Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.217
Filter
1.
Microbiol Spectr ; 12(6): e0379623, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38712963

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is an important DNA pattern recognition receptor that senses double-stranded DNA derived from invading pathogens or self DNA in cytoplasm, leading to an antiviral interferon response. A tick-borne Bunyavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), is an RNA virus that causes a severe emerging viral hemorrhagic fever in Asia with a high case fatality rate of up to 30%. However, it is unclear whether cGAS interacts with SFTSV infection. In this study, we found that SFTSV infection upregulated cGAS RNA transcription and protein expression, indicating that cGAS is an important innate immune response against SFTSV infection. The mechanism of cGAS recognizing SFTSV is by cGAS interacting with misplaced mitochondrial DNA in the cytoplasm. Depletion of mitochondrial DNA significantly inhibited cGAS activation under SFTSV infection. Strikingly, we found that SFTSV nucleoprotein (N) induced cGAS degradation in a dose-dependent manner. Mechanically, N interacted with the 161-382 domain of cGAS and linked the cGAS to LC3. The cGAS-N-LC3 trimer was targeted to N-induced autophagy, and the cGAS was degraded in autolysosome. Taken together, our study discovered a novel antagonistic mechanism of RNA viruses, SFTSV is able to suppress the cGAS-dependent antiviral innate immune responses through N-hijacking cGAS into N-induced autophagy. Our results indicated that SFTSV N is an important virulence factor of SFTSV in mediating host antiviral immune responses. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne RNA virus that is widespread in East and Southeast Asian countries with a high fatality rate of up to 30%. Up to now, many cytoplasmic pattern recognition receptors, such as RIG-I, MDA5, and SAFA, have been reported to recognize SFTSV genomic RNA and trigger interferon-dependent antiviral responses. However, current knowledge is not clear whether SFTSV can be recognized by DNA sensor cyclic GMP-AMP synthase (cGAS). Our study demonstrated that cGAS could recognize SFTSV infection via ectopic mitochondrial DNA, and the activated cGAS-stimulator of interferon genes signaling pathway could significantly inhibit SFTSV replication. Importantly, we further uncovered a novel mechanism of SFTSV to inhibit innate immune responses by the degradation of cGAS. cGAS was degraded in N-induced autophagy. Collectively, this study illustrated a novel virulence factor of SFTSV to suppress innate immune responses through autophagy-dependent cGAS degradation.


Subject(s)
Immunity, Innate , Nucleoproteins , Nucleotidyltransferases , Phlebovirus , Phlebovirus/genetics , Phlebovirus/immunology , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Humans , Nucleoproteins/metabolism , Nucleoproteins/genetics , Nucleoproteins/immunology , HEK293 Cells , Severe Fever with Thrombocytopenia Syndrome/virology , Severe Fever with Thrombocytopenia Syndrome/immunology , Severe Fever with Thrombocytopenia Syndrome/metabolism , Autophagy , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Interferons/metabolism , Interferons/immunology , Interferons/genetics , Viral Proteins/metabolism , Viral Proteins/genetics
2.
J Immunol ; 212(12): 1945-1957, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38700419

ABSTRACT

The cytosolic detection of pathogen-derived nucleic acids has evolved as an essential strategy for host innate immune defense in mammals. One crucial component in this process is the stimulator of IFN genes (STING), which acts as a vital signaling adaptor, connecting the cytosolic detection of DNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) to the downstream type I IFN signaling pathway. However, this process remains elusive in invertebrates. In this study, we present evidence demonstrating that STING, an ortholog found in a marine invertebrate (shrimp) called Litopenaeus vannamei, can directly detect DNA and initiate an IFN-like antiviral response. Unlike its homologs in other eukaryotic organisms, which exclusively function as sensors for cyclic dinucleotides, shrimp STING has the ability to bind to both double-stranded DNA and cyclic dinucleotides, including 2'3'-cGAMP. In vivo, shrimp STING can directly sense DNA nucleic acids from an infected virus, accelerate IFN regulatory factor dimerization and nuclear translocation, induce the expression of an IFN functional analog protein (Vago4), and finally establish an antiviral state. Taken together, our findings unveil a novel double-stranded DNA-STING-IKKε-IRF-Vago antiviral axis in an arthropod, providing valuable insights into the functional origins of DNA-sensing pathways in evolution.


