Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.161
Filter
1.
Biomed Res ; 45(3): 115-123, 2024.
Article in English | MEDLINE | ID: mdl-38839354

ABSTRACT

Mixed lymphocyte culture under the blockade of CD80/CD86-CD28 co-stimulation induces anergic (completely hyporesponsive) T cells with immune suppressive function (inducible suppressing T cells: iTS cells). Previously, iTS cell therapy has demonstrated outstanding benefits in clinical trials for organ transplantation. Here, we examined whether peptide antigen-specific iTS cells are inducible. DO 11.10 iTS cells were obtained from splenocytes of BALB/c DO 11.10 mice by stimulation with OVA peptide and antagonistic anti-CD80/CD86 mAbs. When DO 11.10 iTS or Foxp3- DO 11.10 iTS cells were stimulated with OVA, these cells produced IL-13, but not IL-4. DO 11.10 iTS cells decreased IL-4 and increased IL-13 production from OVA-stimulated naïve DO 11.10 splenocytes. When Foxp3+ DO 11.10 iTS cells were prepared, these cells significantly inhibited the production of IL-4 and IL-13 compared with freshly isolated Foxp3+ DO 11.10 T cells. Moreover, an increase in the population expressing OX40, ICOS, and 4-1BB suggested activation of Foxp3+ DO 11.10 iTS cells. Thus, blockade of CD80/CD86-CD28 co-stimulation during peptide antigen stimulation augments the inhibitory function of Foxp3+ regulatory T cells, and does not induce anergic Foxp3- conventional T cells. Peptide-specific Foxp3+ regulatory iTS cells could be useful for the treatment of allergic and autoimmune diseases without adverse effects.


Subject(s)
B7-1 Antigen , B7-2 Antigen , CD28 Antigens , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , CD28 Antigens/immunology , CD28 Antigens/metabolism , Mice , B7-1 Antigen/metabolism , B7-1 Antigen/immunology , B7-2 Antigen/metabolism , B7-2 Antigen/immunology , Mice, Inbred BALB C , Forkhead Transcription Factors/metabolism , Peptides/pharmacology , Peptides/immunology , Lymphocyte Activation/immunology , Interleukin-4/metabolism , Interleukin-4/immunology , Interleukin-13/metabolism , Interleukin-13/immunology , Ovalbumin/immunology , Spleen/immunology , Spleen/cytology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/immunology
2.
Front Immunol ; 15: 1356298, 2024.
Article in English | MEDLINE | ID: mdl-38690264

ABSTRACT

Chronic rhinosinusitis with nasal polyps (CRSwNP) is predominantly a type 2 inflammatory disease associated with type 2 (T2) cell responses and epithelial barrier, mucociliary, and olfactory dysfunction. The inflammatory cytokines interleukin (IL)-4, IL-13, and IL-5 are key mediators driving and perpetuating type 2 inflammation. The inflammatory responses driven by these cytokines include the recruitment and activation of eosinophils, basophils, mast cells, goblet cells, M2 macrophages, and B cells. The activation of these immune cells results in a range of pathologic effects including immunoglobulin E production, an increase in the number of smooth muscle cells within the nasal mucosa and a reduction in their contractility, increased deposition of fibrinogen, mucus hyperproduction, and local edema. The cytokine-driven structural changes include nasal polyp formation and nasal epithelial tissue remodeling, which perpetuate barrier dysfunction. Type 2 inflammation may also alter the availability or function of olfactory sensory neurons contributing to loss of sense of smell. Targeting these key cytokine pathways has emerged as an effective approach for the treatment of type 2 inflammatory airway diseases, and a number of biologic agents are now available or in development for CRSwNP. In this review, we provide an overview of the inflammatory pathways involved in CRSwNP and describe how targeting key drivers of type 2 inflammation is an effective therapeutic option for patients.


Subject(s)
Interleukin-13 , Interleukin-4 , Nasal Polyps , Rhinitis , Sinusitis , Humans , Sinusitis/immunology , Sinusitis/metabolism , Nasal Polyps/immunology , Nasal Polyps/metabolism , Rhinitis/immunology , Rhinitis/metabolism , Chronic Disease , Interleukin-13/metabolism , Interleukin-13/immunology , Interleukin-4/metabolism , Interleukin-4/immunology , Signal Transduction , Inflammation/immunology , Inflammation/metabolism , Animals , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Rhinosinusitis
3.
Nat Immunol ; 25(6): 1059-1072, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38802511

ABSTRACT

Asthma, the most prevalent respiratory disease, affects more than 300 million people and causes more than 250,000 deaths annually. Type 2-high asthma is characterized by interleukin (IL)-5-driven eosinophilia, along with airway inflammation and remodeling caused by IL-4 and IL-13. Here we utilize IL-5 as the targeting domain and deplete BCOR and ZC3H12A to engineer long-lived chimeric antigen receptor (CAR) T cells that can eradicate eosinophils. We call these cells immortal-like and functional IL-5 CAR T cells (5TIF) cells. 5TIF cells were further modified to secrete an IL-4 mutein that blocks IL-4 and IL-13 signaling, designated as 5TIF4 cells. In asthma models, a single infusion of 5TIF4 cells in fully immunocompetent mice, without any conditioning regimen, led to sustained repression of lung inflammation and alleviation of asthmatic symptoms. These data show that asthma, a common chronic disease, can be pushed into long-term remission with a single dose of long-lived CAR T cells.


