Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Immunol ; 143: 58-67, 2022 03.
Article in English | MEDLINE | ID: mdl-35042118

ABSTRACT

Interleukin 12 (IL-12) binds its receptor complex of IL-12 receptor beta 1 (IL-12Rß1) and IL-12Rß2 to transduce cellular signaling in mammals. In teleosts, the function of Il-12 is drawing increasing attention, but molecular and functional features of Il-12 receptors remain obscure. Especially, the existence of multiple Il-12 isoforms in some fish species elicits the requirement to clarify their receptors. In this study, we isolated three cDNA sequences as Il-12 receptor candidates from grass carp, entitled as grass carp Il-12rß1 (gcIl-12rß1), gcIl-12rß2a and gcIl-12rß2b. In silico analysis showed that gcIl-12rß1 and gcIl-12rß2a shared the conserved gene locus and similar structure characteristics with their orthologues of zebrafish, frog, chicken, mouse and human, respectively. However, the Il-12rß2b of grass carp and zebrafish was similar to IL-27Ra in non-fish species. Further locally installed BLAST and gene synteny analysis uncovered three gcIl-12 receptors being single copied genes. Tissue distribution assay revealed that gcil12rß1 and gcil12rß2a transcripts were predominantly expressed in head kidney, differing from the even distribution of gcil12rß2b transcripts in all detected tissues. Subsequently, the binding ability and antagonistic effects of recombinant extracellular region of gcIl-12rß1 with recombinant grass carp Il-12 (rgcIl-12) isoforms were explored, providing functional evidence of the newly cloned gcIl-12rß1 being genuine orthologues of mammalian IL-12Rß1. Moreover, our data showed that gcIl-12rß1 and gcIl-12rß2a but not gcIl-12rß1 and gcIl-12rß2b mediated the effects of rgcIl-12 isoforms on ifn-γ promoter activity, thereby revealing Il-12 receptor signaling in fish. These results identified grass carp Il-12 receptors, thereby advancing our understanding of Il-12 isoform signaling in fish.


Subject(s)
Carps/metabolism , Interleukin-12 Receptor beta 1 Subunit/metabolism , Interleukin-12 Receptor beta 2 Subunit/metabolism , Amino Acid Sequence , Animals , Base Sequence , Gene Expression Profiling , Humans , Interleukin-12 Receptor beta 1 Subunit/chemistry , Interleukin-12 Receptor beta 1 Subunit/genetics , Interleukin-12 Receptor beta 2 Subunit/chemistry , Interleukin-12 Receptor beta 2 Subunit/genetics , Phylogeny , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Nucleic Acid , Synteny/genetics
2.
J Biol Chem ; 290(1): 359-70, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25371211

ABSTRACT

IL-23, composed of the cytokine subunit p19 and the soluble α receptor subunit p40, binds to a receptor complex consisting of the IL-23 receptor (IL-23R) and the IL-12 receptor ß1 (IL-12Rß1). Complex formation was hypothesized to follow the "site I-II-III" architectural paradigm, with site I of p19 being required for binding to p40, whereas sites II and III of p19 mediate binding to IL-12Rß1 and IL-23R, respectively. Here we show that the binding mode of p19 to p40 and of p19 to IL-23R follow the canonical site I and III paradigm but that interaction of IL-23 to IL-12Rß1 is independent of site II in p19. Instead, binding of IL-23 to the cytokine binding module of IL-12Rß1 is mediated by domains 1 and 2 of p40 via corresponding site II amino acids of IL-12Rß1. Moreover, domains 2 and 3 of p40 were sufficient for complex formation with p19 and to induce binding of p19 to IL-23R. The Fc-tagged fusion protein of p40_D2D3/p19 did, however, not act as a competitive IL-23 antagonist but, at higher concentrations, induced proliferation via IL-23R but independent of IL-12Rß1. On the basis of our experimental validation, we propose a non-canonical topology of the IL-23·IL-23R·IL-12Rß1 complex. Furthermore, our data help to explain why p40 is an antagonist of IL-23 and IL-12 signaling and show that site II of p19 is dispensable for IL-23 signaling.


Subject(s)
Interleukin-12 Receptor beta 1 Subunit/chemistry , Interleukin-12 Subunit p40/chemistry , Interleukin-23/chemistry , Receptors, Interleukin-12/chemistry , Receptors, Interleukin/chemistry , Animals , Binding Sites , CHO Cells , COS Cells , Cell Line , Chlorocebus aethiops , Cricetulus , Gene Expression , Humans , Interleukin-12 Receptor beta 1 Subunit/genetics , Interleukin-12 Receptor beta 1 Subunit/metabolism , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/metabolism , Interleukin-23/genetics , Interleukin-23/metabolism , Mice , Models, Molecular , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Receptors, Interleukin-12/genetics , Receptors, Interleukin-12/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...