Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.214
Filter
1.
JCI Insight ; 9(9)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38716729

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin condition with a childhood prevalence of up to 25%. Microbial dysbiosis is characteristic of AD, with Staphylococcus aureus the most frequent pathogen associated with disease flares and increasingly implicated in disease pathogenesis. Therapeutics to mitigate the effects of S. aureus have had limited efficacy and S. aureus-associated temporal disease flares are synonymous with AD. An alternative approach is an anti-S. aureus vaccine, tailored to AD. Experimental vaccines have highlighted the importance of T cells in conferring protective anti-S. aureus responses; however, correlates of T cell immunity against S. aureus in AD have not been identified. We identify a systemic and cutaneous immunological signature associated with S. aureus skin infection (ADS.aureus) in a pediatric AD cohort, using a combined Bayesian multinomial analysis. ADS.aureus was most highly associated with elevated cutaneous chemokines IP10 and TARC, which preferentially direct Th1 and Th2 cells to skin. Systemic CD4+ and CD8+ T cells, except for Th2 cells, were suppressed in ADS.aureus, particularly circulating Th1, memory IL-10+ T cells, and skin-homing memory Th17 cells. Systemic γδ T cell expansion in ADS.aureus was also observed. This study suggests that augmentation of protective T cell subsets is a potential therapeutic strategy in the management of S. aureus in AD.


Subject(s)
Dermatitis, Atopic , Staphylococcal Skin Infections , Staphylococcus aureus , Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Humans , Staphylococcus aureus/immunology , Child , Female , Staphylococcal Skin Infections/immunology , Staphylococcal Skin Infections/microbiology , Male , Child, Preschool , Skin/microbiology , Skin/immunology , Skin/pathology , Chemokine CXCL10/immunology , Chemokine CXCL10/metabolism , Th1 Cells/immunology , Th2 Cells/immunology , Th17 Cells/immunology , Bayes Theorem , CD8-Positive T-Lymphocytes/immunology , Interleukin-10/metabolism , Interleukin-10/immunology , Intraepithelial Lymphocytes/immunology , Antigens, Differentiation, T-Lymphocyte , Membrane Glycoproteins
2.
Front Immunol ; 15: 1370255, 2024.
Article in English | MEDLINE | ID: mdl-38803499

ABSTRACT

Theileria equi (T. equi) is an apicomplexan parasite that causes severe hemolytic anemia in equids. Presently, there is inadequate knowledge of the immune responses induced by T. equi in equid hosts impeding understanding of the host parasite relationship and development of potent vaccines for control of T. equi infections. The objective of this study was to evaluate the host-parasite dynamics between T. equi merozoites and infected horses by assessing cytokine expression during primary and secondary parasite exposure, and to determine whether the pattern of expression correlated with clinical indicators of disease. Our findings showed that the expression of pro-inflammatory cytokines was very low and inconsistent during both primary and secondary infection. There was also no correlation between the symptoms observed during primary infection and expression of the cytokines. This suggests that the symptoms might have occurred primarily due to hemolysis and likely not the undesirable effects of pro-inflammatory responses. However, IL-10 and TGF-ß1 were highly expressed in both phases of infection, and their expression was linked to antibody production but not moderation of pro-inflammatory cytokine responses.


Subject(s)
Horse Diseases , Interleukin-10 , Theileria , Theileriasis , Transforming Growth Factor beta1 , Animals , Horses , Theileriasis/immunology , Theileriasis/parasitology , Interleukin-10/metabolism , Interleukin-10/immunology , Theileria/immunology , Transforming Growth Factor beta1/metabolism , Horse Diseases/immunology , Horse Diseases/parasitology , Merozoites/immunology , Antibodies, Protozoan/immunology , Antibody Formation/immunology , Cytokines/metabolism , Host-Parasite Interactions/immunology
3.
Nat Commun ; 15(1): 4529, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806456

ABSTRACT

Despite major advances in linking single genetic variants to single causal genes, the significance of genetic variation on transcript-level regulation of expression, transcript-specific functions, and relevance to human disease has been poorly investigated. Strawberry notch homolog 2 (SBNO2) is a candidate gene in a susceptibility locus with different variants associated with Crohn's disease and bone mineral density. The SBNO2 locus is also differentially methylated in Crohn's disease but the functional mechanisms are unknown. Here we show that the isoforms of SBNO2 are differentially regulated by lipopolysaccharide and IL-10. We identify Crohn's disease associated isoform quantitative trait loci that negatively regulate the expression of the noncanonical isoform 2 corresponding with the methylation signals at the isoform 2 promoter in IBD and CD. The two isoforms of SBNO2 drive differential gene networks with isoform 2 dominantly impacting antimicrobial activity in macrophages. Our data highlight the role of isoform quantitative trait loci to understand disease susceptibility and resolve underlying mechanisms of disease.