Subject(s)
Asthma , Receptors, Chimeric Antigen , Animals , Asthma/immunology , Asthma/therapy , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , Interleukin-5/immunology , Interleukin-5/metabolism , Disease Models, Animal , Humans , Interleukin-4/immunology , Interleukin-4/metabolism , Mice, Inbred C57BL , Eosinophils/immunology , Female , Interleukin-13/metabolism , Interleukin-13/immunology
4.
J Food Sci ; 89(5): 3037-3047, 2024 May.
Article in English | MEDLINE | ID: mdl-38563099

ABSTRACT

Bovine casein is a major allergen present in cow milk to induce anaphylaxis. In this study, the potential allergenicity of enzymatically hydrolyzed casein (HC) was evaluated based on in vitro and in vivo. The results showed that Alcalase and Protamex treatment (AT, PT) reduced the potential allergenicity of CN, with the greatest reductions of 68.25% and 50.75%, respectively. In addition, in vivo results showed that HC effectively alleviated allergic response symptoms of Balb/c mice; a significant tendency toward decreased serum IgG1 and mast cell tryptase levels was observed, accompanied by a decrease of Th2-associated IL-4, IL-5, and IL-13 and an increase of IFN-γ levels in spleen. Moreover, the inflammation of the lung, jejunum, and ileum was remarkably ameliorated. The findings indicated that HC induced a shift toward Th1 response and maintained the Th1/Th2 immune balance. Importantly, our results provide the basis for the production of hypoallergenic dairy products.


Subject(s)
Allergens , Caseins , Mice, Inbred BALB C , Th2 Cells , Animals , Mice , Caseins/immunology , Allergens/immunology , Female , Th2 Cells/immunology , Hydrolysis , Immunoglobulin G/blood , Disease Models, Animal , Cattle , Spleen/immunology , Milk Hypersensitivity/immunology , Interferon-gamma/metabolism , Th1 Cells/immunology , Interleukin-4/metabolism , Tryptases/metabolism , Cytokines/metabolism , Jejunum/immunology , Milk/immunology , Milk/chemistry , Interleukin-13/immunology , Interleukin-13/metabolism , Anaphylaxis/immunology , Anaphylaxis/chemically induced , Anaphylaxis/prevention & control , Interleukin-5/immunology
5.
J Allergy Clin Immunol ; 153(5): 1355-1368, 2024 May.
Article in English | MEDLINE | ID: mdl-38310974

ABSTRACT

BACKGROUND: Eosinophilic esophagitis (EoE) is an increasingly common inflammatory condition of the esophagus; however, the underlying immunologic mechanisms remain poorly understood. The epithelium-derived cytokine IL-33 is associated with type 2 immune responses and elevated in esophageal biopsy specimens from patients with EoE. OBJECTIVE: We hypothesized that overexpression of IL-33 by the esophageal epithelium would promote the immunopathology of EoE. METHODS: We evaluated the functional consequences of esophageal epithelial overexpression of a secreted and active form of IL-33 in a novel transgenic mouse, EoE33. EoE33 mice were analyzed for clinical and immunologic phenotypes. Esophageal contractility was assessed. Epithelial cytokine responses were analyzed in three-dimensional organoids. EoE33 phenotypes were further characterized in ST2-/-, eosinophil-deficient, and IL-13-/- mice. Finally, EoE33 mice were treated with dexamethasone. RESULTS: EoE33 mice displayed ST2-dependent, EoE-like pathology and failed to thrive. Esophageal tissue remodeling and inflammation included basal zone hyperplasia, eosinophilia, mast cells, and TH2 cells. Marked increases in levels of type 2 cytokines, including IL-13, and molecules associated with immune responses and tissue remodeling were observed. Esophageal organoids suggested reactive epithelial changes. Genetic deletion of IL-13 in EoE33 mice abrogated pathologic changes in vivo. EoE33 mice were responsive to steroids. CONCLUSIONS: IL-33 overexpression by the esophageal epithelium generated immunopathology and clinical phenotypes resembling human EoE. IL-33 may play a pivotal role in the etiology of EoE by activating the IL-13 pathway. EoE33 mice are a robust experimental platform for mechanistic investigation and translational discovery.


