Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 724
Filter
1.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822367

ABSTRACT

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Subject(s)
Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuroinflammatory Diseases/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects
2.
Nature ; 627(8004): 628-635, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383790

ABSTRACT

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.


Subject(s)
Inflammation , Interleukin-10 , Sphingolipids , Animals , Humans , Mice , Ceramides/chemistry , Ceramides/metabolism , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/metabolism , Homeostasis , Immunity, Innate , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-10/metabolism , Proto-Oncogene Proteins c-rel , Sphingolipids/metabolism
3.
Article in English | MEDLINE | ID: mdl-33504318

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has been a challenge for emergency care units worldwide due to the large numbers of patients, the scarcity of information, the medical resources, and the uncertainty regarding the disease's etiology and pathogenesis. The transmission of the virus and a probable post-pandemic of SARS-CoV-2 will depend on how deep this disease, the duration of immunity and the degree of cross immunity between SARS-CoV-2 and other pathogens either bacteria or fungi can be understood. Most mortalities have been related to an atypical pneumonia consisted of a sudden worsening of general condition of the admitted positive COVID-19 patients. The severe thromboembolism, often characterized by violent pulmonary and systemic complications, have been described with a blend of inflammatory-infectious patterns that rapidly shifted into a typical systemic inflammatory response syndrome (SIRS) or into an acute respiratory distress syndrome (ARDS) that eventually concluded into a multi-organ failure (MOF) and death. The fatality rate reported in our Covid-19 structure, SG Moscati Hospital of Taranto province in Italy, was higher in elderly male people with preexisting chronic pulmonary disease (COPD), patients with cancer and preexisting cardio-vascular diseases (CVD). We assumed a different theoretical position to clarify the higher mortality seen among those patients that was not as obvious as it appeared, we thus offered different pathophysiological picture that could help to recent solutions in therapy and prevention.


Subject(s)
COVID-19/immunology , Immunity, Innate/immunology , Interleukin-10/deficiency , Interleukin-10/immunology , SARS-CoV-2/immunology , Animals , COVID-19/blood , COVID-19/diagnosis , Humans , Interleukin-10/blood , SARS-CoV-2/metabolism
4.
Development ; 149(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-34528666

ABSTRACT

B cell participation in early embryo/fetal development and the underlying molecular pathways have not been explored. To understand whether maternal B cell absence or impaired signaling interferes with placental and fetal growth, we paired CD19-deficient (CD19-/-) mice, females with B cell-specific MyD88 (BMyD88-/-) or IL10 (BIL10-/-) deficiency as well as wild-type and MyD88-/- controls on C57Bl/6 background with BALB/c males. Pregnancies were followed by ultrasound and Doppler measurements. Implantation number was reduced in BMyD88-/- and MyD88-/- mice. Loss of MyD88 or B cell-specific deletion of MyD88 or IL10 resulted in decreased implantation areas at gestational day (gd) 5, gd8 and gd10, accompanied by reduced placental thickness, diameter and areas at gd10. Uterine artery resistance was enhanced in BIL10-/- dams at gd10. Challenge with 0.4 mg lipopolysaccharide/kg bodyweight at gd16 revealed that BMyD88-/-, BIL10-/- and CD19-/- mothers delivered preterm, whereas controls maintained their pregnancy. B cell-specific MyD88 and IL10 expression is essential for appropriate in utero development. IL10+B cells are involved in uterine blood flow regulation during pregnancy. Finally, B cell-specific CD19, MyD88 and IL10 expression influences susceptibility towards preterm birth.


Subject(s)
B-Lymphocytes/metabolism , Fetal Development , Fetus/embryology , Signal Transduction , Uterine Artery/metabolism , Uterus , Vascular Resistance , Animals , Antigens, CD19/genetics , Antigens, CD19/metabolism , Female , Interleukin-10/deficiency , Interleukin-10/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/metabolism , Pregnancy , Uterus/blood supply , Uterus/metabolism
5.
Front Immunol ; 12: 702955, 2021.
Article in English | MEDLINE | ID: mdl-34394099