Subject(s)
Crohn Disease , Genetic Predisposition to Disease , Lipopolysaccharides , Protein Isoforms , Quantitative Trait Loci , Crohn Disease/genetics , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Promoter Regions, Genetic/genetics , DNA Methylation , Macrophages/metabolism , Gene Expression Regulation
4.
Sci Rep ; 14(1): 12163, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806553

ABSTRACT

Hepatocellular carcinoma (HCC) is a significant contributor to morbidity and mortality worldwide. The interaction between receptors and ligands is the primary mode of intercellular signaling and plays a vital role in the progression of HCC. This study aimed to identify the macrophage-related receptor ligand marker genes associated with HCC and further explored the molecular immune mechanisms attributed to altered biomarkers. Single-cell RNA sequencing data containing primary and recurrent samples were downloaded from the China National GeneBank. Cell types were first identified to explore differences between immune cells from different sample sources. CellChat analysis was used to infer and analyze intercellular communication networks quantitatively. Three molecular subtypes were constructed based on the screened twenty macrophage-associated receptor ligand genes. Bulk RNA-Seq data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. After the screening, the minor absolute shrinkage and selection operator (LASSO) regression model was employed to identify key markers. After collecting peripheral blood and clinical information from patients, an enzyme-linked immunosorbent assay (ELISA) was used to detect the correlation between key markers and IL-10, one of the macrophage markers. After developing a new HCC risk adjustment model and conducting analysis, it was found that there were significant differences in immune status and gene mutations between the high-risk and low-risk groups of patients based on macrophage-associated receptor and ligand genes. This study identified SPP1, ANGPT2, and NCL as key biological targets for HCC. The drug-gene interaction network analysis identified wortmannin, ribavirin, and tarnafloxin as potential therapeutic drugs for the three key markers. In a clinical cohort study, patients with immune checkpoint inhibitor (ICI) resistance had significantly higher expression levels of OPN, ANGPT2, NCL, and IL-10 than patients with ICI-responsiveness. These three key markers were positively correlated with the expression level of IL-10. The signature based on macrophage-associated receptor and ligand genes can accurately predict the prognosis of patients with HCC and the sensitivity to immunotherapy. These results may help guide the development of targeted prevention and personalized treatment of HCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Ligands , Male , Female , Middle Aged , Gene Expression Regulation, Neoplastic , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Macrophages/metabolism , Macrophages/immunology , Multiomics
5.
Discov Med ; 36(184): 936-945, 2024 May.
Article in English | MEDLINE | ID: mdl-38798253

ABSTRACT

BACKGROUND: Inflammation is a key pathological process in bacterial meningitis, and the transforming growth factor-beta-activated kinase 1 (TAK1)/nuclear factor-kappa B (NF-κB) pathway is implicated in the activation of microglia and the production of inflammatory factors. Interleukin (IL)-10 is an anti-inflammatory cytokine acting in an autocrine fashion in macrophages to limit inflammatory responses by decreasing the production of pro-inflammatory cytokines. This paper investigates how IL-10 can inhibit microglia activation and reduce the inflammatory response of nervous system diseases. METHODS: This study used a pneumococcal-induced in Pneumococcal meningitis (PM) C57BL/6 mice and BV-2 cells model of microglial activation, assessing the effects of IL-10 on the TAK1/NF-κB pathway. The impact of IL-10 on microglial autophagy was investigated through western blot and immunofluorescence. The effects of IL-10 were evaluated by examining cellular activation markers and the activity of molecular signaling pathways (such as phosphorylation levels of TAK1 and NF-κB). RESULTS: Pneumococcus induced the activation of microglia and reduced IL-10. IL-10 inhibited the TAK1/NF-κB pathway, reducing the pneumococcal-induced inflammatory response in microglia. IL-10 ameliorated pneumococcal infection-induced microglial injury by inhibiting autophagy. Animal experiment results also showed that IL-10 inhibited inflammation and autophagy during Pneumococcal meningitis in mice. CONCLUSION: Our study demonstrates that IL-10 reduces the inflammatory response of microglia by inhibiting the TAK1/NF-κB pathway. Additionally, IL-10 ameliorates pneumococcal infection-induced microglial injury by inhibiting the process of autophagy. These results provide a new theoretical basis and offer new insights for developing strategies to treat bacterial meningitis.