Subject(s)
Eosinophilic Esophagitis , Interleukin-13 , Interleukin-33 , Animals , Humans , Mice , Disease Models, Animal , Eosinophilic Esophagitis/immunology , Eosinophilic Esophagitis/genetics , Eosinophilic Esophagitis/pathology , Eosinophils/immunology , Esophageal Mucosa/pathology , Esophageal Mucosa/immunology , Esophagus/pathology , Esophagus/immunology , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-13/metabolism , Interleukin-33/genetics , Interleukin-33/immunology , Interleukin-33/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
6.
N Engl J Med ; 388(12): 1080-1091, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36920778

ABSTRACT

BACKGROUND: Lebrikizumab, a high-affinity IgG4 monoclonal antibody targeting interleukin-13, prevents the formation of the interleukin-4Rα-interleukin-13Rα1 heterodimer receptor signaling complex. METHODS: We conducted two identically designed, 52-week, randomized, double-blind, placebo-controlled, phase 3 trials; both trials included a 16-week induction period and a 36-week maintenance period. Eligible patients with moderate-to-severe atopic dermatitis (adults [≥18 years of age] and adolescents [12 to <18 years of age, weighing ≥40 kg]) were randomly assigned in a 2:1 ratio to receive either lebrikizumab at a dose of 250 mg (loading dose of 500 mg at baseline and week 2) or placebo, administered subcutaneously every 2 weeks. Outcomes for the induction period were assessed up to 16 weeks and are included in this report. The primary outcome was an Investigator's Global Assessment (IGA) score of 0 or 1 (indicating clear or almost clear skin; range, 0 to 4 [severe disease]) with a reduction (indicating improvement) of at least 2 points from baseline at week 16. Secondary outcomes included a 75% improvement in the Eczema Area and Severity Index score (EASI-75 response) and assessments of itch and of itch interference with sleep. Safety was also assessed. RESULTS: In trial 1, the primary outcome was met in 43.1% of 283 patients in the lebrikizumab group and in 12.7% of 141 patients in the placebo group (P<0.001); an EASI-75 response occurred in 58.8% and 16.2%, respectively (P<0.001). In trial 2, the primary outcome was met in 33.2% of 281 patients in the lebrikizumab group and in 10.8% of 146 patients in the placebo group (P<0.001); an EASI-75 response occurred in 52.1% and 18.1%, respectively (P<0.001). Measures of itch and itch interference with sleep indicated improvement with lebrikizumab therapy. The incidence of conjunctivitis was higher among patients who received lebrikizumab than among those who received placebo. Most adverse events during the induction period were mild or moderate in severity and did not lead to trial discontinuation. CONCLUSIONS: In the induction period of two phase 3 trials, 16 weeks of treatment with lebrikizumab was effective in adolescents and adults with moderate-to-severe atopic dermatitis. (Funded by Dermira; ADvocate1 and ADvocate2 ClinicalTrials.gov numbers, NCT04146363 and NCT04178967, respectively.).


Subject(s)
Antibodies, Monoclonal , Dermatitis, Atopic , Adolescent , Adult , Humans , Infant , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Dermatitis, Atopic/complications , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Double-Blind Method , Interleukin-13/antagonists & inhibitors , Interleukin-13/immunology , Pruritus/drug therapy , Pruritus/etiology , Pruritus/immunology , Severity of Illness Index , Treatment Outcome , Immunoglobulin G/immunology , Skin/drug effects , Skin/immunology
7.
Allergol. immunopatol ; 50(6): 71-75, 01 nov. 2022. ilus, graf
Article in English | IBECS | ID: ibc-211508

ABSTRACT

Allergic rhinitis and asthma are the main airway diseases with a higher prevalence. Eosinophilic inflammation, airway hyperresponsiveness, mucus hypersecretion, and reversible airflow obstruction are immunopathogenesis symptoms of rhinitis and asthma. Crotonic acid has bio-activity on the inflammation, and gluconic acid as chelator may protect crotonic acid activity in airway and together may control allergic rhinitis and asthma. Allergic rhinitis and asthma mice models were treated with crotonic and gluconic acids. The total IgE, histamine, IL-4, IL-5, and IL-13 levels were measured. In lung tissues, goblet cell hyperplasia, mucus hypersecretion, and inflammation were evaluated. The level of IL-5, goblet cell hyperplasia, and perivascular and peribronchial inflammation were controlled by crotonic acid in asthma and allergic rhinitis groups. But, total IgE, hista-mine, IL-4, and IL-13 levels, and mucus hypersecretion had no significant changes between treated and nontreated asthma and rhinitis groups. Crotonic acid can control eosinophilic inflammation via harnessing IL-5 and preventing goblet cell hyperplasia. When used with gluconic acid, it had a strong effect on the control of allergic rhinitis and asthma immunopathologies (AU)