ABSTRACT

Type 1 diabetes is an autoimmune disease caused by T cell-mediated destruction of insulin-producing ß cells. BDC2.5 T cells in BDC2.5 CD4+ T cell receptor transgenic Non-Obese Diabetic (NOD) mice (BDC2.5+ NOD mice) can abruptly invade the pancreatic islets resulting in severe insulitis that progresses rapidly but rarely leads to spontaneous diabetes. This prevention of diabetes is mediated by T regulatory (Treg) cells in these mice. In this study, we investigated the role of interleukin 10 (IL-10) in the inhibition of diabetes in BDC2.5+ NOD mice by generating Il-10-deficient BDC2.5+ NOD mice (BDC2.5+Il-10-/- NOD mice). Our results showed that BDC2.5+Il-10-/- NOD mice displayed robust and accelerated diabetes development. Il-10 deficiency in BDC2.5+ NOD mice promoted the generation of neutrophils in the bone marrow and increased the proportions of neutrophils in the periphery (blood, spleen, and islets), accompanied by altered intestinal immunity and gut microbiota composition. In vitro studies showed that the gut microbiota from BDC2.5+Il-10-/- NOD mice can expand neutrophil populations. Moreover, in vivo studies demonstrated that the depletion of endogenous gut microbiota by antibiotic treatment decreased the proportion of neutrophils. Although Il-10 deficiency in BDC2.5+ NOD mice had no obvious effects on the proportion and function of Treg cells, it affected the immune response and activation of CD4+ T cells. Moreover, the pathogenicity of CD4+ T cells was much increased, and this significantly accelerated the development of diabetes when these CD4+ T cells were transferred into immune-deficient NOD mice. Our study provides novel insights into the role of IL-10 in the modulation of neutrophils and CD4+ T cells in BDC2.5+ NOD mice, and suggests important crosstalk between gut microbiota and neutrophils in type 1 diabetes development.


Subject(s)
Adaptive Immunity , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/microbiology , Gastrointestinal Microbiome/immunology , Immunity, Innate , Interleukin-10/deficiency , T-Lymphocytes, Regulatory/immunology , Animals , Diabetes Mellitus, Type 1/genetics , Interleukin-10/immunology , Mice , Mice, Inbred NOD , Mice, Knockout
6.
Nutrients ; 13(7)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206704

ABSTRACT

Skin aging is one of the hallmarks of the aging process that causes physiological and morphological changes. Recently, several nutritional studies were conducted to delay or suppress the aging process. This study investigated whether nutritional supplementation of the eggshell membrane (ESM) has a beneficial effect on maintaining skin health and improving the skin aging process in vitro using neonatal normal human epidermal keratinocytes (NHEK-Neo) and in vivo using interleukin-10 knockout (IL-10 KO) mice. In NHEK-Neo cells, 1 mg/mL of enzymatically hydrolyzed ESM (eESM) upregulated the expression of keratinocyte differentiation markers, including keratin 1, filaggrin and involucrin, and changed the keratinocyte morphology. In IL-10 KO mice, oral supplementation of 8% powdered-ESM (pESM) upregulated the expression of growth factors, including transforming growth factor ß1, platelet-derived growth factor-ß and connective tissue growth factor, and suppressed skin thinning. Furthermore, voltage-gated calcium channel, transient receptor potential cation channel subfamily V members were upregulated by eESM treatment in NHEK-Neo cells and pESM supplementation in IL-10 KO mice. Collectively, these data suggest that ESM has an important role in improving skin health and aging, possibly via upregulating calcium signaling.


Subject(s)
Cell Differentiation/drug effects , Dietary Supplements , Egg Shell/chemistry , Keratinocytes/drug effects , Skin Aging/drug effects , Animals , Calcium/metabolism , Cells, Cultured , Epidermis/metabolism , Filaggrin Proteins , Humans , In Vitro Techniques , Interleukin-10/deficiency , Mice , Mice, Knockout , Up-Regulation/drug effects
7.
Front Immunol ; 12: 690817, 2021.
Article in English | MEDLINE | ID: mdl-34220850

ABSTRACT

Interleukin 10 (IL-10) is a pleiotropic, anti-inflammatory cytokine that has a major protective role in the intestine. Although its production by cells of the innate and adaptive immune system has been extensively studied, its intrinsic role in intestinal epithelial cells is poorly understood. In this study, we utilised both ATAC sequencing and RNA sequencing to define the transcriptional response of murine enteroids to tumour necrosis factor (TNF). We identified that the key early phase drivers of the transcriptional response to TNF within intestinal epithelium were NFκB transcription factor dependent. Using wild-type and Il10-/- enteroid cultures, we showed an intrinsic, intestinal epithelium specific effect of IL-10 deficiency on TNF-induced gene transcription, with significant downregulation of identified NFκB target genes Tnf, Ccl20, and Cxcl10, and delayed overexpression of NFκB inhibitor encoding genes, Nfkbia and Tnfaip3. IL-10 deficiency, or immunoblockade of IL-10 receptor, impacted on TNF-induced endogenous NFκB activity and downstream NFκB target gene transcription. Intestinal epithelium-derived IL-10 appears to play a crucial role as a positive regulator of the canonical NFκB pathway, contributing to maintenance of intestinal homeostasis. This is particularly important in the context of an inflammatory environment and highlights the potential for future tissue-targeted IL-10 therapeutic intervention.


