Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 875
Filter
1.
Clin Immunol ; 263: 110223, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636890

ABSTRACT

Idiopathic severe aplastic anemia (SAA) is a disease of bone marrow failure caused by T-cell-induced destruction of hematopoietic stem and progenitor cells (HSPCs), however the mechanism remains unclear. We performed single-cell RNA sequencing of PBMCs and BMMCs from SAA patients and healthy donors and identified a CD8+ T cell subset with a tissue residency phenotype (Trm) in bone marrow that exhibit high IFN-γ and FasL expression and have a higher ability to induce apoptosis in HSPCs in vitro through FasL expression. CD8+ Trm cells were induced by IL-15 presented by IL-15Rα on monocytes, especially CD16+ monocytes, which were increased in SAA patients. CD16+ monocytes contributed to IL-15-induced CD38+CXCR6+ pre-Trm differentiation into CD8+ Trm cells, which can be inhibited by the CD38 inhibitor 78c. Our results demonstrate that IL-15-induced CD8+ Trm cells are pathogenic cells that mediate HSPC destruction in SAA patients and are therapeutic targets for future treatments.


Subject(s)
Anemia, Aplastic , CD8-Positive T-Lymphocytes , GPI-Linked Proteins , Hematopoietic Stem Cells , Interleukin-15 , Monocytes , Receptors, IgG , Humans , Anemia, Aplastic/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Interleukin-15/pharmacology , Interleukin-15/immunology , Receptors, IgG/metabolism , Receptors, IgG/immunology , Monocytes/immunology , Monocytes/drug effects , Female , Male , Adult , Hematopoietic Stem Cells/immunology , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/immunology , Middle Aged , Fas Ligand Protein/metabolism , Fas Ligand Protein/immunology , Young Adult , Adolescent , Interferon-gamma/immunology , Interferon-gamma/metabolism , Receptors, Interleukin-15/metabolism , Receptors, Interleukin-15/immunology , Apoptosis/drug effects , Cell Differentiation/immunology
2.
Front Immunol ; 15: 1341804, 2024.
Article in English | MEDLINE | ID: mdl-38515757

ABSTRACT

IL-15 has shown preclinical activity by enhancing the functional maturation of natural killer (NK) cells. Clinical evaluation of the potential anticancer activity of most cytokines, including IL-15, has been limited by low tolerability and rapid in vivo clearance. Efbalropendekin Alfa (XmAb24306) is a soluble IL15/IL15-receptor alpha heterodimer complex fused to a half-life extended Fc domain (IL15/IL15Rα-Fc), engineered with mutations to reduce IL-15 affinity for CD122. Reduced affinity drives lower potency, leading to prolonged pharmacodynamic response in cynomolgus monkeys. We show that in vitro, human NK cells treated with XmAb24306 demonstrate enhanced cytotoxicity against various tumor cell lines. XmAb24306-treated NK cells also exhibit enhanced killing of 3D colorectal cancer spheroids. Daratumumab (dara), a monoclonal antibody (mAb) that targets CD38 results in antibody-dependent cellular cytotoxicity (ADCC) of both multiple myeloma (MM) cells and NK cells. Addition of XmAb24306 increases dara-mediated NK cell ADCC against various MM cell lines in vitro. Because NK cells express CD38, XmAb24306 increases dara-mediated NK cell fratricide, but overall does not negatively impact the ADCC activity against a MM cell line likely due to increased NK cell activity of the surviving cells. These data show that XmAb24306 increases direct and ADCC-mediated human NK cell cytotoxicity in vitro.


Subject(s)
Antineoplastic Agents , Interleukin-15 , Humans , Interleukin-15/pharmacology , Interleukin-15/metabolism , Antineoplastic Agents/pharmacology , Cytokines/metabolism , Immunologic Factors/metabolism , Killer Cells, Natural , Cell Line, Tumor
3.
Mol Biol Rep ; 51(1): 436, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520551