Subject(s)
Membrane Proteins , Animals , Membrane Proteins/metabolism , Membrane Proteins/immunology , Penaeidae/immunology , Penaeidae/virology , Immunity, Innate/immunology , Signal Transduction/immunology , Interferons/metabolism , Interferons/immunology , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/immunology
3.
Proc Natl Acad Sci U S A ; 121(21): e2402540121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38758698

ABSTRACT

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI). HCoV-229E, HCoV-NL63, and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33 °C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally directed IFNs as potential therapeutics.


Subject(s)
Common Cold , Immunity, Innate , Interferons , Nasal Mucosa , SARS-CoV-2 , Signal Transduction , Humans , Nasal Mucosa/virology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Interferons/metabolism , Interferons/immunology , Common Cold/immunology , Common Cold/virology , Signal Transduction/immunology , SARS-CoV-2/immunology , Virus Replication , Rhinovirus/immunology , Coronavirus 229E, Human/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epithelial Cells/virology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Middle East Respiratory Syndrome Coronavirus/immunology , Coronavirus NL63, Human/immunology
4.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793622

ABSTRACT

The pathogenesis of viral infection is attributed to two folds: intrinsic cell death pathway activation due to the viral cytopathic effect, and immune-mediated extrinsic cellular injuries. The immune system, encompassing both innate and adaptive immunity, therefore acts as a double-edged sword in viral infection. Insufficient potency permits pathogens to establish lifelong persistent infection and its consequences, while excessive activation leads to organ damage beyond its mission to control viral pathogens. The innate immune response serves as the front line of defense against viral infection, which is triggered through the recognition of viral products, referred to as pathogen-associated molecular patterns (PAMPs), by host cell pattern recognition receptors (PRRs). The PRRs-PAMPs interaction results in the induction of interferon-stimulated genes (ISGs) in infected cells, as well as the secretion of interferons (IFNs), to establish a tissue-wide antiviral state in an autocrine and paracrine manner. Cumulative evidence suggests significant variability in the expression patterns of PRRs, the induction potency of ISGs and IFNs, and the IFN response across different cell types and species. Hence, in our understanding of viral hepatitis pathogenesis, insights gained through hepatoma cell lines or murine-based experimental systems are uncertain in precisely recapitulating the innate antiviral response of genuine human hepatocytes. Accordingly, this review article aims to extract and summarize evidence made possible with bona fide human hepatocytes-based study tools, along with their clinical relevance and implications, as well as to identify the remaining gaps in knowledge for future investigations.


Subject(s)
Hepatitis Delta Virus , Hepatocytes , Immunity, Innate , Interferons , Receptors, Pattern Recognition , Humans , Hepatitis D/immunology , Hepatitis D/virology , Hepatitis Delta Virus/immunology , Hepatitis Delta Virus/physiology , Hepatocytes/virology , Hepatocytes/immunology , Host-Pathogen Interactions/immunology , Interferons/immunology , Interferons/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology , Receptors, Pattern Recognition/metabolism , Receptors, Pattern Recognition/immunology
5.
Viruses ; 16(5)2024 05 06.
Article in English | MEDLINE | ID: mdl-38793616

ABSTRACT

Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.


Subject(s)
Interferons , Membrane Proteins , Virus Internalization , Humans , Membrane Proteins/metabolism , Membrane Proteins/immunology , Interferons/immunology , Interferons/metabolism , Virus Internalization/drug effects , Antiviral Agents/pharmacology , Immune Evasion , Animals , Virus Diseases/immunology , Virus Diseases/virology , Viruses/immunology , Viruses/drug effects , Host-Pathogen Interactions/immunology , Signal Transduction , Antigens, Differentiation/metabolism , Antigens, Differentiation/immunology
6.
Front Cell Infect Microbiol ; 14: 1365221, 2024.
Article in English | MEDLINE | ID: mdl-38711929

ABSTRACT

Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.