Subject(s)
Inflammation/immunology , Interleukin-10/immunology , Intestinal Mucosa/immunology , Animals , Interleukin-10/deficiency , Interleukin-10/genetics , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/immunology , Tumor Necrosis Factor-alpha/immunology
8.
J Neuroinflammation ; 18(1): 161, 2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34275478

ABSTRACT

BACKGROUND: The presence of hyperphosphorylated microtubule-associated protein tau is strongly correlated with cognitive decline and neuroinflammation in Alzheimer's disease and related tauopathies. However, the role of inflammation and anti-inflammatory interventions in tauopathies is unclear. Our goal was to determine if removing anti-inflammatory interleukin-10 (IL-10) during an acute inflammatory challenge has any effect on neuronal tau pathology. METHODS: We induce systemic inflammation in Il10-deficient (Il10-/-) versus Il10+/+ (Non-Tg) control mice using a single intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) to examine microglial activation and abnormal hyperphosphorylation of endogenous mouse tau protein. Tau phosphorylation was quantified by Western blotting and immunohistochemistry. Microglial morphology was quantified by skeleton analysis. Cytokine expression was determined by multiplex electro chemiluminescent immunoassay (MECI) from Meso Scale Discovery (MSD). RESULTS: Our findings show that genetic deletion of Il10 promotes enhanced neuroinflammation and tau phosphorylation. First, LPS-induced tau hyperphosphorylation was significantly increased in Il10-/- mice compared to controls. Second, LPS-treated Il10-/- mice showed signs of neurodegeneration. Third, LPS-treated Il10-/- mice showed robust IL-6 upregulation and direct treatment of primary neurons with IL-6 resulted in tau hyperphosphorylation on Ser396/Ser404 site. CONCLUSIONS: These data support that loss of IL-10 activates microglia, enhances IL-6, and leads to hyperphosphorylation of tau on AD-relevant epitopes in response to acute systemic inflammation.


Subject(s)
Inflammation/metabolism , Interleukin-10/deficiency , Interleukin-10/metabolism , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/metabolism , Animals , Cell Culture Techniques , Cytokines/metabolism , Disease Models, Animal , Immunohistochemistry , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Phosphorylation/drug effects
9.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206478

ABSTRACT

Prevalences of Campylobacter (C.) jejuni infections are progressively rising globally. Given that probiotic feed additives, such as the commercial product Aviguard®, have been shown to be effective in reducing enteropathogens, such as Salmonella, in vertebrates, including livestock, we assessed potential anti-pathogenic and immune-modulatory properties of Aviguard® during acute C. jejuni-induced murine enterocolitis. Therefore, microbiota-depleted IL-10-/- mice were infected with C. jejuni strain 81-176 by gavage and orally treated with Aviguard® or placebo from day 2 to 4 post-infection. The applied probiotic bacteria could be rescued from the intestinal tract of treated mice, but with lower obligate anaerobic bacterial counts in C. jejuni-infected as compared to non-infected mice. Whereas comparable gastrointestinal pathogen loads could be detected in both groups until day 6 post-infection, Aviguard® treatment resulted in improved clinical outcome and attenuated apoptotic cell responses in infected large intestines during acute campylobacteriosis. Furthermore, less distinct pro-inflammatory immune responses could be observed not only in the intestinal tract, but also in extra-intestinal compartments on day 6 post-infection. In conclusion, we show here for the first time that Aviguard® exerts potent disease-alleviating effects in acute C. jejuni-induced murine enterocolitis and might be a promising probiotic treatment option for severe campylobacteriosis in humans.


Subject(s)
Campylobacter Infections/microbiology , Campylobacter Infections/therapy , Campylobacter jejuni/physiology , Enterocolitis/microbiology , Enterocolitis/therapy , Probiotics/therapeutic use , Animals , Biomarkers , Campylobacter Infections/diagnosis , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Enterocolitis/diagnosis , Gastrointestinal Microbiome , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunity , Inflammation Mediators/metabolism , Interleukin-10/deficiency , Jejunum/microbiology , Jejunum/pathology , Mice , Mice, Knockout
10.
Gastroenterology ; 161(3): 940-952.e15, 2021 09.
Article in English | MEDLINE | ID: mdl-34111469