ABSTRACT

AIMS: Elevated levels of adipokine chemerin have been identified in oral squamous cell carcinoma (OSCC) and found to be associated with metastasis to the cervical lymph nodes. The underlying mechanism through which chemerin affects OSCC progression is unclear. The aims of this study were firstly to determine chemerin levels and cytokine concentrations in serum from patients with OSCC and in OSCC cell cultures, and secondly to observe chemerin effects on OSCC cell cytokine secretion, migration, and invasion in vitro. METHODS: Serum samples were collected from 20 patients diagnosed with OSCC, including groups with (LN+) and without (LN-) cervical lymph node metastasis. A Luminex liquid suspension assay was used to quantify serum concentrations of 27 types of cytokines. Correlations between chemerin and cytokines (i.e., IL-6, IL-15, GM-CSF, RANTES, TNF-α, and VEGF) were analyzed. ELISAs (enzyme-linked immunosorbent assays) were used to determine concentrations of chemerin and selected cytokines in serum and in supernatants of OSCC cell cultures (SCC9 and SCC25 cell lines). OSCC cells were stimulated with human recombinant chemerin, STAT3 inhibitor, or IL-6 together with TNF-α neutralizing antibodies. Phosphorylated STAT3 protein levels were measured with western blot analysis. OSCC cell migration and invasion were investigated with Transwell assays. RESULTS: Compared to the LN- group, OSCC patients with cervical lymph node metastasis had higher levels of IL-6 (P = 0.006), IL-15 (P = 0.020), GM-CSF (P = 0.036), RANTES (P = 0.032), TNF-α (P = 0.005), VEGF (P = 0.006), and chemerin (P = 0.001). Patients' serum chemerin levels correlated directly with IL-6, GM-CSF, TNF-α, and VEGF levels in OSCC patients. Exogenous recombinant chemerin treatment promoted secretion of IL-6 and TNF-α via activation of STAT3 in OSCC cells. Chemerin induced OSCC-cell migration and invasion, and these effects were reduced by IL-6 and TNF-α neutralizing antibodies. CONCLUSION: Our findings indicate that chemerin may play a role in advancing OSCC progression by increasing production of IL-6 and TNF-α, perhaps via a mechanism involving STAT3 signaling.


Subject(s)
Carcinoma, Squamous Cell , Chemokines , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Antibodies, Neutralizing , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement , Cytokines/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-15/metabolism , Interleukin-15/pharmacology , Interleukin-6/metabolism , Lymphatic Metastasis , Mouth Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck , STAT3 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Chemokines/metabolism
4.
Cancer Immunol Res ; 12(5): 559-574, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38407894

ABSTRACT

Sipuleucel-T (sip-T) is the only FDA-approved autologous cellular immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). To elucidate parameters of the response profile to this therapy, we report high-dimensional analyses of sip-T using cytometry by time of flight (CyTOF) and show a lymphoid predominance, with CD3+ T cells constituting the highest proportion (median ∼60%) of sip-T, followed by B cells, and natural killer (NK) and NKT cells. We hypothesized that treatment of sip-T with homeostatic cytokines known to activate/expand effector lymphocytes could augment efficacy against prostate tumors. Of the cytokines tested, IL15 was the most effective at enhancing activation and proliferation of effector lymphocytes, as well as augmenting tumor cytotoxicity in vitro. Co-culture of sip-T with IL15 and control or prostate-relevant antigens showed substantial activation and expansion of CD8+ T cells and NKT cells in an antigen-specific manner. Adoptive transfer of IL15-treated sip-T into NSG mice resulted in more potent prostate tumor growth inhibition compared with control sip-T. Evaluation of tumor-infiltrating lymphocytes revealed a 2- to 14-fold higher influx of sip-T and a significant increase in IFNγ producing CD8+ T cells and NKT cells within the tumor microenvironment in the IL15 group. In conclusion, we put forward evidence that IL15 treatment can enhance the functional antitumor immunity of sip-T, providing rationale for combining IL15 or IL15 agonists with sip-T to treat patients with mCRPC.


Subject(s)
Interleukin-15 , Lymphocyte Activation , Tissue Extracts , Interleukin-15/pharmacology , Animals , Male , Tissue Extracts/pharmacology , Humans , Mice , Lymphocyte Activation/immunology , Cell Line, Tumor , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Immunotherapy, Adoptive/methods
5.
Clin Transl Med ; 14(1): e1553, 2024 01.
Article in English | MEDLINE | ID: mdl-38279870