Subject(s)
Animals , Male , Mice , Rhinitis, Allergic/drug therapy , Crotonates/therapeutic use , Amides/therapeutic use , Asthma/drug therapy , Asthma/pathology , Disease Models, Animal , Mice, Inbred BALB C , Anti-Inflammatory Agents/therapeutic use , Bronchoalveolar Lavage , Cytokines/immunology , Hypersensitivity, Immediate/immunology , Inflammation , Interleukin-4/immunology , Interleukin-5/immunology , Interleukin-13/immunology
8.
Eur J Immunol ; 52(12): 1972-1979, 2022 12.
Article in English | MEDLINE | ID: mdl-36271745

ABSTRACT

After recovery, mild and severe COVID-19 diseases are associated with long-term effects on the host immune system, such as prolonged T-cell activation or accumulation of autoantibodies. In this study, we show that mild SARS-CoV-2 infections, but not SARS-CoV-2 spike mRNA vaccinations, cause durable atopic risk factors such as a systemic Th2- and Th17-type environment as well as activation of B cells responsive of IgE against aeroallergens from house dust mite and mold. At an average of 100 days post mild SARS-CoV-2 infections, anti-mold responses were associated with low IL-13 levels and increased pro-inflammatory IL-6 titers. Acutely severely ill COVID-19 patients instead showed no evidence of atopic reactions. Considering convalescents of mild COVID-19 courses and mRNA-vaccinated individuals together, IL-13 was the predominant significantly upregulated factor, likely shaping SARS-CoV-2 immunity. Application of multiple regression analysis revealed that the IL-13 levels of both groups were determined by the Th17-type cytokines IL-17A and IL-22. Taken together, these results implicate a critical role for IL-13 in the aftermath of SARS-CoV-2 mild infections and mRNA vaccinations, conferring protection against airway directed, atopic side reactions that occur in mildly experienced COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hypersensitivity, Immediate , Immunoglobulin E , Interleukin-13 , Humans , COVID-19/immunology , COVID-19/prevention & control , Interleukin-13/immunology , SARS-CoV-2 , Vaccination , Immunoglobulin E/immunology , COVID-19 Vaccines/immunology , mRNA Vaccines/immunology
9.
Sci Immunol ; 7(71): eabl6543, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35559665

ABSTRACT

The intestinal tract is a common site for various types of infections including viruses, bacteria, and helminths, each requiring specific modes of immune defense. The intestinal epithelium has a pivotal role in both immune initiation and effector stages, which are coordinated by lymphocyte cytokines such as IFNγ, IL-13, and IL-22. Here, we studied intestinal epithelial immune responses using organoid image analysis based on a convolutional neural network, transcriptomic analysis, and in vivo infection models. We found that IL-13 and IL-22 both induce genes associated with goblet cells, but the resulting goblet cell phenotypes are dichotomous. Moreover, only IL-13-driven goblet cells are associated with classical NOTCH signaling. We further showed that IL-13 induces the bone morphogenetic protein (BMP) pathway, which acts in a negative feedback loop on immune type 2-driven tuft cell hyperplasia. This is associated with inhibiting Sox4 expression to putatively limit the tuft cell progenitor population. Blocking ALK2, a BMP receptor, with the inhibitor dorsomorphin homolog 1 (DMH1) interrupted the feedback loop, resulting in greater tuft cell numbers both in vitro and in vivo after infection with Nippostrongylus brasiliensis. Together, this investigation of cytokine effector responses revealed an unexpected and critical role for the BMP pathway in regulating type 2 immunity, which can be exploited to tailor epithelial immune responses.


Subject(s)
Bone Morphogenetic Proteins , Hyperplasia , Interleukin-13 , Intestinal Mucosa , Bone Morphogenetic Proteins/metabolism , Feedback , Humans , Hyperplasia/immunology , Interleukin-13/immunology , SOXC Transcription Factors/metabolism , Strongylida Infections
10.
Front Immunol ; 13: 824110, 2022.
Article in English | MEDLINE | ID: mdl-35140724

ABSTRACT

Background: Bullous pemphigoid (BP) is a senile chronic autoimmune bullous skin disease with a high relapse rate, which significantly impairs patients' quality of life and contributes to disease mortality. This observational case-control study explores the gene polymorphisms of cytokines and their clinical significance in Chinese patients with BP. Methods: IL-1α (rs1800587), IL-1ß (rs16944, rs1143627, rs1143634), IL-4 (rs2243250), IL-6 (rs1800795), IL-10 (rs1800896, rs1800871, rs1800872), IL-13 (rs1800925, rs20541), TNF-α (rs1799964, rs1800630, rs1799724, rs361525), IFN-γ (rs1799964, rs1800630, rs361525, rs1800629, rs4248160, rs1800750), and TGF-ß1 (rs2317130, rs1800469, rs4803457) genes were genotyped in the healthy controls and BP patients, respectively. Expression of these cytokines in serum was measured. Medical profiles of patients, including baseline characteristics and prognosis, were statistically analyzed. Results: We found that IL-1 ß and IL-13 concentrations were higher in the BP patients' sera compared to those in the controls. For IL-13, significant differences were found in the nucleotide ratio/genotype/haploid frequency/haplotype, respectively. IL-13 (rs20541, rs1800925) is related to gender, and the IL-13 genotype was significantly associated with recurrence. Conclusions: BP is associated with IL-13 gene polymorphism and IL-13 concentration is elevated in blood circulation in patients with BP. Our results support that IL-13 is relevant in the pathogenesis of BP, suggesting that IL-13 could potentially represent a promising target for BP therapy and a prognostic marker.