ABSTRACT

BACKGROUND & AIMS: Perturbations in the early-life gut microbiome are associated with increased risk for complex immune disorders like inflammatory bowel diseases. We previously showed that maternal antibiotic-induced gut dysbiosis vertically transmitted to offspring increases experimental colitis risk in interleukin (IL) 10 gene deficient (IL10-/-) mice, a finding that may result from the loss/lack of essential microbes needed for appropriate immunologic education early in life. Here, we aimed to identify key microbes required for proper development of the early-life gut microbiome that decrease colitis risk in genetically susceptible animals. METHODS: Metagenomic sequencing followed by reconstruction of metagenome-assembled genomes was performed on fecal samples of IL10-/- mice with and without antibiotic-induced dysbiosis to identify potential missing microbial members needed for immunologic education. One high-value target strain was then engrafted early and/or late into the gut microbiomes of IL10-/- mice with antibiotic-induced dysbiosis. RESULTS: Early-, but not late-, life engraftment of a single dominant Bacteroides strain of non-antibiotic-treated IL10-/- mice was sufficient to restore the development of the gut microbiome, promote immune tolerance, and prevent colitis in IL10-/- mice that had antibiotic-induced dysbiosis. CONCLUSIONS: Restitution of a keystone microbial strain missing in the early-life antibiotic-induced gut dysbiosis results in recovery of the microbiome, proper development of immune tolerance, and reduced risk for colitis in genetically prone hosts.


Subject(s)
Bacteroides/growth & development , Colitis/prevention & control , Colon/microbiology , Gastrointestinal Microbiome/drug effects , Interleukin-10/deficiency , Animals , Anti-Bacterial Agents , Bacteroides/immunology , Colitis/immunology , Colitis/metabolism , Colitis/microbiology , Colon/immunology , Colon/metabolism , Colon/pathology , Disease Models, Animal , Dysbiosis , Feces/microbiology , Host-Pathogen Interactions , Immune Tolerance , Interleukin-10/genetics , Mice, Inbred C57BL , Mice, Knockout , Proof of Concept Study , Time Factors
11.
Am J Physiol Heart Circ Physiol ; 320(5): H1887-H1902, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33710922

ABSTRACT

Inflammatory bowel disease (IBD) is associated with both impaired intestinal blood flow and increased risk of cardiovascular disease, but the functional role of perivascular nerves that control vasomotor function of mesenteric arteries (MAs) perfusing the intestine during IBD is unknown. Because perivascular sensory nerves and their transmitters calcitonin gene-related peptide (CGRP) and substance P (SP) are important mediators of both vasodilation and inflammatory responses, our objective was to identify IBD-related deficits in perivascular sensory nerve function and vascular neurotransmitter signaling. In MAs from an interleukin-10 knockout (IL-10-/-) mouse model, IBD significantly impairs electrical field stimulation (EFS)-mediated sensory vasodilation and inhibition of sympathetic vasoconstriction, despite decreased sympathetic nerve density and vasoconstriction. The MA content and EFS-mediated release of both CGRP and SP are decreased with IBD, but IBD has unique effects on each transmitter. CGRP nerve density, receptor expression, hyperpolarization, and vasodilation are preserved with IBD. In contrast, SP nerve density and receptor expression are increased, and SP hyperpolarization and vasodilation are impaired with IBD. A key finding is that blockade of SP receptors restores EFS-mediated sensory vasodilation and enhanced CGRP-mediated vasodilation in MAs from IBD but not Control mice. Together, these data suggest that an aberrant role for the perivascular sensory neurotransmitter SP and its downstream signaling in MAs underlies vascular dysfunction with IBD. We propose that with IBD, SP signaling impedes CGRP-mediated sensory vasodilation, contributing to impaired blood flow. Thus, substance P and NK1 receptors may represent an important target for treating vascular dysfunction in IBD.NEW & NOTEWORTHY Our study is the first to show that IBD causes profound impairment of sensory vasodilation and inhibition of sympathetic vasoconstriction in mesenteric arteries. This occurs alongside decreased SP-containing nerve density and increased expression of NK1 receptors for SP. In contrast, CGRP dilation, nerve density, and receptor expression are unchanged. Blocking NK1 receptors restores sensory vasodilation in MAs and increases CGRP-mediated vasodilation, indicating that SP interference with CGRP signaling may underlie impaired sensory vasodilation with IBD.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Inflammatory Bowel Diseases/metabolism , Mesenteric Arteries/innervation , Sensory Receptor Cells/metabolism , Splanchnic Circulation , Substance P/metabolism , Sympathetic Nervous System/physiopathology , Animals , Disease Models, Animal , Female , Helicobacter hepaticus , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/physiopathology , Interleukin-10/deficiency , Interleukin-10/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, Calcitonin Gene-Related Peptide/metabolism , Receptors, Neurokinin-1/metabolism , Signal Transduction , Vasoconstriction , Vasodilation
12.
PLoS One ; 16(3): e0248730, 2021.
Article in English | MEDLINE | ID: mdl-33725024