Subject(s)
Bunyaviridae Infections , Immunity, Innate , Orthobunyavirus , Bunyaviridae Infections/immunology , Bunyaviridae Infections/virology , Humans , Animals , Orthobunyavirus/immunology , Host-Pathogen Interactions/immunology , Interferons/immunology , Interferons/metabolism , Signal Transduction , Cytokines/metabolism , Cytokines/immunology , Vector Borne Diseases/immunology , Vector Borne Diseases/virology , Vector Borne Diseases/prevention & control , Virus Replication
7.
Nat Commun ; 15(1): 4177, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755196

ABSTRACT

Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.


Subject(s)
Antibodies, Viral , COVID-19 , Interferons , SARS-CoV-2 , Signal Transduction , Humans , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Signal Transduction/immunology , Interferons/metabolism , Interferons/immunology , Female , Male , Middle Aged , Immunoglobulin G/blood , Immunoglobulin G/immunology , CD4-Positive T-Lymphocytes/immunology , Aged , Adult , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics
8.
Mol Immunol ; 170: 156-169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692097

ABSTRACT

Type-I and -III interferons play a central role in immune rejection of pathogens and tumors, thus promoting immunogenicity and suppressing tumor recurrence. Double strand RNA is an important ligand that stimulates tumor immunity via interferon responses. Differentiation of embryonic stem cells to pluripotent epithelial cells activates the interferon response during development, raising the question of whether epithelial vs. mesenchymal gene signatures in cancer potentially regulate the interferon pathway as well. Here, using genomics and signaling approaches, we show that Grainyhead-like-2 (GRHL2), a master programmer of epithelial cell identity, promotes type-I and -III interferon responses to double-strand RNA. GRHL2 enhanced the activation of IRF3 and relA/NF-kB and the expression of IRF1; a functional GRHL2 binding site in the IFNL1 promoter was also identified. Moreover, time to recurrence in breast cancer correlated positively with GRHL2 protein expression, indicating that GRHL2 is a tumor recurrence suppressor, consistent with its enhancement of interferon responses. These observations demonstrate that epithelial cell identity supports interferon responses in the context of cancer.


Subject(s)
Breast Neoplasms , DNA-Binding Proteins , Transcription Factors , Humans , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Neoplasm Recurrence, Local/immunology , Interferons/metabolism , Interferons/immunology , Interferons/genetics , Cell Line, Tumor , Epithelial Cells/immunology , Epithelial Cells/metabolism , Animals , RNA, Double-Stranded/immunology , Transcription Factor RelA/metabolism , Mice , Gene Expression Regulation, Neoplastic , Signal Transduction/immunology , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology
9.
Vet Immunol Immunopathol ; 272: 110770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735115

ABSTRACT

Interferon lambda (IFN-λ) is an important type III interferon triggered mainly by viral infection. IFN-λ binds to their heterodimeric receptors and signals through JAK-STAT pathways similar to type I IFN. In this study, we deduced the buffalo IFN-λ sequences through the polymerase chain reaction, and then studied IFN-λ's expression patterns in different tissues, and post induction with poly I:C and live MRSA using RT-qPCR. The full-length sequences of buffalo IFN-λ3, IFN-λ receptors, and a transcript variant of IFN-λ4 were determined. IFN-λ1 is identified as a pseudogene. Virus response elements and a recombination hotspot factor was observed in the regulatory region of IFN-λ. The IFN-λ3 expressed highest in lungs and monocytes but IFN-λ4 did not. The expression of Interferon Lambda Receptor 1 was tissue specific, while Interleukin 10 Receptor subunit beta was ubiquitous. Following poly I:C induction, IFN-λ3 expression was primarily observed in epithelial cells as opposed to fibroblasts, displaying cell type-dependent expression. The cytosolic RNA sensors were expressed highest in endometrial epithelial cells, whereas the endosomal receptor was higher in fibroblasts. 2',5'-oligoadenylate synthetase expressed higher in fibroblasts, myxoma resistance protein 1 and IFN-stimulated gene 56 in epithelial cells, displaying cell-specific antiviral response of the interferon stimulated genes (ISGs). The endometrial epithelial cells expressed IFN-λ3 after live S. aureus infection indicating its importance in bacterial infection. The induction of IFN-λ3 was S. aureus isolate specific at the same multiplicity of infection (MOI). This study elucidates the IFN-λ sequences, diverse expression patterns revealing tissue specificity, and specificity in response to poly I:C and bacterial stimuli, emphasising its crucial role in innate immune response modulation.