Subject(s)
Interleukin-10 , MAP Kinase Kinase Kinases , Meningitis, Pneumococcal , Mice, Inbred C57BL , Microglia , NF-kappa B , Animals , Interleukin-10/metabolism , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Mice , Meningitis, Pneumococcal/drug therapy , Meningitis, Pneumococcal/immunology , Meningitis, Pneumococcal/pathology , NF-kappa B/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Inflammation/pathology , Autophagy/drug effects , Disease Models, Animal , Cell Line , Streptococcus pneumoniae
7.
Cells ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786036

ABSTRACT

Inflammation contributes to the onset and exacerbation of numerous age-related diseases, often manifesting as a chronic condition during aging. Given that cellular senescence fosters local and systemic inflammation, senotherapeutic interventions could potentially aid in managing or even reducing inflammation. Here, we investigated the immunomodulatory effects of the senotherapeutic Peptide 14 (Pep 14) in human peripheral blood mononuclear cells (PBMCs), monocytes, and macrophages. We found that, despite failing to significantly influence T cell activation and proliferation, the peptide promoted a Th2/Treg gene expression and cytokine signature in PBMCs, characterized by increased expression of the transcription factors GATA3 and FOXP3, as well as the cytokines IL-4 and IL-10. These observations were partially confirmed through ELISA, in which we observed increased IL-10 release by resting and PHA-stimulated PBMCs. In monocytes from the U-937 cell line, Pep 14 induced apoptosis in lipopolysaccharide (LPS)-stimulated cells and upregulated IL-10 expression. Furthermore, Pep 14 prevented LPS-induced activation and promoted an M2-like polarization in U-937-derived macrophages, evidenced by decreased expression of M1 markers and increased expression of M2 markers. We also showed that the conditioned media from Pep 14-treated macrophages enhanced fibroblast migration, indicative of a functional M2 phenotype. Taken together, our findings suggest that Pep 14 modulates immune cell function towards an anti-inflammatory and regenerative phenotype, highlighting its potential as a therapeutic intervention to alleviate immunosenescence-associated dysregulation.


Subject(s)
Macrophages , Monocytes , Th1 Cells , Humans , Monocytes/drug effects , Monocytes/metabolism , Macrophages/drug effects , Macrophages/metabolism , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Peptides/pharmacology , Lipopolysaccharides/pharmacology , Cytokines/metabolism , Interleukin-10/metabolism , Lymphocyte Activation/drug effects , Cell Proliferation/drug effects , Apoptosis/drug effects
8.
J Biomed Mater Res B Appl Biomater ; 112(6): e35411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773758

ABSTRACT

The ultimate goal of tissue engineering is to repair and regenerate damaged tissue or organ. Achieving this goal requires blood vessel networks to supply oxygen and nutrients to new forming tissues. Macrophages are part of the immune system whose behavior plays a significant role in angiogenesis and blood vessel formation. On the other hand, macrophages are versatile cells that change their behavior in response to environmental stimuli. Given that implantation of a biomaterial is followed by inflammation; therefore, we reasoned that this inflammatory condition in tissue spaces modulates the final phenotype of macrophages. Also, we hypothesized that anti-inflammatory glucocorticoid dexamethasone improves modulating macrophages behavior. To check these concepts, we investigated the macrophages that had matured in an inflammatory media. Furthermore, we examined macrophages' behavior after maturation on a dexamethasone-containing scaffold and analyzed how the behavioral change of maturing macrophages stimulates other macrophages in the same environment. In this study, the expression of pro-inflammatory markers TNFa and NFκB1 along with pro-healing markers IL-10 and CD163 were investigated to study the behavior of macrophages. Our results showed that macrophages that were matured in the inflammatory media in vitro increase expression of IL-10, which in turn decreased the expression of pro-inflammatory markers TNFa and NFκB in maturing macrophages. Also, macrophages that were matured on dexamethasone-containing scaffolds decreased the expression of IL-10, TNFa, and NFκB and increase the expression of CD163 compared to the control group. Moreover, the modulation of anti-inflammatory response in maturing macrophages on dexamethasone-containing scaffold resulted in increased expression of TNFa and CD163 by other macrophages in the same media. The results obtained in this study, proposing strategies to improve healing through controlling the behavior of maturing macrophages and present a promising perspective for inflammation control using tissue engineering scaffolds.