ABSTRACT

COVID-19 (coronavirus disease 2019) patients exhibiting gastrointestinal symptoms are reported to have worse prognosis. Ace2 (angiotensin-converting enzyme 2), the gene encoding the host protein to which SARS-CoV-2 spike proteins bind, is expressed in the gut and therefore may be a target for preventing or reducing severity of COVID-19. Here we test the hypothesis that Ace2 expression in the gastrointestinal and respiratory tracts is modulated by the microbiome. We used quantitative PCR to profile Ace2 expression in germ-free mice, conventional raised specific pathogen-free mice, and gnotobiotic mice colonized with different microbiota. Intestinal Ace2 expression levels were significantly higher in germ-free mice compared to conventional mice. A similar trend was observed in the respiratory tract. Intriguingly, microbiota depletion via antibiotics partially recapitulated the germ-free phenotype, suggesting potential for microbiome-mediated regulation of Ace2 expression. Variability in intestinal Ace2 expression was observed in gnotobiotic mice colonized with different microbiota, partially attributable to differences in microbiome-encoded proteases and peptidases. Together, these data suggest that the microbiome may be one modifiable factor determining COVID-19 infection risk and disease severity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Colon/enzymology , Gastrointestinal Microbiome , Intestine, Small/enzymology , Lung/enzymology , Adenomatous Polyposis Coli Protein/deficiency , Adenomatous Polyposis Coli Protein/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Female , Gene Expression , Interleukin-10/deficiency , Interleukin-10/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
13.
JCI Insight ; 6(3)2021 02 08.
Article in English | MEDLINE | ID: mdl-33351782

ABSTRACT

Interleukin-10 (IL-10) is a critical cytokine used by immune cells to suppress inflammation. Paradoxically, immune cell-derived IL-10 can drive insulin resistance in obesity by suppressing adipocyte energy expenditure and thermogenesis. However, the source of IL-10 necessary for the suppression of adipocyte thermogenesis is unknown. We show here that CD4+Foxp3+ regulatory T cells (Tregs) are a substantial source of IL-10 and that Treg-derived IL-10 can suppress adipocyte beiging. Unexpectedly, Treg-specific loss of IL-10 resulted in increased insulin sensitivity and reduced obesity in high-fat diet-fed male mice. Mechanistically, we determined that Treg-specific loss of the transcription factor Blimp-1, a driver of IL-10 expression by Tregs, phenocopied the Treg-specific IL-10-deficient mice. Loss of Blimp-1 expression in Tregs resulted in reduced ST2+KLRG1+, IL-10-secreting Tregs, particularly in the white adipose tissue. Blimp-1-deficient mice were protected from glucose intolerance, insulin resistance, and diet-induced obesity, through increased white adipose tissue browning. Taken together, our data show that Blimp-1-regulated IL-10 secretion by Tregs represses white adipose tissue beiging to maintain adipose tissue homeostasis.


Subject(s)
Insulin Resistance/immunology , Insulin Resistance/physiology , Interleukin-10/immunology , Obesity/etiology , Positive Regulatory Domain I-Binding Factor 1/physiology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/physiology , Adipose Tissue, Beige/immunology , Adipose Tissue, Beige/metabolism , Adipose Tissue, White/immunology , Adipose Tissue, White/metabolism , Animals , Diet, High-Fat/adverse effects , Glucose Intolerance/immunology , Glucose Intolerance/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Male , Mice , Mice, Knockout , Mice, Transgenic , Obesity/immunology , Obesity/physiopathology , Positive Regulatory Domain I-Binding Factor 1/deficiency , Positive Regulatory Domain I-Binding Factor 1/genetics , Thermogenesis/immunology , Thermogenesis/physiology
14.
Cell Mol Gastroenterol Hepatol ; 11(2): 491-502, 2021.
Article in English | MEDLINE | ID: mdl-32835897