Subject(s)
Buffaloes , Interferons , Animals , Buffaloes/immunology , Buffaloes/genetics , Interferons/genetics , Interferons/immunology , Poly I-C/pharmacology , Gene Expression Profiling/veterinary , Phylogeny , Interferon Lambda , Amino Acid Sequence , Receptors, Interferon/genetics , Receptors, Interferon/immunology , Female , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , Staphylococcus aureus/immunology
10.
J Virol ; 98(5): e0120423, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38651899

ABSTRACT

Interferons (IFNs) are essential for defense against viral infections but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, we explore the complexity of the IFN response in COVID-19, examine the effects of manipulating IFN on SARS-CoV-2 viral replication and pathogenesis, and highlight pre-clinical and clinical studies evaluating the therapeutic efficacy of IFN in limiting COVID-19 severity.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Interferons , SARS-CoV-2 , Animals , Humans , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/virology , COVID-19/therapy , Interferons/therapeutic use , Interferons/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Virus Replication/drug effects
11.
Fish Shellfish Immunol ; 149: 109559, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636737

ABSTRACT

USP14 regulates the immune related pathways by deubiquitinating the signaling molecules in mammals. In teleost, USP14 is also reported to inhibit the antiviral immune response through TBK1, but its regulatory mechanism remains obscure. To elucidate the role of USP14 in the RLR/IFN antiviral pathway in teleost, the homolog USP14 (bcUSP14) of black carp (Mylopharyngodon piceus) has been cloned and characterize in this paper. bcUSP14 contains 490 amino acids (aa), and the sequence is well conserved among in vertebrates. Over-expression of bcUSP14 in EPC cells attenuated SVCV-induced transcription activity of IFN promoters and enhanced SVCV replication. Knockdown of bcUSP14 in MPK cells led to the increased transcription of IFNs and decreased SVCV replication, suggesting the improved antiviral activity of the host cells. The interaction between bcUSP14 and bcTBK1 was identified by both co-immunoprecipitation and immunofluorescent staining. Co-expressed bcUSP14 obviously inhibited bcTBK1-induced IFN production and antiviral activity in EPC cells. K63-linked polyubiquitination of bcTBK1 was dampened by co-expressed bcUSP14, and bcTBK1-mediated phosphorylation and nuclear translocation of IRF3 were also inhibited by this deubiquitinase. Thus, all the data demonstrated that USP14 interacts with and inhibits TBK1 through deubiquitinating TBK1 in black carp.


Subject(s)
Carps , Fish Diseases , Fish Proteins , Immunity, Innate , Interferons , Protein Serine-Threonine Kinases , Rhabdoviridae Infections , Rhabdoviridae , Signal Transduction , Ubiquitination , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/veterinary , Carps/immunology , Carps/genetics , Fish Diseases/immunology , Rhabdoviridae/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/immunology , Interferons/genetics , Interferons/immunology , Interferons/metabolism , Immunity, Innate/genetics , Ubiquitin Thiolesterase/genetics , Gene Expression Regulation/immunology , Amino Acid Sequence , Sequence Alignment/veterinary , Phylogeny , Gene Expression Profiling/veterinary
12.
Chem Res Toxicol ; 37(3): 476-485, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38494904