Subject(s)
Dexamethasone , Interleukin-10 , Macrophages , Polyesters , Tissue Scaffolds , Dexamethasone/pharmacology , Interleukin-10/metabolism , Macrophages/metabolism , Macrophages/drug effects , Tissue Scaffolds/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans , Animals , Inflammation/metabolism , Mice
9.
Ren Fail ; 46(1): 2356023, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38785317

ABSTRACT

Glycyrrhizin (GL) has immunoregulatory effects on various inflammatory diseases including hepatitis and nephritis. However, the mechanisms underlying the anti-inflammatory effect of GL on renal inflammation are not fully understood. Hepatorenal syndrome (HRS) is a functional acute renal impairment that occurs in severe liver disease, and we found that kidney injury also occurs in Con A-induced experimental hepatitis in mice. We previously found that GL can alleviate Con A-induced hepatitis by regulating the expression of IL-25 in the liver. We wanted to investigate whether GL can alleviate Con A-induced nephritis by regulating IL-25. IL-25 regulates inflammation by modulating type 2 immune responses, but the mechanism by which IL-25 affects kidney disease remains unclear. In this study, we found that the administration of GL enhanced the expression of IL-25 in renal tissues; the latter promoted the generation of type 2 macrophages (M2), which inhibited inflammation in the kidney caused by Con A challenge. IL-25 promoted the secretion of the inhibitory cytokine IL-10 by macrophages but inhibited the expression of the inflammatory cytokine IL-1ß by macrophages. Moreover, IL-25 downregulated the Con A-mediated expression of Toll-like receptor (TLR) 4 on macrophages. By comparing the roles of TLR2 and TLR4, we found that TLR4 is required for the immunoregulatory effect of IL-25 on macrophages. Our data revealed that GL has anti-inflammatory effects on Con A-induced kidney injury and that the GL/IL-25/M2 axis participates in the anti-inflammatory process. This study suggested that GL is a potential therapeutic for protecting against acute kidney injury.


Subject(s)
Disease Models, Animal , Glycyrrhizic Acid , Kidney , Macrophages , Animals , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Mice , Macrophages/metabolism , Macrophages/drug effects , Male , Kidney/pathology , Kidney/metabolism , Toll-Like Receptor 2/metabolism , Interleukins/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/metabolism , Interleukin-10/metabolism , Toll-Like Receptor 4/metabolism , Signal Transduction/drug effects , Interleukin-1beta/metabolism , Hepatorenal Syndrome/etiology , Hepatorenal Syndrome/drug therapy , Hepatorenal Syndrome/metabolism , Mice, Inbred C57BL , Nephritis/drug therapy , Nephritis/metabolism , Nephritis/etiology , Nephritis/prevention & control
10.
Cancer Rep (Hoboken) ; 7(5): e2064, 2024 May.
Article in English | MEDLINE | ID: mdl-38711262

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most commonly diagnosed female cancer. Homeobox protein MEIS2, a key transcription factor, is involved in the regulation of many developmental and cellular processes. However, the role of MEIS2 in the development of breast cancer is still unclear. AIMS: We aimed to examine the role of myeloid ecotropic insertion site (MEIS2) in breast cancer and the association of MEIS2 with breast cancer clinical stages and pathological grades. We revealed the underlying mechanism by which MEIS2 affected breast cancer cell growth and tumor development. METHODS AND RESULTS: Using human BC cell lines, clinical samples and animal xenograft model, we reveal that MEIS2 functions as a tumor suppressor in breast cancer. The expression of MEIS2 is inversely correlated with BC clinical stages and pathological grades. MEIS2 knockdown (MEIS2-KD) promotes while MEIS2 overexpression suppresses breast cancer cell proliferation and tumor development in vitro and in animal xenograft models, respectively. To determine the biological function of MEIS2, we screen the expression of a group of MEIS2 potential targeting genes in stable-established cell lines. Results show that the knockdown of MEIS2 in breast cancer cells up-regulates the IL10 expression, but MEIS2 overexpression opposed the effect on IL10 expression. Furthermore, the suppressive role of MEIS2 in breast cancer cell proliferation is associated with the IL10 expression and myeloid cells infiltration. CONCLUSION: Our study demonstrates that the tumor suppressor of MEIS2 in breast cancer progression is partially via down regulating the expression of IL10 and promoting myeloid cells infiltration. Targeting MEIS2 would be a potentially therapeutic avenue for BC.