ABSTRACT

BACKGROUND & AIMS: Inflammatory bowel diseases (IBD) are chronic inflammatory disorders where predictive biomarkers for the disease development and clinical course are sorely needed for development of prevention and early intervention strategies that can be implemented to improve clinical outcomes. Since gut microbiome alterations can reflect and/or contribute to impending host health changes, we examined whether gut microbiota metagenomic profiles would provide more robust measures for predicting disease outcomes in colitis-prone hosts. METHODS: Using the interleukin (IL) 10 gene-deficient (IL10 KO) murine model where early life dysbiosis from antibiotic (cefoperozone [CPZ]) treated dams vertically transferred to pups increases risk for colitis later in life, we investigated temporal metagenomic profiles in the gut microbiota of post-weaning offspring and determined their relationship to eventual clinical outcomes. RESULTS: Compared to controls, offspring acquiring maternal CPZ-induced dysbiosis exhibited a restructuring of intestinal microbial membership in both bacteriome and mycobiome that was associated with alterations in specific functional subsystems. Furthermore, among IL10 KO offspring from CPZ-treated dams, several functional subsystems, particularly nitrogen metabolism, diverged between mice that developed spontaneous colitis (CPZ-colitis) versus those that did not (CPZ-no-colitis) at a time point prior to eventual clinical outcome. CONCLUSIONS: Our findings provide support that functional metagenomic profiling of gut microbes has potential and promise meriting further study for development of tools to assess risk and manage human IBD.


Subject(s)
Colitis/diagnosis , Dysbiosis/complications , Gastrointestinal Microbiome/immunology , Interleukin-10/deficiency , Animals , Anti-Bacterial Agents/administration & dosage , Cefoperazone/administration & dosage , Colitis/immunology , Colitis/microbiology , Disease Models, Animal , Dysbiosis/chemically induced , Dysbiosis/immunology , Dysbiosis/microbiology , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Humans , Interleukin-10/genetics , Intestinal Mucosa/immunology , Male , Metagenome , Metagenomics , Mice , Mice, Knockout , Prognosis
15.
Front Immunol ; 12: 811164, 2021.
Article in English | MEDLINE | ID: mdl-35095903

ABSTRACT

Traumatic hemorrhagic shock (THS) is a major cause of mortality and morbidity worldwide in severely injured patients. Mesenchymal stem cells (MSCs) possess immunomodulatory properties and tissue repair potential mainly through a paracrine pathway mediated by MSC-derived extracellular vesicles (MSC-EVs). Interleukin 10 (IL-10) is a potent anti-inflammatory cytokine that plays a crucial role during the inflammatory response, with a broad range of effects on innate and adaptive immunity, preventing damage to the host and maintaining normal tissue homeostasis. However, the function and mechanism of IL-10 in MSC-mediated protective effect in THS remain obscure. Here, we show that MSCs significantly attenuate hepatic injury and inflammation from THS in mice. Notably, these beneficial effects of MSCs disappeared when IL-10 was knocked out in EVs or when recombinant IL-10 was administered to mice. Mechanistically, MSC-EVs function to carry and deliver IL-10 as cargo. WT MSC-EVs restored the function of IL-10 KO MSCs during THS injury. We further demonstrated that EVs containing IL-10 mainly accumulated in the liver during THS, where they were captured by Kupffer cells and induced the expression of PTPN22. These effects subsequently shifted Kupffer cells to an anti-inflammatory phenotype and mitigated liver inflammation and injury. Therefore, our study indicates that MSC-EVs containing IL-10 alleviate THS-induced hepatic injury and may serve as a cell-free therapeutic approach for THS.


Subject(s)
Extracellular Vesicles/metabolism , Interleukin-10/metabolism , Kupffer Cells/metabolism , Liver Diseases/etiology , Liver Diseases/metabolism , Mesenchymal Stem Cells/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism , Shock, Hemorrhagic/complications , Animals , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Immunomodulation , Inflammation Mediators/metabolism , Interleukin-10/deficiency , Kupffer Cells/immunology , Liver Diseases/pathology , Male , Mice , Mice, Knockout , Models, Biological , RAW 264.7 Cells , Shock, Hemorrhagic/etiology
16.
J Gerontol A Biol Sci Med Sci ; 76(2): 211-215, 2021 01 18.
Article in English | MEDLINE | ID: mdl-32585682

ABSTRACT

Chronic inflammation (CI) in older adults is associated with reduced health span and life span. Interleukin-6 (IL-6) is one CI marker that is strongly associated with adverse health outcomes and mortality in aging. We have previously characterized a mouse model of frailty and chronic inflammatory pathway activation (IL-10tm/tm, IL-10 KO) that demonstrates the upregulation of numerous proinflammatory cytokines, including IL-6. We sought to identify a more specific role for IL-6 within the context of CI and aging and developed a mouse with targeted deletion of both IL-10 and IL-6 (IL-10tm/tm/IL-6tm/tm, DKO). Phenotypic characteristics, cytokine measurements, cardiac myocardial oxygen consumption, physical function, and survival were measured in DKO mice and compared to age- and gender-matched IL-10 KO and wild-type mice. Our findings demonstrate that selective knockdown of IL-6 in a frail mouse with CI resulted in the reversal of some of the CI-associated changes. We observed increased protective mitochondrial-associated lipid metabolites, decreased cardiac oxaloacetic acid, improved myocardial oxidative metabolism, and better short-term functional performance in DKO mice. However, the DKO mice also demonstrated higher mortality. This work shows the pleiotropic effects of IL-6 on aging and frailty.