ABSTRACT

Mechanisms underlying methylene diphenyl diisocyanate (MDI) and other low molecular weight chemical-induced asthma are unclear and appear distinct from those of high molecular weight (HMW) allergen-induced asthma. We sought to elucidate molecular pathways that differentiate asthma-like pathogenic vs nonpathogenic responses to respiratory tract MDI exposure in a murine model. Lung gene expression differences in MDI exposed immune-sensitized and nonsensitized mice vs unexposed controls were measured by microarrays, and associated molecular pathways were identified through bioinformatic analyses and further compared with published studies of a prototypic HMW asthmagen (ovalbumin). Respiratory tract MDI exposure significantly altered lung gene expression in both nonsensitized and immune-sensitized mice, vs controls. Fifty-three gene transcripts were altered in all MDI exposed lung tissue vs controls, with levels up to 10-fold higher in immune-sensitized vs nonsensitized mice. Gene transcripts selectively increased in MDI exposed immune-sensitized animals were dominated by chitinases and chemokines and showed substantial overlap with those increased in ovalbumin-induced asthma. In contrast, MDI exposure of nonsensitized mice increased type I interferon stimulated genes (ISGs) in a pattern reflecting deficiency in adenosine deaminase acting against RNA (ADAR-1), an important regulator of innate, as well as "sterile" or autoimmunity triggered by tissue damage. Thus, MDI-induced changes in lung gene expression were identified that differentiate nonpathogenic innate responses in nonsensitized hosts from pathologic adaptive responses in immune-sensitized hosts. The data suggest that MDI alters unique biological pathways involving ISGs and ADAR-1, potentially explaining its unique immunogenicity/allergenicity.


Subject(s)
Asthma , Interferons , Animals , Mice , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Allergens/immunology , Allergens/toxicity , Asthma/chemically induced , Asthma/genetics , Gene Expression , Interferons/immunology , Interferons/metabolism , Isocyanates , Lung/metabolism , Ovalbumin
13.
mBio ; 15(5): e0055024, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38530032

ABSTRACT

Human metapneumovirus (HMPV) is a primary cause of acute respiratory infection, yet there are no approved vaccines or antiviral therapies for HMPV. Early host responses to HMPV are poorly characterized, and further understanding could identify important antiviral pathways. Type III interferon (IFN-λ) displays potent antiviral activity against respiratory viruses and is being investigated for therapeutic use. However, its role in HMPV infection remains largely unknown. Here, we show that IFN-λ is highly upregulated during HMPV infection in vitro in human and mouse airway epithelial cells and in vivo in mice. We found through several immunological and molecular assays that type II alveolar cells are the primary producers of IFN-λ. Using mouse models, we show that IFN-λ limits lung HMPV replication and restricts virus spread from upper to lower airways but does not contribute to clinical disease. Moreover, we show that IFN-λ signaling is predominantly mediated by CD45- non-immune cells. Mice lacking IFN-λ signaling showed diminished loss of ciliated epithelial cells and decreased recruitment of lung macrophages in early HMPV infection along with higher inflammatory cytokine and interferon-stimulated gene expression, suggesting that IFN-λ may maintain immunomodulatory responses. Administration of IFN-λ for prophylaxis or post-infection treatment in mice reduced viral load without inflammation-driven weight loss or clinical disease. These data offer clinical promise for IFN-λ in HMPV treatment. IMPORTANCE: Human metapneumovirus (HMPV) is a common respiratory pathogen and often contributes to severe disease, particularly in children, immunocompromised people, and the elderly. There are currently no licensed HMPV antiviral treatments or vaccines. Here, we report novel roles of host factor IFN-λ in HMPV disease that highlight therapeutic potential. We show that IFN-λ promotes lung antiviral responses by restricting lung HMPV replication and spread from upper to lower airways but does so without inducing lung immunopathology. Our data uncover recruitment of lung macrophages, regulation of ciliated epithelial cells, and modulation of inflammatory cytokines and interferon-stimulated genes as likely contributors. Moreover, we found these roles to be distinct and non-redundant, as they are not observed with knockout of, or treatment with, type I IFN. These data elucidate unique antiviral functions of IFN-λ and suggest IFN-λ augmentation as a promising therapeutic for treating HMPV disease and promoting effective vaccine responses.


