metabolism , Pseudorabies/immunology , Viral Proteins/metabolism , Viral Proteins/genetics , Swine , Mesocricetus
10.
J Virol ; 98(5): e0157323, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38572974

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and characterized by dysregulated immune response. Studies have shown that the SARS-CoV-2 accessory protein ORF7b induces host cell apoptosis through the tumor necrosis factor alpha (TNF-α) pathway and blocks the production of interferon beta (IFN-ß). The underlying mechanism remains to be investigated. In this study, we found that ORF7b facilitated viral infection and production, and inhibited the RIG-I-like receptor (RLR) signaling pathway through selectively interacting with mitochondrial antiviral-signaling protein (MAVS). MAVS439-466 region and MAVS Lys461 were essential for the physical association between MAVS and ORF7b, and the inhibition of the RLR signaling pathway by ORF7b. MAVSK461/K63 ubiquitination was essential for the RLR signaling regulated by the MAVS-ORF7b complex. ORF7b interfered with the recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) and the activation of the RLR signaling pathway by MAVS. Furthermore, interfering peptides targeting the ORF7b complex reversed the ORF7b-suppressed MAVS-RLR signaling pathway. The most potent interfering peptide V disrupts the formation of ORF7b tetramers, reverses the levels of the ORF7b-inhibited physical association between MAVS and TRAF6, leading to the suppression of viral growth and infection. Overall, this study provides a mechanism for the suppression of innate immunity by SARS-CoV-2 infection and the mechanism-based approach via interfering peptides to potentially prevent SARS-CoV-2 infection.IMPORTANCEThe pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and continues to be a threat to public health. It is imperative to understand the biology of SARS-CoV-2 infection and find approaches to prevent SARS-CoV-2 infection and ameliorate COVID-19. Multiple SARS-CoV-2 proteins are known to function on the innate immune response, but the underlying mechanism remains unknown. This study shows that ORF7b inhibits the RIG-I-like receptor (RLR) signaling pathway through the physical association between ORF7b and mitochondrial antiviral-signaling protein (MAVS), impairing the K63-linked MAVS polyubiquitination and its recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) to MAVS. The most potent interfering peptide V targeting the ORF7b-MAVS complex may reverse the suppression of the MAVS-mediated RLR signaling pathway by ORF7b and prevent viral infection and production. This study may provide new insights into the pathogenic mechanism of SARS-CoV-2 and a strategy to develop new drugs to prevent SARS-CoV-2 infection.


Subject(s)
Adaptor Proteins, Signal Transducing , COVID-19 , DEAD Box Protein 58 , SARS-CoV-2 , Signal Transduction , TNF Receptor-Associated Factor 6 , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Humans , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , TNF Receptor-Associated Factor 6/metabolism , DEAD Box Protein 58/metabolism , HEK293 Cells , COVID-19/virology , COVID-19/immunology , COVID-19/metabolism , Ubiquitination , Receptors, Immunologic/metabolism , Animals , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Interferon-beta/metabolism , Apoptosis , Immunity, Innate , Tumor Necrosis Factor-alpha/metabolism
11.
J Virol ; 98(5): e0192523, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38624230