ABSTRACT

BACKGROUND: T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is an immune checkpoint molecule that suppresses CD8+ T-cell function in cancer. However, the expression profile and functional significance of TIGIT in the immune microenvironment of lung adenocarcinoma (LUAD) remain elusive. Interleukin (IL)-15 has emerged as a promising candidate for enhancing CD8+ T-cell mediated tumour eradication. Exploring therapeutic strategies that combine IL-15 with TIGIT blockade in LUAD is warranted. METHODS: We investigated the regulatory network involving coinhibitory TIGIT and CD96, as well as costimulatory CD226 in LUAD using clinical samples. The potential role of TIGIT in regulating the pathogenesis of LUAD was addressed through a murine model with transplanted tumours constructed in Tigit-/- mice. The therapeutic strategy that combines TIGIT blockade with IL-15 stimulation was verified using a transplanted tumour murine model and a patient-derived organoid (PDO) model. RESULTS: The frequency of TIGIT+ CD8+ T cells was significantly increased in LUAD. Increased TIGIT expression indicated poorer prognosis in LUAD patients. Furthermore, the effector function of TIGIT+ CD8+ tumour-infiltrating lymphocytes (TILs) was impaired in LUAD patients and TIGIT inhibited antitumour immune response of CD8+ TILs in tumour-bearing mice. Mechanistically, IL-15 enhanced the effector function of CD8+ TILs but stimulated the expression of TIGIT on CD8+ TILs concomitantly. The application of IL-15 combined with TIGIT blockade showed additive effects in enhancing the cytotoxicity of CD8+ TILs and thus further increased the antitumour immune response in LUAD. CONCLUSIONS: Our findings identified TIGIT as a promising therapeutic target for LUAD. LUAD could benefit more from the combined therapy of IL-15 stimulation and TIGIT blockade.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Animals , Humans , Mice , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/metabolism , CD8-Positive T-Lymphocytes , Disease Models, Animal , Immunotherapy , Interleukin-15/pharmacology , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Tumor Microenvironment
6.
Sci Rep ; 14(1): 1291, 2024 01 14.
Article in English | MEDLINE | ID: mdl-38221530

ABSTRACT

Human Vγ9Vδ2 T lymphocytes are regarded as promising effector cells for cancer immunotherapy since they have the ability to eliminate several tumor cells through non-peptide antigen recognition. However, the cytotoxic function and the mechanism of Vγ9Vδ2 T cells leading to specific killing of cholangiocarcinoma cells are yet to be confirmed. In this study, we established a protocol for ex vivo expansion of Vγ9Vδ2 T cells from healthy donors' peripheral blood mononuclear cells by culture with zoledronate and addition of IL-2, and IL-15 or IL-18 or neither. Testing the cytotoxic capacity of cultured Vγ9Vδ2 T cells against cholangiocarcinoma cell lines showed higher reactivity than against control cells. Surface expression of CD107 was detected on the Vγ9Vδ2 T cells, suggesting that these cells limit in vitro growth of cholangiocarcinoma cells via degranulation of the perforin and granzyme pathway. Analysis of molecular signaling was used to demonstrate expression of pro- and anti-survival genes and a panel of cytokine genes in Vγ9Vδ2 T cells. We found that in the presence of either IL-15 or IL-18, levels of caspase 3 were significantly reduced. Also, IL-15 and IL-18 stimulated cells contained cytotoxicity against cholangiocarcinoma cells, suggesting that stimulated Vγ9Vδ2 T cells may provide a feasible therapy for cholangiocarcinoma.


Subject(s)
Antineoplastic Agents , Cholangiocarcinoma , Humans , Interleukin-15/pharmacology , Interleukin-18 , Leukocytes, Mononuclear/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes , Lymphocyte Activation
7.
Brain Behav Immun ; 115: 652-666, 2024 01.
Article in English | MEDLINE | ID: mdl-37992787

ABSTRACT

Cytokines are potent immunomodulators exerting pleiotropic effects in the central nervous system (CNS). They influence neuronal functions and circuit activities with effects on memory processes and behaviors. Here, we unravel a neuromodulatory activity of interleukin-15 (IL-15) in mouse brain. Acute exposure of hippocampal slices to IL-15 enhances gamma-aminobutyricacid (GABA) release and reduces glutamatergic currents, while chronic treatment with IL-15 increases the frequency of hippocampal miniature inhibitory synaptic transmission and impairs memory formation in the novel object recognition (NOR) test. Moreover, we describe that serotonin is involved in mediating the hippocampal effects of IL-15, because a selective 5-HT3A receptor antagonist prevents the effects on inhibitory neurotransmission and ameliorates mice performance in the NOR test. These findings provide new insights into the modulatory activities of cytokines in the CNS, with implications on behavior.