Subject(s)
Interferon Lambda , Lung , Metapneumovirus , Paramyxoviridae Infections , Virus Replication , Animals , Humans , Mice , Antiviral Agents/pharmacology , Disease Models, Animal , Epithelial Cells/virology , Epithelial Cells/immunology , Interferon Lambda/immunology , Interferon Lambda/pharmacology , Interferons/immunology , Interferons/pharmacology , Lung/immunology , Lung/virology , Metapneumovirus/immunology , Metapneumovirus/genetics , Mice, Inbred C57BL , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/virology , Virus Replication/drug effects
14.
J Virol ; 98(4): e0184423, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38436247

ABSTRACT

Porcine Mx1 is a type of interferon-induced GTPase that inhibits the replication of certain RNA viruses. However, the antiviral effects and the underlying mechanism of porcine Mx1 for porcine reproductive and respiratory syndrome virus (PRRSV) remain unknown. In this study, we demonstrated that porcine Mx1 could significantly inhibit PRRSV replication in MARC-145 cells. By Mx1 segment analysis, it was indicated that the GTPase domain (68-341aa) was the functional area to inhibit PRRSV replication and that Mx1 interacted with the PRRSV-N protein through the GTPase domain (68-341aa) in the cytoplasm. Amino acid residues K295 and K299 in the G domain of Mx1 were the key sites for Mx1-N interaction while mutant proteins Mx1(K295A) and Mx1(K299A) still partially inhibited PRRSV replication. Furthermore, we found that the GTPase activity of Mx1 was dominant for Mx1 to inhibit PRRSV replication but was not essential for Mx1-N interaction. Finally, mechanistic studies demonstrated that the GTPase activity of Mx1 played a dominant role in inhibiting the N-Nsp9 interaction and that the interaction between Mx1 and N partially inhibited the N-Nsp9 interaction. We propose that the complete anti-PRRSV mechanism of porcine Mx1 contains a two-step process: Mx1 binds to the PRRSV-N protein and subsequently disrupts the N-Nsp9 interaction by a process requiring the GTPase activity of Mx1. Taken together, the results of our experiments describe for the first time a novel mechanism by which porcine Mx1 evolves to inhibit PRRSV replication. IMPORTANCE: Mx1 protein is a key mediator of the interferon-induced antiviral response against a wide range of viruses. How porcine Mx1 affects the replication of porcine reproductive and respiratory syndrome virus (PRRSV) and its biological function has not been studied. Here, we show that Mx1 protein inhibits PRRSV replication by interfering with N-Nsp9 interaction. Furthermore, the GTPase activity of porcine Mx1 plays a dominant role and the Mx1-N interaction plays an assistant role in this interference process. This study uncovers a novel mechanism evolved by porcine Mx1 to exert anti-PRRSV activities.


Subject(s)
Myxovirus Resistance Proteins , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Virus Replication , Animals , Cell Line , Interferons/immunology , Interferons/metabolism , Mutation , Myxovirus Resistance Proteins/chemistry , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Porcine Reproductive and Respiratory Syndrome/enzymology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/growth & development , Porcine respiratory and reproductive syndrome virus/metabolism , Protein Binding , Swine/virology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
15.
Eur J Immunol ; 54(5): e2350717, 2024 May.
Article in English | MEDLINE | ID: mdl-38462943

ABSTRACT

Resistance to immunity is associated with the selection of cancer cells with superior capacities to survive inflammatory reactions. Here, we tailored an ex vivo immune selection model for acute myeloid leukemia (AML) and isolated the residual subpopulations as "immune-experienced" AML (ieAML) cells. We confirmed that upon surviving the immune reactions, the malignant blasts frequently decelerated proliferation, displayed features of myeloid differentiation and activation, and lost immunogenicity. Transcriptomic analyses revealed a limited number of commonly altered pathways and differentially expressed genes in all ieAML cells derived from distinct parental cell lines. Molecular signatures predominantly associated with interferon and inflammatory cytokine signaling were enriched in the AML cells resisting the T-cell-mediated immune reactions. Moreover, the expression and nuclear localization of the transcription factors c-MYB and KLF6 were noted as the putative markers for immune resistance and identified in subpopulations of AML blasts in the patients' bone marrow aspirates. The immune modulatory capacities of ieAML cells lasted for a restricted period when the immune selection pressure was omitted. In conclusion, myeloid leukemia cells harbor subpopulations that can adapt to the harsh conditions established by immune reactions, and a previous "immune experience" is marked with IFN signature and may pave the way for susceptibility to immune intervention therapies.