Subject(s)
Breast Neoplasms , Cell Proliferation , Gene Expression Regulation, Neoplastic , Homeodomain Proteins , Interleukin-10 , Transcription Factors , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Animals , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Interleukin-10/metabolism , Interleukin-10/genetics , Cell Line, Tumor , Down-Regulation , Xenograft Model Antitumor Assays , Mice, Nude
11.
PLoS One ; 19(5): e0292028, 2024.
Article in English | MEDLINE | ID: mdl-38691538

ABSTRACT

APRIL (A Proliferation-Inducing Ligand), a member of the TNF superfamily, was initially described for its ability to promote proliferation of tumor cells in vitro. Moreover, this cytokine has been related to the pathogenesis of different chronic inflammatory diseases, such as rheumatoid arthritis. This study aimed to evaluate the ability of APRIL in regulating B cell-mediated immune response in the antigen-induced arthritis (AIA) model in mice. AIA was induced in previously immunized APRIL-transgenic (Tg) mice and their littermates by administration of antigen (mBSA) into the knee joints. Different inflammatory cell populations in spleen and draining lymph nodes were analyzed using flow cytometry and the assay was performed in the acute and chronic phases of the disease, while cytokine levels were assessed by ELISA. In the acute AIA, APRIL-Tg mice developed a less severe condition and a smaller inflammatory infiltrate in articular tissues when compared with their littermates. We also observed that the total cellularity of draining lymph nodes was decreased in APRIL-Tg mice. Flow cytometry analysis revealed an increase of CD19+IgM+CD5+ cell population in draining lymph nodes and an increase of CD19+CD21hiCD23hi (B regulatory) cells in APRIL-Tg mice with arthritis as well as an increase of IL-10 and CXCL13 production in vitro.


Subject(s)
Arthritis, Experimental , B-Lymphocytes, Regulatory , Mice, Transgenic , Tumor Necrosis Factor Ligand Superfamily Member 13 , Animals , Mice , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , B-Lymphocytes, Regulatory/immunology , Interleukin-10/metabolism , Lymph Nodes/immunology , Lymph Nodes/pathology , Spleen/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics
12.
Front Immunol ; 15: 1404297, 2024.
Article in English | MEDLINE | ID: mdl-38751432

ABSTRACT

Introduction: Recently, the use of botanicals as an alternative to coccidiostats has been an appealing approach for controlling coccidiosis. Therefore, this study was conducted to evaluate the potential role of aqueous methanolic extract (200 mg/kg) of Krameria lappacea (roots) (KLRE) against infection induced by Eimeria papillata. Methods: A total of 25 male C57BL/6 mice were divided into five groups (I, II, III, IV, and V). On 1st day of the experiment, all groups except groups I (control) and II (non-infected-treated group with KLRE), were inoculated orally with 103 sporulated E. papillata oocysts. On the day of infection, group IV was treated with KLRE. Group V served as an infected-treated group and was treated with amprolium (coccidiostat). Results: Treatment with extract and coccidiostat was continued for five consecutive days. While not reaching the efficacy level of the reference drug (amprolium), KLRE exhibited notable anticoccidial activity as assessed by key criteria, including oocyst suppression rate, total parasitic stages, and maintenance of nutrient homeostasis. The presence of phenolic and flavonoid compounds in KLRE is thought to be responsible for its positive effects. The Eimeria infection increased the oxidative damage in the jejunum. KLRE treatment significantly increased the activity of catalase and superoxide dismutase. On the contrary, KLRE decreased the level of malondialdehyde and nitric oxide. Moreover, KLRE treatment decreased macrophage infiltration in the mice jejunal tissue, as well as the extent of CD4 T cells and NFkB. E. papillata caused a state of systemic inflammatory response as revealed by the upregulation of inducible nitric oxide synthase (iNOs)-mRNA. Upon treatment with KLRE, the activity of iNOs was reduced from 3.63 to 1.46 fold. Moreover, KLRE was able to downregulate the expression of pro-inflammatory cytokines interferon-γ, nuclear factor kappa B, and interleukin-10 -mRNA by 1.63, 1.64, and 1.38 fold, respectively. Moreover, KLRE showed a significant reduction in the expression of IL-10 protein level from 104.27 ± 8.41 pg/ml to 62.18 ± 3.63 pg/ml. Conclusion: Collectively, K. lappacea is a promising herbal medicine that could ameliorate the oxidative stress and inflammation of jejunum, induced by E. papillata infection in mice.