Subject(s)
Interleukin-13/genetics , Interleukin-13/immunology , Pemphigoid, Bullous/genetics , Pemphigoid, Bullous/immunology , Polymorphism, Single Nucleotide , Adult , Aged , Aged, 80 and over , Asian People , Biomarkers , Case-Control Studies , Female , Genetic Predisposition to Disease , Haplotypes , Humans , Male , Middle Aged , Pemphigoid, Bullous/pathology , Prognosis
11.
J Biol Chem ; 298(2): 101533, 2022 02.
Article in English | MEDLINE | ID: mdl-34973336

ABSTRACT

Therapeutic antibody development requires discovery of an antibody molecule with desired specificities and drug-like properties. For toxicological studies, a therapeutic antibody must bind the ortholog antigen with a similar affinity to the human target to enable relevant dosing regimens, and antibodies falling short of this affinity design goal may not progress as therapeutic leads. Herein, we report the novel use of mammalian recombination signal sequence (RSS)-directed recombination for complementarity-determining region-targeted protein engineering combined with mammalian display to close the species affinity gap of human interleukin (IL)-13 antibody 731. This fully human antibody has not progressed as a therapeutic in part because of a 400-fold species affinity gap. Using this nonhypothesis-driven affinity maturation method, we generated multiple antibody variants with improved IL-13 affinity, including the highest affinity antibody reported to date (34 fM). Resolution of a cocrystal structure of the optimized antibody with the cynomolgus monkey (or nonhuman primate) IL-13 protein revealed that the RSS-derived mutations introduced multiple successive amino-acid substitutions resulting in a de novo formation of a π-π stacking-based protein-protein interaction between the affinity-matured antibody heavy chain and helix C on IL-13, as well as an introduction of an interface-distant residue, which enhanced the light chain-binding affinity to target. These mutations synergized binding of heavy and light chains to the target protein, resulting in a remarkably tight interaction, and providing a proof of concept for a new method of protein engineering, based on synergizing a mammalian display platform with novel RSS-mediated library generation.


Subject(s)
Antibodies , Interleukin-13 , Protein Sorting Signals , Amino Acid Sequence , Animals , Antibodies/genetics , Antibodies/immunology , Antibody Affinity , Humans , Interleukin-13/genetics , Interleukin-13/immunology , Macaca fascicularis , Mammals , Recombination, Genetic
12.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769080

ABSTRACT

The chemokine CCL18 is produced in cells of the myelomonocytic lineage and represents one of the most highly expressed chemokines in lesional skin and serum of atopic dermatitis patients. We investigated the role of histamine in CCL18 production in human monocyte-derived M2 macrophages differentiated in the presence of M-CSF and activated with IL-4, IL-13 or with IL-10. Since expression and regulation of histamine H1 receptor (H1R), H2R and H4R by IL-4 and IL-13 on human M2 macrophages were described, we analyzed expression of the histamine receptors in response to IL-10 stimulation by quantitative RT-PCR. IL-10 upregulated H2R and downregulated H4R mRNA expression by trend in M2 macrophages. IL-10, but in a more pronounced manner, IL-4 and IL-13, also upregulated CCL18. Histamine increased the cytokine-induced upregulation of CCL18 mRNA expression by stimulating the H2R. This effect was stronger in IL-10-stimulated M2 macrophages where the upregulation of CCL18 was confirmed at the protein level by ELISA using selective histamine receptor agonist and antagonists. The histamine-induced CCL18 upregulation in IL-10-activated M2 macrophages was almost similar in cells obtained from atopic dermatitis patients compared to cells from healthy control persons. In summary, our data stress a new function of histamine showing upregulation of the Th2 cells attracting chemokine CCL18 in human, activated M2 macrophages. This may have an impact on the course of atopic dermatitis and for the development of new therapeutic interventions.


Subject(s)
Chemokines, CC/genetics , Histamine/immunology , Macrophages/immunology , Cells, Cultured , Chemokines, CC/immunology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/immunology , Humans , Inflammation/immunology , Interleukin-10/immunology , Interleukin-13/immunology , Interleukin-4/immunology , Macrophage Activation , Macrophages/cytology , Th2 Cells/immunology , Up-Regulation
13.
Theranostics ; 11(20): 9805-9820, 2021.
Article in English | MEDLINE | ID: mdl-34815787