ABSTRACT

Recurrent respiratory papillomatosis (RRP) is a rare benign tumor caused mainly by the infection of the respiratory tract epithelial cells by the human papillomavirus (HPV) type 6/11. However, the specific mechanisms underlying the inhibition of the host's innate immune response by HPV remain unclear. For this purpose, we employed single-cell RNA sequencing to analyze the states of various immune cells in RRP samples post-HPV infection and utilized a cellular model of HPV infection to elucidate the mechanisms by which HPV evades the innate immune system in RRP. The results revealed distinct immune cell heterogeneity in RRP and demonstrated that HPV11 E7 can inhibit the phosphorylation of the stimulator of interferon genes protein, thereby circumventing the body's antiviral response. In vitro co-culture experiments demonstrated that stimulation of macrophages to produce interferon-beta induced the death of HPV-infected epithelial cells, also reducing HPV viral levels. In summary, our study preliminarily identifies the potential mechanisms by which HPV evades the host's antiviral immune response, as well as the latent antiviral functions exhibited by activated macrophages. This research serves as an initial exploration of antiviral immune evasion in RRP, laying a solid foundation for investigating immunotherapeutic approaches for the disease.IMPORTANCESurgical tumor reduction is the most common treatment for recurrent respiratory papillomatosis (RRP). One of the characteristics of RRP is its persistent recurrence, and multiple surgeries are usually required to control the symptoms. Recently, some adjuvant therapies have shown effectiveness, but none of them can completely clear human papillomavirus (HPV) infection, and thus, a localized antiviral immune response is significant for disease control; after all, HPV infection is limited to the epithelium. Inhibition of interferon-beta (IFN-ß) secretion by HPV11 E7 viral proteins in epithelial cells by affecting stimulator of interferon genes phosphorylation may account for the persistence of low-risk HPV replication in the RRP. Moreover, suppression of the IFN-I pathway in RRP cell types might provide clues regarding the hyporeactive function of local immune cells. However, activation of macrophage groups to produce IFN-ß can still destroy HPV-infected cells.


Subject(s)
Human papillomavirus 11 , Immunity, Innate , Interferon-beta , Macrophages , Membrane Proteins , Papillomavirus Infections , Respiratory Tract Infections , Interferon-beta/metabolism , Interferon-beta/immunology , Interferon-beta/genetics , Humans , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Human papillomavirus 11/genetics , Human papillomavirus 11/immunology , Respiratory Tract Infections/virology , Respiratory Tract Infections/immunology , Macrophages/immunology , Macrophages/virology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female , Epithelial Cells/virology , Epithelial Cells/immunology , Immune Evasion , Papillomavirus E7 Proteins/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/immunology , Male , Adult
12.
Mol Immunol ; 170: 131-143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663254

ABSTRACT

Mammalian reovirus (MRV) is a non-enveloped, gene segmented double-stranded RNA (dsRNA) virus. It is an important zoonotic pathogen that infects many mammals and vertebrates that act as natural hosts and causes respiratory and digestive tract diseases. Studies have reported that RIG-I and MDA5 in the innate immune cytoplasmic RNA-sensing RIG-like receptor (RLR) signaling pathway can recognize dsRNA from MRV and promote antiviral type I interferon (IFN) responses. However, the mechanism by which many MRV-encoded proteins evade the host innate immune response remains unclear. Here, we show that exogenous µ1 protein promoted the proliferation of MRV in vitro, while knockdown of MRV µ1 protein expression by shRNA could impair MRV proliferation. Specifically, µ1 protein inhibited MRV or poly(I:C)-induced IFN-ß expression, and attenuated RIG-I/MDA5-mediated signaling axis transduction during MRV infection. Importantly, we found that µ1 protein significantly decreased IFN-ß mRNA expression induced by MDA5, RIG-I, MAVS, TBK1, IRF3(5D), and degraded the protein expression of exogenous MDA5, RIG-I, MAVS, TBK1 and IRF3 via the proteasomal and lysosomal pathways. Additionally, we show that µ1 protein can physically interact with MDA5, RIG-I, MAVS, TBK1, and IRF3 and attenuate the RIG-I/MDA5-mediated signaling cascades by blocking the phosphorylation and nuclear translocation of IRF3. In conclusion, our findings reveal that MRV outer capsid protein µ1 is a key factor in antagonizing RLRs signaling cascades and provide new strategies for effective prevention and treatment of MRV infection.