Subject(s)
Interferons , Kruppel-Like Factor 6 , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-myb , Humans , Kruppel-Like Factor 6/genetics , Kruppel-Like Factor 6/immunology , Kruppel-Like Factor 6/metabolism , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/immunology , Proto-Oncogene Proteins c-myb/metabolism , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/genetics , Interferons/immunology , Interferons/metabolism , Interferons/genetics , Female , Male , Middle Aged , Aged , Cell Line, Tumor , Adult , Transcriptome
16.
Front Cell Infect Microbiol ; 14: 1357866, 2024.
Article in English | MEDLINE | ID: mdl-38375361

ABSTRACT

Following virus recognition of host cell receptors and viral particle/genome internalization, viruses replicate in the host via hijacking essential host cell machinery components to evade the provoked antiviral innate immunity against the invading pathogen. Respiratory viral infections are usually acute with the ability to activate pattern recognition receptors (PRRs) in/on host cells, resulting in the production and release of interferons (IFNs), proinflammatory cytokines, chemokines, and IFN-stimulated genes (ISGs) to reduce virus fitness and mitigate infection. Nevertheless, the game between viruses and the host is a complicated and dynamic process, in which they restrict each other via specific factors to maintain their own advantages and win this game. The primary role of the non-structural protein 1 (NS1 and Nsp1) of influenza A viruses (IAV) and the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively, is to control antiviral host-induced innate immune responses. This review provides a comprehensive overview of the genesis, spatial structure, viral and cellular interactors, and the mechanisms underlying the unique biological functions of IAV NS1 and SARS-CoV-2 Nsp1 in infected host cells. We also highlight the role of both non-structural proteins in modulating viral replication and pathogenicity. Eventually, and because of their important role during viral infection, we also describe their promising potential as targets for antiviral therapy and the development of live attenuated vaccines (LAV). Conclusively, both IAV NS1 and SARS-CoV-2 Nsp1 play an important role in virus-host interactions, viral replication, and pathogenesis, and pave the way to develop novel prophylactic and/or therapeutic interventions for the treatment of these important human respiratory viral pathogens.


Subject(s)
COVID-19 , Influenza A virus , Humans , Immunity, Innate , Influenza A virus/genetics , Interferons/immunology , SARS-CoV-2/metabolism , Virus Replication
17.
J Virol ; 98(2): e0149423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38294251

ABSTRACT

Influenza B viruses (IBV) cocirculate with influenza A viruses (IAV) and cause periodic epidemics of disease, yet antibody and cellular responses following IBV infection are less well understood. Using the ferret model for antisera generation for influenza surveillance purposes, IAV resulted in robust antibody responses following infection, whereas IBV required an additional booster dose, over 85% of the time, to generate equivalent antibody titers. In this study, we utilized primary differentiated ferret nasal epithelial cells (FNECs) which were inoculated with IAV and IBV to study differences in innate immune responses which may result in differences in adaptive immune responses in the host. FNECs were inoculated with IAV (H1N1pdm09 and H3N2 subtypes) or IBV (B/Victoria and B/Yamagata lineages) and assessed for 72 h. Cells were analyzed for gene expression by quantitative real-time PCR, and apical and basolateral supernatants were assessed for virus kinetics and interferon (IFN), respectively. Similar virus kinetics were observed with IAV and IBV in FNECs. A comparison of gene expression and protein secretion profiles demonstrated that IBV-inoculated FNEC expressed delayed type-I/II IFN responses and reduced type-III IFN secretion compared to IAV-inoculated cells. Concurrently, gene expression of Thymic Stromal Lymphopoietin (TSLP), a type-III IFN-induced gene that enhances adaptive immune responses, was significantly downregulated in IBV-inoculated FNECs. Significant differences in other proinflammatory and adaptive genes were suppressed and delayed following IBV inoculation. Following IBV infection, ex vivo cell cultures derived from the ferret upper respiratory tract exhibited reduced and delayed innate responses which may contribute to reduced antibody responses in vivo.IMPORTANCEInfluenza B viruses (IBV) represent nearly one-quarter of all human influenza cases and are responsible for significant clinical and socioeconomic impacts but do not pose the same pandemic risks as influenza A viruses (IAV) and have thus received much less attention. IBV accounts for greater severity and deaths in children, and vaccine efficacy remains low. The ferret can be readily infected with human clinical isolates and demonstrates a similar course of disease and immune responses. IBV, however, generates lower antibodies in ferrets than IAV following the challenge. To determine whether differences in initial innate responses following infection may affect the development of robust adaptive immune responses, ferret respiratory tract cells were isolated, infected with IAV/IBV, and compared. Understanding the differences in the initial innate immune responses to IAV and IBV may be important in the development of more effective vaccines and interventions to generate more robust protective immune responses.