ABSTRACT

Background: Microglia and macrophages adopt a pro-inflammatory phenotype after spinal cord injury (SCI), what is thought to contribute to secondary tissue degeneration. We previously reported that this is due, in part, to the low levels of anti-inflammatory cytokines, such as IL-4. Since IL-13 and IL-4 share receptors and both cytokines drive microglia and macrophages towards an anti-inflammatory phenotype in vitro, here we studied whether administration of IL-13 and IL-4 after SCI leads to beneficial effects. Methods: We injected mice with recombinant IL-13 or IL-4 at 48 h after SCI and assessed their effects on microglia and macrophage phenotype and functional outcomes. We also performed RNA sequencing analysis of macrophages and microglia sorted from the injured spinal cords of mice treated with IL-13 or IL-4 and evaluated the metabolic state of these cells by using Seahorse technology. Results: We observed that IL-13 induced the expression of anti-inflammatory markers in microglia and macrophages after SCI but, in contrast to IL-4, it failed to mediate functional recovery. We found that these two cytokines induced different gene signatures in microglia and macrophages after SCI and that IL-4, in contrast to IL-13, shifted microglia and macrophage metabolism from glycolytic to oxidative phosphorylation. These findings were further confirmed by measuring the metabolic profile of these cells. Importantly, we also revealed that macrophages stimulated with IL-4 or IL-13 are not deleterious to neurons, but they become cytotoxic when oxidative metabolism is blocked. This suggests that the metabolic shift, from glycolysis to oxidative phosphorylation, is required to minimize the cytotoxic responses of microglia and macrophages. Conclusions: These results reveal that the metabolic fitness of microglia and macrophages after SCI contributes to secondary damage and that strategies aimed at boosting oxidative phosphorylation might be a novel approach to minimize the deleterious actions of microglia and macrophages in neurotrauma.


Subject(s)
Interleukin-13/metabolism , Interleukin-4/metabolism , Spinal Cord Injuries/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Disease Models, Animal , Female , Interleukin-13/immunology , Interleukin-13/pharmacology , Interleukin-4/immunology , Interleukin-4/pharmacology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Recovery of Function/physiology , Spinal Cord/metabolism , Spinal Cord Injuries/immunology , Spinal Cord Injuries/physiopathology , Treatment Outcome
14.
Front Immunol ; 12: 704836, 2021.
Article in English | MEDLINE | ID: mdl-34650552

ABSTRACT

Intestinal ischemia/reperfusion (I/R) injury is a grave condition with high morbidity and mortality. We previously confirmed that intestinal I/R induces intestinal flora disorders and changes in metabolites, but the role of different metabolites in intestinal I/R injury is currently unclear. Based on targeted metabolic sequencing, pravastatin (PA) was determined to be a metabolite of the gut microbiota. Further, intestinal I/R model mice were established through superior mesenteric artery obstruction. In addition, a co-culture model of small intestinal organoids and type II innate lymphoid cells (ILC2s) was subjected to hypoxia/reoxygenation (H/R) to simulate an intestinal I/R model. Moreover, correlation analysis between the PA level in preoperative feces of patients undergoing cardiopulmonary bypass and the indices of postoperative intestinal I/R injury was carried out. IL-33-deficient mice, ILC2-deleted mice, and anti-IL-13 neutralizing antibodies were also used to explore the potential mechanism through which PA attenuates intestinal I/R injury. We demonstrated that PA levels in the preoperative stool of patients undergoing cardiopulmonary bypass were negatively correlated with the indices of postoperative intestinal I/R injury. Furthermore, PA alleviated intestinal I/R injury and improved the survival of mice. We further showed that PA promotes IL-13 release from ILC2s by activating IL-33/ST2 signaling to attenuate intestinal I/R injury. In addition, IL-13 promoted the self-renewal of intestinal stem cells by activating Notch1 and Wnt signals. Overall, results indicated that the gut microbial metabolite PA can attenuate intestinal I/R injury by promoting the release of IL-13 from ILC2s via IL-33/ST2 signaling, revealing a novel mechanism of and therapeutic strategy for intestinal I/R injury.


Subject(s)
Gastrointestinal Microbiome/immunology , Immunity, Innate , Interleukin-1 Receptor-Like 1 Protein/immunology , Interleukin-13/immunology , Interleukin-33/immunology , Intestinal Diseases/immunology , Lymphocytes/immunology , Pravastatin/immunology , Animals , Disease Models, Animal , Humans , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-13/genetics , Interleukin-33/genetics , Intestinal Diseases/genetics , Male , Mice , Mice, Knockout , Reperfusion Injury
15.
J Immunol ; 207(10): 2608-2620, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34645688