Subject(s)
DEAD Box Protein 58 , Interferon Regulatory Factor-3 , Interferon-Induced Helicase, IFIH1 , Orthoreovirus, Mammalian , Receptors, Immunologic , Signal Transduction , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon Regulatory Factor-3/metabolism , DEAD Box Protein 58/metabolism , Signal Transduction/immunology , Humans , Phosphorylation , Orthoreovirus, Mammalian/immunology , Orthoreovirus, Mammalian/physiology , HEK293 Cells , Interferon-beta/metabolism , Interferon-beta/immunology , Animals , Cell Nucleus/metabolism , Reoviridae Infections/immunology , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Immunity, Innate/immunology , Protein Serine-Threonine Kinases
13.
Biochem Biophys Res Commun ; 712-713: 149915, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38663038

ABSTRACT

Viral infections pose a significant threat to public health, and the production of interferons represents one of the most critical antiviral innate immune responses of the host. Consequently, the screening and identification of compounds or reagents that induce interferon production are of paramount importance. This study commenced with the cultivation of host bacterium 15,597, followed by the infection of Escherichia coli with the MS2 bacteriophage. Utilizing the J2 capture technique, a class of dsRNA mixtures (MS2+15,597) was isolated from the E. coli infected with the MS2 bacteriophage. Subsequent investigations were conducted on the immunostimulatory activity of the MS2+15,597 mixture. The results indicated that the dsRNA mixtures (MS2+15,597) extracted from E. coli infected with the MS2 bacteriophage possess the capability to activate innate immunity, thereby inducing the production of interferon-ß. These dsRNA mixtures can activate the RIG-I and TLR3 pattern recognition receptors, stimulating the expression of interferon stimulatory factors 3/7, which in turn triggers the NF-κB signaling pathway, culminating in the cellular production of interferon-ß to achieve antiviral effects. This study offers novel insights and strategies for the development of broad-spectrum antiviral drugs, potentially providing new modalities for future antiviral therapies.


Subject(s)
Escherichia coli , Levivirus , RNA, Double-Stranded , Escherichia coli/virology , Escherichia coli/genetics , Escherichia coli/metabolism , RNA, Double-Stranded/metabolism , Humans , Levivirus/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/genetics , Immunity, Innate , Interferon-beta/metabolism , Interferon-beta/genetics , NF-kappa B/metabolism , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , Signal Transduction , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Receptors, Immunologic , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics
14.
Antiviral Res ; 225: 105875, 2024 May.
Article in English | MEDLINE | ID: mdl-38552910

ABSTRACT

The DEAD-box (DDX) family comprises RNA helicases characterized by the conserved sequence D(Asp)-E(Glu)-A(Ala)-D(Asp), participating in various RNA metabolism processes. Some DDX family members have been identified for their crucial roles in viral infections. In this study, RNAi library screening of the DDX family unveiled the antiviral activity of DDX20. Knockdown of DDX20 enhanced the replication of viruses such as vesicular stomatitis virus (VSV) and herpes simplex virus type I (HSV-1), while overexpression of DDX20 significantly diminished the replication level of these viruses. Mechanistically, DDX20 elevated the phosphorylation level of IRF3 induced by external stimuli by facilitating the interaction between TBK1 and IRF3, thereby promoting the expression of IFN-ß. The increased IFN-ß production, in turn, upregulated the expression of interferon-stimulated genes (ISGs), including Cig5 and IFIT1, thereby exerting the antiviral effect. Finally, in an in vivo infection study, Ddx20 gene-deficient mice exhibited increased susceptibility to viral infection. This study provides new evidence that DDX20 positively modulates the interferon pathway and restricts viral infection.


Subject(s)
Herpesvirus 1, Human , Interferon Type I , Virus Diseases , Animals , Mice , Interferons/metabolism , Interferon-beta/metabolism , Signal Transduction , Dichlorodiphenyl Dichloroethylene/metabolism , Virus Replication , Herpesvirus 1, Human/genetics , Antiviral Agents/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , DEAD Box Protein 20/metabolism
15.
J Innate Immun ; 16(1): 226-247, 2024.
Article in English | MEDLINE | ID: mdl-38527452

ABSTRACT

INTRODUCTION: While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αß) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients. METHODS: Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-ß was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αß, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αßR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction. RESULTS: We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αß by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αß-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αß-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-ß pretreatment enhances the subsequent induction of IFN-αß in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αß overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice. CONCLUSION: Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological responses to pathogens. Being able to measure the current reactivity state of the immune system would have important benefits for infection-specific therapies and for the prevention of vaccination-elicited adverse effects.