Subject(s)
Antioxidants , CD4-Positive T-Lymphocytes , Coccidiosis , Coccidiostats , Eimeria , Interleukin-10 , Mice, Inbred C57BL , Plant Extracts , Plant Roots , Animals , Plant Extracts/pharmacology , Coccidiosis/drug therapy , Coccidiosis/immunology , Coccidiosis/parasitology , Mice , Male , Interleukin-10/metabolism , Antioxidants/pharmacology , Eimeria/drug effects , Plant Roots/chemistry , Coccidiostats/pharmacology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal
13.
BMC Gastroenterol ; 24(1): 163, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745150

ABSTRACT

BACKGROUND: The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS: We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-ß were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS: The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-ß. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS: The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.


Subject(s)
CD11b Antigen , Liver Cirrhosis , Liver Regeneration , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells , Animals , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Mice , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Regeneration/physiology , CD11b Antigen/metabolism , Male , Disease Models, Animal , Liver/pathology , Liver/metabolism , Vascular Endothelial Growth Factor A/metabolism , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/physiopathology , Concanavalin A , Ligation , Lipopolysaccharides , Interleukin-10/metabolism , Transforming Growth Factor beta/metabolism , Hepatic Stellate Cells/metabolism , Coculture Techniques , Hepatocytes/metabolism , Hepatocytes/pathology , Bile Ducts
14.
Int J Rheum Dis ; 27(5): e15174, 2024 May.
Article in English | MEDLINE | ID: mdl-38720423

ABSTRACT

OBJECTIVES: This study investigates the role of TNF-induced protein 3 (TNFAIP3) and CCAAT/enhancer-binding protein ß (C/EBPß) in alveolar macrophages (AMs) of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) and their influence on pulmonary fibrosis. METHODS: Transfection of HEK293T cells and AMs with plasmids carrying TNFAIP3 and C/EBPß was performed, followed by co-culturing AMs with pulmonary fibroblasts. Immunoblotting analysis was then utilized to assess the expression of TNFAIP3, C/EBPß, and collagen type 1 (Col1). Quantitative PCR analysis was conducted to quantify the mRNA levels of C/EBPß, IL-10, and TGF-ß1. STRING database analysis, and immunoprecipitation assays were employed to investigate the interactions between TNFAIP3 and C/EBPß. RESULTS: TNFAIP3 expression was significantly reduced in SSc-ILD AMs, correlating with increased Col1 production in fibroblasts. Overexpression of TNFAIP3 inhibited this pro-fibrotic activity. Conversely, C/EBPß expression was elevated in SSc-ILD AMs, and its reduction through TNFAIP3 restoration decreased pro-fibrotic cytokines IL-10 and TGFß1 levels. Protein-protein interaction studies confirmed the regulatory relationship between TNFAIP3 and C/EBPß. CONCLUSIONS: This study highlights the important role of TNFAIP3 in regulating pulmonary fibrosis in SSc-ILD by modulating C/EBPß expression in AMs. These findings suggest that targeting TNFAIP3 could be a potential therapeutic strategy for managing SSc-ILD patients.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Coculture Techniques , Fibroblasts , Lung Diseases, Interstitial , Macrophages, Alveolar , Scleroderma, Systemic , Tumor Necrosis Factor alpha-Induced Protein 3 , Female , Humans , Male , Middle Aged , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Collagen Type I/metabolism , Collagen Type I/genetics , Fibroblasts/metabolism , HEK293 Cells , Interleukin-10/metabolism , Interleukin-10/genetics , Lung/metabolism , Lung/pathology , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/etiology , Macrophages, Alveolar/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/etiology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/complications , Signal Transduction , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Adult , Aged
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732106

ABSTRACT

Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this patient population has never been studied. We sought to determine if changes in myokine secretion were linked to the response to an exercise intervention in patients with T2D. The participants followed a 10-week aerobic exercise training intervention, and patients with T2D were grouped based on muscle mitochondrial function improvement (responders versus non-responders). We measured myokines in serum and cell-culture medium of myotubes derived from participants pre- and post-intervention and in response to an in vitro model of muscle contraction. We also quantified the expression of genes related to inflammation in the myotubes pre- and post-intervention. No significant differences were detected depending on T2D status or response to exercise in the biological markers measured, with the exception of modest differences in expression patterns for certain myokines (IL-1ß, IL-8, IL-10, and IL-15). Further investigation into the molecular mechanisms involving myokines may explain exercise resistance with T2D; however, the role in metabolic adaptations to exercise in T2D requires further investigation.