Subject(s)
Adaptive Immunity , Epithelial Cells , Ferrets , Immunity, Innate , Influenza A virus , Influenza B virus , Interferons , Nasal Mucosa , Animals , Child , Humans , Antibodies, Viral/analysis , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Disease Models, Animal , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/virology , Ferrets/immunology , Ferrets/virology , Influenza A virus/classification , Influenza A virus/growth & development , Influenza A virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/classification , Influenza B virus/growth & development , Influenza B virus/immunology , Influenza Vaccines , Influenza, Human/virology , Interferons/immunology , Nasal Mucosa/cytology , Nasal Mucosa/immunology , Nasal Mucosa/virology , Thymic Stromal Lymphopoietin/genetics , Thymic Stromal Lymphopoietin/immunology , Cells, Cultured
18.
J Virol ; 98(2): e0197523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38294249

ABSTRACT

The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.


Subject(s)
Caspases , Cytoplasm , Hemorrhagic Fever, American , Host-Pathogen Interactions , Immunity, Innate , Junin virus , Nucleoproteins , Protein Biosynthesis , Humans , Apoptosis , Caspase Inhibitors/metabolism , Caspases/metabolism , Cytoplasm/metabolism , Cytoplasm/virology , Enzyme Activation , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/virology , Interferons/genetics , Interferons/immunology , Junin virus/genetics , Junin virus/metabolism , Junin virus/pathogenicity , Nucleoproteins/biosynthesis , Nucleoproteins/genetics , Nucleoproteins/metabolism , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Virus Replication
19.
J Virol ; 97(12): e0187022, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37991365

ABSTRACT

IMPORTANCE: Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.


Subject(s)
Coinfection , Gene Expression Regulation, Viral , HIV Long Terminal Repeat , HIV-1 , HIV-2 , Interferons , RNA, Viral , tat Gene Products, Human Immunodeficiency Virus , Humans , Coinfection/immunology , Coinfection/virology , HIV Long Terminal Repeat/genetics , HIV-1/genetics , HIV-1/immunology , HIV-2/genetics , HIV-2/immunology , HIV-2/metabolism , RNA, Viral/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism , Interferons/immunology , Promoter Regions, Genetic/genetics , Binding, Competitive , RNA Polymerase II/metabolism , Transcription, Genetic
20.
J Virol ; 97(12): e0130423, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37982645

ABSTRACT

IMPORTANCE: Interferon-stimulated genes (ISGs) are induced in response to interferon expression due to viral infections. Role of these ISGs can be variable in different cells or organs. Our study highlights such cell-specific role of an ISG, Ddx3, which regulates the translation of mRNAs essential for interferon induction (PACT) and interferon signaling (STAT1) in a cell-specific manner. Our study also highlights the role of PACT in RNA virus-induced RLR signaling. Our study depicts how Ddx3 regulates innate immune signaling pathways in an indirect manner. Such cell-specific behavior of ISGs helps us to better understand viral pathogenesis and highlights the complexities of viral tropism and innate immune responses.


Subject(s)
Immunity, Innate , Interferons , RNA Viruses , Immunity, Innate/immunology , Interferons/biosynthesis , Interferons/immunology , RNA Viruses/immunology , RNA Viruses/pathogenicity , Signal Transduction , Humans , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...