Subject(s)
Adenoviridae , Cytokines , Interferon Regulatory Factor-3 , Lipopolysaccharides , Macrophages , Mice, Knockout , Animals , Mice , Lipopolysaccharides/immunology , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Macrophages/immunology , Cytokines/metabolism , Mice, Inbred C57BL , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Genetic Vectors , Adenoviridae Infections/immunology , Interferon Type I/metabolism , Lipopolysaccharide Receptors/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Cells, Cultured , Dendritic Cells/immunology , Interferon-beta/metabolism
16.
Phytomedicine ; 128: 155404, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38507852

ABSTRACT

BACKGROUND: The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon (IFN) genes (STING) pathway is critical in the innate immune system and can be mobilized by cytosolic DNA. The various inflammatory and autoimmune diseases progression is highly correlated with aberrant cGAS-STING pathway activation. While some cGAS-STING pathway inhibitor were identified, there are no drugs that can be applied to the clinic. Compound Danshen Dripping Pill (CDDP) has been successfully used in clinic around the world, but the most common application is limited to cardiovascular disease. Therefore, the purpose of the present investigation was to examine whether CDDP inhibits the cGAS-STING pathway and could be used as a therapeutic agent for multiple cGAS-STING-triggered diseases. METHODS: BMDMs, THP1 cells or Trex1-/- BMDMs were stimulated with various cGAS-STING-agonists after pretreatment with CDDP to detect the function of CDDP on IFN-ß and ISGs productionn. Next, we detect the influence on IRF3 and P65 nuclear translocation, STING oligomerization and STING-TBK1-IRF3 complex formation of CDDP. Additionally, the DMXAA-mediated activation mice model of cGAS-STING pathway was used to study the effects of CDDP. Trex1-/- mice model and HFD-mediated obesity model were established to clarify the efficacy of CDDP on inflammatory and autoimmune diseases. RESULTS: CDDP efficacy suppressed the IRF3 phosphorylation or the generation of IFN-ß, ISGs, IL-6 and TNF-α. Mechanistically, CDDP did not influence the STING oligomerization and IRF3-TBK1 and STING-IRF3 interaction, but remarkably eliminated the STING-TBK1 interaction, ultimately blocking the downstream responses. In addition, we also clarified that CDDP could suppress cGAS-STING pathway activation triggered by DMXAA, in vivo. Consistently, CDDP could alleviate multi-organ inflammatory responses in Trex1-/- mice model and attenuate the inflammatory disorders, incleding obesity-induced insulin resistance. CONCLUSION: CDDP is a specifically cGAS-STING pathway inhibitor. Furthermore, we provide novel mechanism for CDDP and discovered a clinical agent for the therapy of cGAS-STING-triggered inflammatory and autoimmune diseases.


Subject(s)
Camphanes , Drugs, Chinese Herbal , Exodeoxyribonucleases , Membrane Proteins , Mice, Inbred C57BL , Nucleotidyltransferases , Panax notoginseng , Protein Serine-Threonine Kinases , Salvia miltiorrhiza , Animals , Membrane Proteins/metabolism , Salvia miltiorrhiza/chemistry , Humans , Protein Serine-Threonine Kinases/metabolism , Mice , Drugs, Chinese Herbal/pharmacology , Nucleotidyltransferases/metabolism , Exodeoxyribonucleases/metabolism , Interferon Regulatory Factor-3/metabolism , Phosphoproteins/metabolism , Signal Transduction/drug effects , THP-1 Cells , Male , Interferon-beta/metabolism , Mice, Knockout
17.
FASEB J ; 38(3): e23467, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38329325