Subject(s)
Interleukin-15 , Memory, Episodic , Mice , Animals , Interleukin-15/pharmacology , Hippocampus , Synaptic Transmission/physiology , Neurons
8.
Sheng Li Xue Bao ; 75(5): 623-628, 2023 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-37909133

ABSTRACT

The study aims to explore the active molecules of traditional Chinese medicine that specifically bind to interleukin-15 receptor α (IL-15Rα) using molecular docking and surface plasmon resonance (SPR) technology. AutoDock molecular docking software was used to perform simulated docking of more than 3 000 compounds from 48 traditional Chinese medicines at IL-15Rα and screen the specific binding compounds. Then Biocore T200 biomolecular interaction analysis system of SPR was used to confirm the binding specificity of the selected target compounds. Finally, the biological effects of the target compounds on IL-15Rα were verified by cell biological experiments. The results showed that neoprzewaquinone A (Neo) possessed the highest specific binding affinity among the active molecules from traditional Chinese medicine, and the dissociation constant (KD) value was (0.62 ± 0.20) µmol/L. The results of cell experiment showed that Neo significantly inhibited the proliferation of Mo7e cells induced by IL-15, and the IC50 was 1.075 µmol/L, approximately 1/120 of the IC50 of Cefazolin (IL-15 specific antagonist). These results suggest that Neo is a specific inhibitor of IL-15Rα and may be a potential active drug for the treatment of diseases related to the dysfunction of the IL-15Rα signaling.


Subject(s)
Interleukin-15 , Surface Plasmon Resonance , Molecular Docking Simulation , Interleukin-15/chemistry , Interleukin-15/metabolism , Interleukin-15/pharmacology , Interleukin-15 Receptor alpha Subunit/chemistry , Interleukin-15 Receptor alpha Subunit/metabolism , Protein Binding
9.
Aging (Albany NY) ; 15(22): 13471-13485, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38032288

ABSTRACT

BACKGROUND: Limited research has been conducted on the post-intervention inflammatory status in sarcopenic patients, despite previous studies revealing elevated pro-inflammatory markers. This study aimed to investigate the potential elevation of specific pro-inflammatory cytokines in sarcopenic patients and evaluate the effects of exercise and nutritional support interventions on these cytokine levels. METHODS: In this post-hoc analysis of a randomized controlled trial (RCT), 57 individuals with sarcopenia from the RCT and 57 non-sarcopenic participants from the same geriatric community cohort that did not participate in the RCT were enrolled. Grip strength and body composition measurements were recorded. Tumor necrotizing factor (TNF)-α, interleukin (IL)-1ß, IL-6, and IL-15 levels were assessed at baseline for both groups and after a 12-week intervention consisting of resistive exercise and supplementation with branched-chain amino acids, calcium, and vitamin D3 in the patients with sarcopenia. RESULTS: The sarcopenic group demonstrated significantly lower body weight, body mass index, grip strength, and skeletal muscle mass index. Moreover, sarcopenic patients exhibited higher levels of TNF-α (p=0.007), IL-1ß (p<0.001), and IL-6 (p<0.001), while no significant difference was observed in IL-15 (p=0.345) between participants with and those without sarcopenia. Following the intervention, the sarcopenic group experienced significant improvements in grip strength and skeletal muscle mass index with a notable reduction in TNF-α (p=0.003), IL-1ß (p=0.012) and IL-6 (p=0.001) levels. CONCLUSIONS: Sarcopenic patients exhibit elevated levels of TNF-α, IL-1ß, and IL-6, which declined after nutrition support and exercise interventions. However, further research is necessary to evaluate the long-term impact of these interventions on cytokine levels.


Subject(s)
Sarcopenia , Aged , Humans , Interleukin-15/metabolism , Interleukin-15/pharmacology , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Muscle Strength , Muscle, Skeletal/metabolism , Sarcopenia/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
JCI Insight ; 8(18)2023 09 22.
Article in English | MEDLINE | ID: mdl-37581929

ABSTRACT

IL-15 is under clinical investigation toward the goal of curing HIV infection because of its abilities to reverse HIV latency and enhance immune effector function. However, increased potency through combination with other agents may be needed. 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhances IL-15-mediated latency reversal and NK cell function by increasing STAT5 activation. We hypothesized that HODHBt would also synergize with IL-15, via STAT5, to directly enhance HIV-specific cytotoxic T cell responses. We showed that ex vivo IL-15 + HODHBt treatment markedly enhanced HIV-specific granzyme B-releasing T cell responses in PBMCs from antiretroviral therapy-suppressed (ART-suppressed) donors. We also observed upregulation of antigen processing and presentation in CD4+ T cells and increased surface MHC-I. In ex vivo PBMCs, IL-15 + HODHBt was sufficient to reduce intact proviruses in 1 of 3 ART-suppressed donors. Our findings reveal the potential for second-generation IL-15 studies incorporating HODHBt-like therapeutics. Iterative studies layering on additional latency reversal or other agents are needed to achieve consistent ex vivo reservoir reductions.