ABSTRACT

IL-13 is a pleiotropic cytokine mainly secreted by Th2 cells. It reacts with many different types of cells involved in allergy, inflammation, and fibrosis, e.g., mastocytes, B cells, and fibroblasts. The role of IL-13 in conditions involving one or several of these phenotypes has therefore been extensively investigated. The inhibition of this cytokine in animal models for various pathologies yielded highly promising results. However, most human trials relying on anti-IL-13 conventional mAbs have failed to achieve a significant improvement of the envisaged disorders. Where some studies might have suffered from several weaknesses, the strategies themselves, such as targeting only IL-13 using conventional mAbs or employing a systemic administration, could be questioned. Nanobodies are recombinant Ag-binding fragments derived from the variable part of H chain-only Abs occurring in Camelidae. Thanks to their single-domain structure, small size (≈15 kDa), good stability, and solubility, they can be engineered into multispecific constructs for combined therapies or for use in new strategies such as formulations for local administration, e.g., pulmonary administration. In this study, we describe the generation of 38 nanobodies that can be subdivided into five CDR3 families. Nine nanobodies were found to have a good affinity profile (KD = 1-200 nM), but none were able to strongly inhibit IL-13 biological activity in vitro (IC50 > 50 µM: HEK-Blue IL-13/IL-4 cells). Multimeric constructs were therefore designed from these inhibitors and resulted in an up to 36-fold improvement in affinity and up to 300-fold enhancement of the biological activity while conserving a high specificity toward IL-13.


Subject(s)
Antibodies, Neutralizing/immunology , Antibody Affinity/immunology , Interleukin-13/antagonists & inhibitors , Interleukin-13/immunology , Single-Domain Antibodies/immunology , Humans
16.
Nat Commun ; 12(1): 5947, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34642338

ABSTRACT

Systemic sclerosis (SSc) is a chronic multisystem disorder characterized by fibrosis and autoimmunity. Interleukin (IL)-31 has been implicated in fibrosis and T helper (Th) 2 immune responses, both of which are characteristics of SSc. The exact role of IL-31 in SSc pathogenesis is unclear. Here we show the overexpression of IL-31 and IL-31 receptor A (IL-31RA) in dermal fibroblasts (DFs) from SSc patients. We elucidate the dual role of IL-31 in SSc, where IL-31 directly promotes collagen production in DFs and indirectly enhances Th2 immune responses by increasing pro-Th2 cytokine expression in DFs. Furthermore, blockade of IL-31 with anti-IL-31RA antibody significantly ameliorates fibrosis and Th2 polarization in a mouse model of SSc. Therefore, in addition to defining IL-31 as a mediator of fibrosis and Th2 immune responses in SSc, our study provides a rationale for targeting the IL-31/IL-31RA axis in the treatment of SSc.


Subject(s)
Fibroblasts/immunology , Interleukins/genetics , Receptors, Interleukin/genetics , Scleroderma, Systemic/immunology , Th2 Cells/immunology , Adult , Aged , Animals , Antibodies, Monoclonal/pharmacology , Collagen Type I/genetics , Collagen Type I/immunology , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Female , Fibroblasts/drug effects , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation , Humans , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Interleukins/immunology , Male , Mice , Middle Aged , Protein Isoforms/genetics , Protein Isoforms/immunology , Receptors, Interleukin/antagonists & inhibitors , Receptors, Interleukin/immunology , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Skin/drug effects , Skin/immunology , Skin/pathology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th2 Cells/drug effects , Th2 Cells/pathology
17.
Int Immunol ; 33(11): 573-585, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34498703

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are tissue-resident cells that play different roles in different organs by sensing surrounding environmental factors. Initially, it was thought that ILC2s in bone marrow (BM) are progenitors for systemic ILC2s, which migrate to other organs and acquire effector functions. However, accumulating evidence that ILC2s differentiate in peripheral tissues suggests that BM ILC2s may play a specific role in the BM as a unique effector per se. Here, we demonstrate that BM ILC2s highly express the receptor activator of nuclear factor κB ligand (RANKL), a robust cytokine for osteoclast differentiation and activation, and RANKL expression on ILC2s is up-regulated by interleukin (IL)-2, IL-7 and all-trans retinoic acid (ATRA). BM ILC2s co-cultured with BM-derived monocyte/macrophage lineage cells (BMMs) in the presence of IL-7 induce the differentiation of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in a RANKL-dependent manner. In contrast, BM ILC2s stimulated with IL-33 down-regulate RANKL expression and convert BMMs differentiation into M2 macrophage-like cells rather than osteoclasts by granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-13 production. Intravital imaging using two-photon microscopy revealed that a depletion of ILC2s prominently impaired in vivo osteoclast activity in an IL-7 plus ATRA-induced bone loss mouse model. These results suggest that ILC2s regulate osteoclast activation and contribute to bone homeostasis in both steady state and IL-33-induced inflammation.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Immunity, Innate/immunology , Interleukin-13/immunology , Lymphocytes/immunology , Osteoclasts/immunology , RANK Ligand/immunology , Animals , Cell Differentiation/immunology , Cells, Cultured , Coculture Techniques , Inflammation/immunology , Interleukin-13/biosynthesis , Lymphocytes/cytology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Osteogenesis/immunology
18.
Life Sci ; 283: 119871, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34352260