ABSTRACT

Lumpy skin disease (LSD) is a severe animal infectious disease caused by lumpy skin disease virus (LSDV), inducing extensive nodules on the cattle mucosa or the scarfskin. LSDV genome encodes multiple proteins to evade host innate immune response. However, the underlying molecular mechanisms are poorly understood. In this study, we found that LSDV could suppress the expression of IFN-ß and interferon-stimulated genes (ISGs) in MDBK cells during the early stage of infection. Subsequently, an unbiased screen was performed to screen the LSDV genes with inhibitory effects on the type I interferon (IFN-I) production. ORF127 protein was identified as one of the strongest inhibitory effectors on the expression of IFN-ß and ISGs, meanwhile, the 1-43 aa of N-terminal of ORF127 played a vital role in suppressing the expression of IFN-ß. Overexpression of ORF127 could significantly promote LSDV replication through inhibiting the production of IFN-ß and ISGs in MDBK cells. Mechanism study showed that ORF127 specifically interacted with TBK1 and decreased the K63-linked polyubiquitination of TBK1 which suppressed the phosphorylation of TBK1 and ultimately decreased the production of IFN-ß. In addition, truncation mutation analysis indicated that the 1-43 aa of N-terminal of ORF127 protein was the key structural domain for its interaction with TBK1. In short, these results validated that ORF127 played a negative role in regulating IFN-ß expression through cGAS-STING signaling pathway. Taken together, this study clarified the molecular mechanism of ORF127 gene antagonizing IFN-I-mediated antiviral, which will helpfully provide new strategies for the treatment and prevention of LSD.


Subject(s)
Host-Pathogen Interactions , Interferon Type I , Lumpy skin disease virus , Protein Serine-Threonine Kinases , Animals , Cattle , Immunity, Innate , Interferon Type I/genetics , Interferon Type I/metabolism , Interferon-beta/metabolism , Lumpy skin disease virus/metabolism , Signal Transduction , Ubiquitination , Protein Serine-Threonine Kinases/metabolism
18.
Microbiol Spectr ; 12(4): e0369523, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38358243

ABSTRACT

Rickettsia rickettsii (R. rickettsii), the causative agent of Rocky Mountain spotted fever (RMSF), is the most pathogenic member among Rickettsia spp. Previous studies have shown that tripartite motif-containing 56 (TRIM56) E3 ligase-induced ubiquitination of STING is important for cytosolic DNA sensing and type I interferon production to induce anti-DNA viral immunity, but whether it affects intracellular replication of R. rickettsii remains uncharacterized. Here, we investigated the effect of TRIM56 on HeLa and THP-1 cells infected with R. rickettsii. We found that the expression of TRIM56 was upregulated in the R. rickettsii-infected cells, and the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while R. rickettsii replication was enhanced in the TRIM56-silenced host cells with the reduced phosphorylation of IRF3 and STING and the increased production of interferon-ß. In addition, the mutation of the TRIM56 E3 ligase catalytic site impairs the inhibitory function against R. rickettsii in HeLa cells. Altogether, our study discovers that TRIM56 is a host restriction factor of R. rickettsii by regulating the cGAS-STING-mediated signaling pathway. This study gives new evidence for the role of TRIM56 in the innate immune response against intracellular bacterial infection and provides new therapeutic targets for RMSF. IMPORTANCE: Given that Rickettsia rickettsii (R. rickettsii) is the most pathogenic member within the Rickettsia genus and serves as the causative agent of Rocky Mountain spotted fever, there is a growing need to explore host targets. In this study, we examined the impact of host TRIM56 on R. rickettsii infection in HeLa and THP-1 cells. We observed a significant upregulation of TRIM56 expression in R. rickettsii-infected cells. Remarkably, the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while silencing TRIM56 enhanced bacterial replication accompanied by reduced phosphorylation of IRF3 and STING, along with increased interferon-ß production. Notably, the mutation of the TRIM56's E3 ligase catalytic site did not impede R. rickettsii replication in HeLa cells. Collectively, our findings provide novel insights into the role of TRIM56 as a host restriction factor against R. rickettsii through the modulation of the cGAS-STING signaling pathway.