Subject(s)
Diabetes Mellitus, Type 2 , Exercise , Muscle Fibers, Skeletal , Resistance Training , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Male , Exercise/physiology , Middle Aged , Female , Muscle Fibers, Skeletal/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/blood , Cytokines/metabolism , Cytokines/blood , Interleukin-8/metabolism , Interleukin-8/blood , Interleukin-10/metabolism , Interleukin-10/blood , Aged , Interleukin-15/metabolism , Interleukin-15/blood , Exercise Therapy/methods , Muscle Contraction , Muscle, Skeletal/metabolism , Myokines
16.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786082

ABSTRACT

Lung transplantation results are compromised by ischemia-reperfusion injury and alloimmune responses. Ex vivo lung perfusion (EVLP) is used to assess marginal donor lungs before transplantation but is also an excellent platform to apply novel therapeutics. We investigated donor lung immunomodulation using genetically engineered mesenchymal stromal cells with augmented production of human anti-inflammatory hIL-10 (MSCsIL-10). Pig lungs were placed on EVLP for 6 h and randomized to control (n = 7), intravascular delivery of 20 × 106 (n = 5, low dose) or 40 × 106 human MSCs IL-10 (n = 6, high dose). Subsequently, single-lung transplantation was performed, and recipient pigs were monitored for 3 days. hIL-10 secretion was measured during EVLP and after transplantation, and immunological effects were assessed by cytokine profile, T and myeloid cell characterization and mixed lymphocyte reaction. MSCIL-10 therapy rapidly increased hIL-10 during EVLP and resulted in transient hIL-10 elevation after lung transplantation. MSCIL-10 delivery did not affect lung function but was associated with dose-related immunomodulatory effects, with the low dose resulting in a beneficial decrease in apoptosis and lower macrophage activation, but the high MSCIL-10 dose resulting in inflammation and cytotoxic CD8+ T cell activation. MSCIL-10 therapy during EVLP results in a rapid and transient perioperative hIL-10 increase and has a therapeutic window for its immunomodulatory effects.


Subject(s)
Immunomodulation , Interleukin-10 , Lung Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Lung Transplantation/methods , Animals , Interleukin-10/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Swine , Mesenchymal Stem Cell Transplantation/methods , Humans , Genetic Engineering , Lung/metabolism , Lung/pathology , Lung/immunology
17.
J Immunother Cancer ; 12(5)2024 May 23.
Article in English | MEDLINE | ID: mdl-38782541

ABSTRACT

BACKGROUND: Accumulating evidence demonstrates that an increased tumor-associated macrophage abundance is often associated with poor prognosis in colorectal cancer (CRC). The mechanism underlying the effect of tumor-derived exosomes on M2 macrophage polarization remains elusive. RESULTS: The novel circular RNA circPOLQ exhibited significantly higher expression in CRC tissues than in paired normal tissues. Higher circPOLQ expression was associated with poorer prognosis in patients with CRC. In vitro and in vivo experiments showed that tumor-derived exosomal circPOLQ did not directly regulate CRC cell development but promoted CRC metastatic nodule formation by enhancing M2 macrophage polarization. circPOLQ activated the interleukin-10/signal transducer and activator of transcription 3 axis by targeting miR-379-3 p to promote M2 macrophage polarization. CONCLUSION: circPOLQ can enter macrophages via CRC cell-derived exosomes and promote CRC metastatic nodule formation by enhancing M2 macrophage polarization. These findings reveal a tumor-derived exosome-mediated tumor-macrophage interaction potentially affecting CRC metastatic nodule formation.