ABSTRACT

Non-communicable, chronic respiratory diseases (CRDs) affect millions of individuals worldwide. The course of these CRDs (asthma, chronic obstructive pulmonary disease, and cystic fibrosis) are often punctuated by microbial infections that may result in hospitalization and are associated with increased risk of morbidity and mortality, as well as reduced quality of life. Interleukin-13 (IL-13) is a key protein that regulates airway inflammation and mucus hypersecretion. There has been much interest in IL-13 from the last two decades. This cytokine is believed to play a decisive role in the exacerbation of inflammation during the course of viral infections, especially, in those with pre-existing CRDs. Here, we discuss the common viral infections in CRDs, as well as the potential role that IL-13 plays in the virus-induced disease pathogenesis of CRDs. We also discuss, in detail, the immune-modulation potential of IL-13 that could be translated to in-depth studies to develop IL-13-based therapeutic entities.


Subject(s)
Influenza, Human/immunology , Interleukin-13/immunology , Lung Diseases/immunology , Chronic Disease , Humans , Inflammation/immunology , Inflammation/pathology , Influenza, Human/pathology , Lung Diseases/pathology , Mucus/immunology
19.
Reprod Biol Endocrinol ; 19(1): 128, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34429116

ABSTRACT

BACKGROUND: Endometriosis is a serious reproductive and general health consequences. Recombinant human IL-37 (rhIL-37) is an inhibitor of inflammation. METHODS: ELISA assay was performed to detect the concentration of cytokines. Flow cytometry was used to analyze cell proportion. Besides, qRT-PCR and western blotting assay were used to detect the level of gene and protein, respectively. Transwell co-culture system was used for the co-culture of dendritic cells (DCs) and CD4+T cells. RESULTS: Our data showed that rhIL-37 inhibited the development of ectopic lesions in the mice with endometriosis, increased Th1/Th2 ratio and induced DCs maturation. The co-culture system of DCs and CD4+T cells demonstrated that rhIL-37 increased Th1/Th2 cell ratio through promoting DCs maturation. Moreover, the expression of IL-4 in the DCs derived from healthy mice was inhibited by rhIL-37 treatment. rhIL-37 increased Th1/Th2 cell ratio through inhibiting IL-4 in DCs. Subsequently, our results proved that rhIL-37 promoted the maturation of DCs via inhibiting phosphorylation of STAT3. Activation of STAT3 could reverse rhIL-37-induced maturation of DCs. CONCLUSION: Overall, rhIL-37 could protect against endometriosis through increasing the ratio of Th1/Th2 cells via inducing DCs maturation and inhibiting IL-4 expression in the DCs. Furthermore, rhIL-37 induced DCs maturation by inhibiting STAT3 phosphorylation. Our data confirmed the protective effect of rhIL-37 in endometriosis. These data may provide a novel idea for the treatment of the disease.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Dendritic Cells/drug effects , Endometriosis/immunology , Interleukin-1/pharmacology , Th1-Th2 Balance/drug effects , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/drug effects , Coculture Techniques , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Endometriosis/metabolism , Endometrium/transplantation , Female , Gene Expression/drug effects , Humans , Interferon-gamma/drug effects , Interferon-gamma/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-13/metabolism , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism , Mice , Phosphorylation , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Recombinant Proteins , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/metabolism , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
20.
Front Immunol ; 12: 692127, 2021.
Article in English | MEDLINE | ID: mdl-34305924

ABSTRACT

Mucus secretion is an important feature of asthma that highly correlates with morbidity. Current therapies, including administration of mucolytics and anti-inflammatory drugs, show limited effectiveness and durability, underscoring the need for novel effective and longer lasting therapeutic approaches. Here we show that mucus production in the lungs is regulated by the TNF superfamily member 15 (TL1A) acting through the mucus-inducing cytokine IL-13. TL1A induces IL13 expression by innate lymphoid cells leading to mucus production, in addition to promoting airway inflammation and fibrosis. Reciprocally, neutralization of IL13 signaling through its receptor (IL4Rα), completely reverses TL1A-induced mucus secretion, while maintaining airway inflammation and fibrosis. Importance of TL1A is further demonstrated using a preclinical asthma model induced by chronic house dust mite exposure where TL1A neutralization by genetic deletion or antagonistic blockade of its receptor DR3 protected against mucus production and fibrosis. Thus, TL1A presents a promising therapeutic target that out benefits IL13 in reversing mucus production, airway inflammation and fibrosis, cardinal features of severe asthma in humans.


Subject(s)
Asthma/immunology , Interleukin-13/immunology , Interleukin-4 Receptor alpha Subunit/immunology , Lung/immunology , Mucus/immunology , Receptors, Tumor Necrosis Factor, Member 25/immunology , Tumor Necrosis Factor Ligand Superfamily Member 15/immunology , Animals , Asthma/pathology , DNA-Binding Proteins/genetics , Female , Fibrosis , Lung/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Tumor Necrosis Factor, Member 25/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...