Subject(s)
Interferon Type I , Rocky Mountain Spotted Fever , Humans , Rickettsia rickettsii/metabolism , HeLa Cells , Ubiquitin-Protein Ligases/genetics , Interferon-beta/metabolism , Nucleotidyltransferases/metabolism , Tripartite Motif Proteins/genetics
19.
Brain Behav Immun ; 118: 1-21, 2024 May.
Article in English | MEDLINE | ID: mdl-38360376

ABSTRACT

Human immunodeficiency virus-1 (HIV-1) infects the central nervous system (CNS) and causes HIV-associated neurocognitive disorders (HAND) in about half of the population living with the virus despite combination anti-retroviral therapy (cART). HIV-1 activates the innate immune system, including the production of type 1 interferons (IFNs) α and ß. Transgenic mice expressing HIV-1 envelope glycoprotein gp120 (HIVgp120tg) in the CNS develop memory impairment and share key neuropathological features and differential CNS gene expression with HIV patients, including the induction of IFN-stimulated genes (ISG). Here we show that knocking out IFNß (IFNßKO) in HIVgp120tg and non-tg control mice impairs recognition and spatial memory, but does not affect anxiety-like behavior, locomotion, or vision. The neuropathology of HIVgp120tg mice is only moderately affected by the KO of IFNß but in a sex-dependent fashion. Notably, in cerebral cortex of IFNßKO animals presynaptic terminals are reduced in males while neuronal dendrites are reduced in females. The IFNßKO results in the hippocampal CA1 region of both male and female HIVgp120tg mice in an ameliorated loss of neuronal presynaptic terminals but no protection of neuronal dendrites. Only female IFNß-deficient HIVgp120tg mice display diminished microglial activation in cortex and hippocampus and increased astrocytosis in hippocampus compared to their IFNß-expressing counterparts. RNA expression for some immune genes and ISGs is also affected in a sex-dependent way. The IFNßKO abrogates or diminishes the induction of MX1, DDX58, IRF7 and IRF9 in HIVgp120tg brains of both sexes. Expression analysis of neurotransmission related genes reveals an influence of IFNß on multiple components with more pronounced changes in IFNßKO females. In contrast, the effects of IFNßKO on MAPK activities are independent of sex with pronounced reduction of active ERK1/2 but also of active p38 in the HIVgp120tg brain. In summary, our findings show that the absence of IFNß impairs memory dependent behavior and modulates neuropathology in HIVgp120tg brains, indicating that its absence may facilitate development of HAND. Moreover, our data suggests that endogenous IFNß plays a vital role in maintaining neuronal homeostasis and memory function.


Subject(s)
HIV Infections , HIV-1 , Interferon-beta , Animals , Female , Male , Mice , Brain/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Interferon-beta/metabolism , Mice, Transgenic
20.
Virus Res ; 343: 199342, 2024 05.
Article in English | MEDLINE | ID: mdl-38408646

ABSTRACT

African swine fever virus is known to suppress type-I interferon (IFN) responses. The main objective of this study was to screen early-expressed viral genes for their ability to suppress IFN production. Out of 16 early genes examined, I73R exhibited robust suppression of cGAS-STING-induced IFN-ß promoter activities, impeding the function of both IRF3 and NF-κB transcription factors. As a result, I73R obstructed IRF3 nuclear translocation following the treatment of cells with poly(dA:dT), a strong inducer of the cGAS-STING signaling pathway. Although the I73R protein exhibits structural homology with the Zα domain binding to the left-handed helical form of DNA known as Z-DNA, its ability to suppress cGAS-STING induction of IFN-ß was independent of Z-DNA binding activity. Instead, the α3 and ß1 domains of I73R played a significant role in suppressing cGAS-STING induction of IFN-ß. These findings offer insights into the protein's functions and support its role as a virulence factor.


Subject(s)
African Swine Fever Virus , African Swine Fever , DNA, Z-Form , Interferon Type I , Animals , Swine , African Swine Fever Virus/genetics , Interferon-beta/genetics , Interferon-beta/metabolism , Signal Transduction/genetics , Immunity, Innate/genetics , DNA, Z-Form/metabolism , Membrane Proteins/metabolism , Interferon Type I/metabolism , Nucleotidyltransferases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...