Subject(s)
Colorectal Neoplasms , Exosomes , Interleukin-10 , Macrophages , RNA, Circular , STAT3 Transcription Factor , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Humans , Exosomes/metabolism , STAT3 Transcription Factor/metabolism , Mice , Animals , Interleukin-10/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Macrophages/metabolism , Macrophage Activation , Male , Female , Signal Transduction , Cell Line, Tumor , Tumor-Associated Macrophages/metabolism
18.
Cell Commun Signal ; 22(1): 284, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783329

ABSTRACT

BACKGROUND: To elucidate the mechanism of dysfunction of tolerogenic dendritic cells (DCs) is of significance. Telomerase involves the regulation of the cell fate and activities. The objective of this study is to investigate the role of telomerase reverse transcriptase (TERT) in regulating the tolerogenic feature of DCs. METHODS: The telomerase was assessed in DCs, which were collected from patients with allergic rhinitis (AR), healthy control (HC) subjects, and mice. RNAs were extracted from DCs, and analyzed by RNA sequencing (RNAseq), real-time quantitative RT-PCR, and Western blotting. RESULTS: The results showed that expression of TERT was higher in peripheral DCs of AR patients. The expression of IL10 in DCs was negatively correlated with the levels of TERT expression. Importantly, the levels of TERT mRNA in DCs were associated with the AR response in patients with AR. Endoplasmic reticulum (ER) stress promoted the expression of Tert in DCs. Sensitization with the ovalbumin-aluminum hydroxide protocol increased the expression of Tert in DCs by exacerbating ER stress. TERT interacting with c-Maf (the transcription factor of IL-10) inducing protein (CMIP) in DCs resulted in CMIP ubiquitination and degradation, and thus, suppressed the production of IL-10. Inhibition of Tert in DCs mitigated experimental AR. CONCLUSIONS: Elevated amounts of TERT were detected in DCs of patients with AR. The tolerogenic feature of DCs was impacted by TERT. Inhibited TERT attenuated experimental AR.


Subject(s)
Dendritic Cells , Immune Tolerance , Interleukin-10 , Telomerase , Dendritic Cells/immunology , Dendritic Cells/metabolism , Telomerase/metabolism , Telomerase/genetics , Animals , Humans , Interleukin-10/metabolism , Interleukin-10/genetics , Mice , Rhinitis, Allergic/immunology , Female , Male , Endoplasmic Reticulum Stress , Mice, Inbred BALB C , Adult
19.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38703775

ABSTRACT

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Subject(s)
Glioblastoma , Glucose , Histones , Macrophages , Glioblastoma/immunology , Glioblastoma/metabolism , Glioblastoma/pathology , Animals , Histones/metabolism , Mice , Macrophages/immunology , Macrophages/metabolism , Glucose/metabolism , Humans , Cell Line, Tumor , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Interleukin-10/metabolism , Glycolysis , Microglia/metabolism , Microglia/immunology , Mice, Inbred C57BL , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Immune Tolerance
20.
Viruses ; 16(5)2024 05 07.
Article in English | MEDLINE | ID: mdl-38793619

ABSTRACT

BACKGROUND AND AIMS: The outcomes of HBV infections are related to complex immune imbalances; however, the precise mechanisms by which HBV induces immune dysfunction are not well understood. METHODS: HBV transgenic (HBs-Tg) mice were used to investigate intrahepatic NK cells in two distinct subsets: conventional NK (cNK) and liver-resident NK (LrNK) cells during a chronic HBV infection. RESULTS: The cNK cells, but not the LrNK cells, were primarily responsible for the increase in the number of bulk NK cells in the livers of ageing HBs-Tg mice. The hepatic cNK cells showed a stronger ability to produce IL-10, coupled with a higher expression of CD69, TIGIT and PD-L1, and lower NKG2D expression in ageing HBs-Tg mice. A lower mitochondrial mass and membrane potential, and less polarized localization were observed in the hepatic cNK cells compared with the splenic cNK cells in the HBs-Tg mice. The enhanced galectin-3 (Gal-3) secreted from HBsAg+ hepatocytes accounted for the IL-10 production of hepatic cNK cells via ITGB1 signaling. For humans, LGALS3 and ITGB1 expression is positively correlated with IL-10 expression, and negatively correlated with the poor clinical progression of HCC. CONCLUSIONS: Gal-3-ITGB1 signaling shapes hepatic cNK cells but not LrNK cells during a chronic HBV infection, which may correlate with HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Galectin 3 , Hepatitis B virus , Interleukin-10 , Killer Cells, Natural , Liver Neoplasms , Liver , Mice, Transgenic , Signal Transduction , Animals , Mice , Killer Cells, Natural/immunology , Humans , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Interleukin-10/genetics , Interleukin-10/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/virology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver/pathology , Liver/immunology , Liver/virology , Liver/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Disease Progression , Male , Female , Hepatocytes/virology , Hepatocytes/metabolism , Hepatocytes/immunology , Mice, Inbred C57BL , Galectins/genetics , Galectins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...