Subject(s)
Aging/physiology , Inflammation/physiopathology , Interleukin-6/deficiency , Aging/genetics , Animals , Chronic Disease , Citric Acid Cycle , Disease Models, Animal , Female , Glycolysis , Inflammation/genetics , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-10/physiology , Interleukin-6/genetics , Interleukin-6/physiology , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/metabolism , Oxidative Phosphorylation
17.
Cell ; 182(2): 447-462.e14, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32758418

ABSTRACT

The precise mechanism by which oral infection contributes to the pathogenesis of extra-oral diseases remains unclear. Here, we report that periodontal inflammation exacerbates gut inflammation in vivo. Periodontitis leads to expansion of oral pathobionts, including Klebsiella and Enterobacter species, in the oral cavity. Amassed oral pathobionts are ingested and translocate to the gut, where they activate the inflammasome in colonic mononuclear phagocytes, triggering inflammation. In parallel, periodontitis results in generation of oral pathobiont-reactive Th17 cells in the oral cavity. Oral pathobiont-reactive Th17 cells are imprinted with gut tropism and migrate to the inflamed gut. When in the gut, Th17 cells of oral origin can be activated by translocated oral pathobionts and cause development of colitis, but they are not activated by gut-resident microbes. Thus, oral inflammation, such as periodontitis, exacerbates gut inflammation by supplying the gut with both colitogenic pathobionts and pathogenic T cells.


Subject(s)
Colitis/pathology , Enterobacter/physiology , Gastrointestinal Microbiome , Klebsiella/physiology , Mouth/microbiology , Animals , Colitis/microbiology , Colon/microbiology , Colon/pathology , Disease Models, Animal , Enterobacter/isolation & purification , Female , Inflammasomes/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-1beta/metabolism , Klebsiella/isolation & purification , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Periodontitis/microbiology , Periodontitis/pathology , Th17 Cells/cytology , Th17 Cells/immunology , Th17 Cells/metabolism
18.
Front Immunol ; 11: 1085, 2020.
Article in English | MEDLINE | ID: mdl-32655552

ABSTRACT

In many infectious diseases, the immune response operates as a double-edged sword. While required for protective immunity, infection-induced inflammation can be detrimental if it is not properly controlled, causing collateral body damage and potentially leading to death. It is in this context that the potent anti-inflammatory cytokine interleukin-10 (IL-10) is required to dampen the pro-inflammatory immune response that hallmarks trypanosomosis. Effective control of this infection requires not just the action of antibodies specific for the parasite's variable surface glycoprotein (VSG) coat antigens, but also a pro-inflammatory immune response mediated mainly by IFNγ, TNF, and NO. However, strict control of inflammation is mandatory, as IL-10-deficient mice succumb from an unrestrained cytokine storm within 10 days of a Trypanosome brucei infection. The relevant cellular source of IL-10 and the associated molecular mechanisms implicated in its trypanosomosis associated production are poorly understood. Using an IL-10 reporter mouse strain (Vert-X), we demonstrate here that NK cells, CD8+ T cells and CD4+ T cells as well as B cells and plasma cells constitute potential cellular sources of IL-10 within the spleen and liver during acute infection. The IL-10 wave follows peak pro-inflammatory cytokine production, which accompanied the control of peak parasitemia. Similar results were observed following conventional experimental needle infection and physiological infections via T. brucei-infected tsetse flies. Our results show that conditional T cell-specific ablation of the IL-10 regulating Prdm1 gene (encoding for the Blimp-1 transcription factor), leads to an uncontrolled trypanosome-induced pro-inflammatory syndrome like the one observed in infected IL-10-deficient mice. This result indicates that the biological role of IL-10-derived from non-T cells, including NK cells, is of minor importance when considering host survival. The cytokine IL-27 that is also considered to be an IL-10 regulator, did not affect IL-10 production during infection. Together, these data suggest that T. brucei activates a Blimp-1-dependent IL-10 regulatory pathway in T cells that acts as a critical anti-inflammatory rheostat, mandatory for host survival during the acute phase of parasitemia.


Subject(s)
Cytokine Release Syndrome/prevention & control , Interleukin-10/biosynthesis , Positive Regulatory Domain I-Binding Factor 1/immunology , T-Lymphocytes/immunology , Trypanosoma brucei brucei , Trypanosomiasis, African/immunology , Animals , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Disease Models, Animal , Female , Inflammation/etiology , Inflammation/immunology , Inflammation/prevention & control , Insect Vectors/parasitology , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukins/antagonists & inhibitors , Interleukins/deficiency , Interleukins/immunology , Liver/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1/deficiency , Positive Regulatory Domain I-Binding Factor 1/genetics , Spleen/immunology , Trypanosomiasis, African/complications , Trypanosomiasis, African/parasitology , Tsetse Flies/parasitology
19.
Nutrients ; 12(7)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679670

ABSTRACT

There is growing interest in studying dietary fiber to stimulate microbiome changes that might prevent or alleviate inflammatory bowel disease (IBD). However, dietary fiber effects have shown varying degrees of efficacy, for reasons that are unclear. This study examined whether the effects of isomaltodextrin on gut microbiota and IBD were dependent on dose or host sex, using an Interleukin (IL)-10 deficient murine colitis model. After 12 weeks, colonic IL-12p70 was depressed in male mice receiving high-dose isomaltodextrin supplementation compared to the control group (p = 0.04). Male mice receiving high-dose isomaltodextrin exhibited changes in microbial alpha-diversity, including enhanced richness and evenness (p = 0.01) and limited reduction in the relative abundance of Coprococcus (q = 0.08), compared to the control group. These microbial compositional changes were negatively associated with IL-12p70 levels in the male group (rs ≤ -0.51, q ≤ 0.08). In contrast, female mice receiving isomaltodextrin displayed a reduction in alpha-diversity and Coprococcus abundance and a high level of IL-12p70, as did the control group. Together, these results indicate that isomaltodextrin altered the gut microbial composition linking specific immune-regulatory cytokine responses, while the interactions among fiber, microbiota and immune response were dose dependent and largely sex specific. The results further indicate that interactions between environmental and host factors can affect microbiome manipulation in the host.


Subject(s)
Colitis/microbiology , Dextrins/administration & dosage , Dietary Fiber/administration & dosage , Dietary Supplements , Gastrointestinal Microbiome , Interleukin-10/deficiency , Intestines/microbiology , Maltose/analogs & derivatives , Nutritional Physiological Phenomena/immunology , Sex Characteristics , Animals , Colitis/therapy , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Female , Gastrointestinal Microbiome/immunology , Host Microbial Interactions/immunology , Interleukin-10/metabolism , Interleukin-12/immunology , Interleukin-12/metabolism , Intestines/immunology , Male , Maltose/administration & dosage , Mice, Transgenic
20.
BMC Biotechnol ; 20(1): 38, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703192

ABSTRACT

BACKGROUND: Inflammatory bowel diseases (IBD) are intestinal disorders characterized by inflammation in the gastrointestinal tract (GIT) and to date, no efficient treatments exist. Interleukin-10 (IL-10), one of the most important anti-inflammatory cytokines of the immune response, has been under study due to its potential for IBD therapy; however, systemic treatments lead to undesirable side effects and oral administration is limited due to its quick degradation. To avoid these bottlenecks, we previously engineered an invasive Lactococcus lactis (L. lactis) strain capable of delivering, directly to host cells, a eukaryotic DNA expression vector coding for IL-10 of Mus musculus (pValac:il-10) that diminished inflammation in two induced mouse models of intestinal inflammation. Thus, the aim of this study was to analyze its therapeutic effect in the IL-10-deficient mouse model (IL-10-/-) that spontaneously and gradually develops an inflammation that modifies the immune system and resembles Crohn's disease (CD) in humans, and evaluate if it would also diminish and/or prevent the onset of this disease. RESULTS: Oral administration of L. lactis MG1363 FnBPA+ (pValac:il-10) to IL-10-/- mice not only led to IL-10 production by these, but consequently also diminished the severe development of the disease, with animals showing lower macroscopic scores and histological damages, increased IL-10 levels and tendency to lower pro-inflammatory cytokine levels. CONCLUSIONS: The results of this study, together with the previously published ones using this DNA delivery-based strategy, show that it is capable of creating and maintaining an anti-inflammatory environment in the GIT and thus effectively diminish the onset of inflammation in various mouse models.


Subject(s)
Inflammation/therapy , Interleukin-10/deficiency , Lactococcus lactis/genetics , Plasmids/metabolism , Administration, Oral , Animals , Disease Models, Animal , Lactococcus lactis/metabolism , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...