Subject(s)
Antineoplastic Agents , HIV Infections , Humans , STAT5 Transcription Factor/metabolism , Interleukin-15/pharmacology , Interleukin-15/metabolism , Virus Latency , T-Lymphocytes, Cytotoxic , Antineoplastic Agents/therapeutic use
11.
Front Immunol ; 14: 1117092, 2023.
Article in English | MEDLINE | ID: mdl-37409128

ABSTRACT

In chronic infections and cancer, exhausted CD8 T cells exhibit heterogeneous subpopulations. TCF1+PD-1+ progenitor exhausted CD8 T cells (Tpex) can self-renew and give rise to Tim-3+PD-1+ terminally differentiated CD8 T cells that retain their effector functions. Tpex cells are thus essential to maintaining a pool of antigen-specific CD8 T cells during persistent antigenic stimulation, and only they respond to PD-1-targeted therapy. Despite their potential as a crucial therapeutic target for immune interventions, the mechanisms controlling the maintenance of virus-specific Tpex cells remain to be determined. We observed approximately 10-fold fewer Tpex cells in the spleens of mice chronically infected with lymphocytic choriomeningitis virus (LCMV) one-year post-infection (p.i.) than at three months p.i. Similar to memory CD8 T cells, Tpex cells have been found to undergo self-renewal in the lymphoid organs, prominently the bone marrow, during chronic LCMV infection. Furthermore, ex vivo treatment with IL-15 preferentially induced the proliferation of Tpex cells rather than the terminally differentiated subsets. Interestingly, single-cell RNA sequencing analysis of LCMV-specific exhausted CD8 T cells after ex vivo IL-15 treatment compared with those before treatment revealed increased expression of ribosome-related genes and decreased expression of genes associated with the TCR signaling pathway and apoptosis in both Tpex and Ttex subsets. The exogenous administration of IL-15 to chronically LCMV-infected mice also significantly increased self-renewal of Tpex cells in the spleen and bone marrow. In addition, we assessed the responsiveness of CD8 tumor-infiltrating lymphocytes (TILs) from renal cell carcinoma patients to IL-15. Similar to the data we obtained from chronic viral infection in mice, the expansion of the Tpex subset of PD-1+ CD8 TILs upon ex vivo IL-15 treatment was significantly higher than that of the terminally differentiated subset. These results show that IL-15 could promote self-renewal of Tpex cells, which has important therapeutic implications.


Subject(s)
Interleukin-15 , Lymphocytic Choriomeningitis , Programmed Cell Death 1 Receptor , Animals , Mice , CD8-Positive T-Lymphocytes , Interleukin-15/pharmacology , Lymphocytic choriomeningitis virus , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction
12.
Blood Adv ; 7(20): 6225-6239, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37379267

ABSTRACT

The majority of patients with acute myeloid leukemia (AML) succumb to the disease or its complications, especially among older patients. Natural killer (NK) cells have been shown to have antileukemic activity in patients with AML; however, to our knowledge, primary NK cells armed with a chimeric antigen receptor (CAR) targeting antigens associated with AML as an "off-the-shelf" product for disease control have not been explored. We developed frozen, off-the-shelf allogeneic human NK cells engineered with a CAR recognizing FLT3 and secreting soluble interleukin-15 (IL-15) (FLT3 CAR_sIL-15 NK) to improve in vivo NK cell persistence and T-cell activation. FLT3 CAR_sIL-15 NK cells had higher cytotoxicity and interferon gamma secretion against FLT3+ AML cell lines when compared with activated NK cells lacking an FLT3 CAR or soluble IL-15. Frozen and thawed allogeneic FLT3 CAR_sIL-15 NK cells prolonged survival of both the MOLM-13 AML model as well as an orthotopic patient-derived xenograft AML model when compared with control NK cells. FLT3 CAR_sIL-15 NK cells showed no cytotoxicity against healthy blood mononuclear cells or hematopoietic stem cells. Collectively, our data suggest that FLT3 is an AML-associated antigen that can be targeted by frozen, allogeneic, off-the-shelf FLT3 CAR_sIL-15 NK cells that may provide a novel approach for the treatment of AML.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/metabolism , Interleukin-15/pharmacology , Interleukin-15/metabolism , Killer Cells, Natural , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/metabolism , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
13.
Acta Histochem ; 125(3): 152026, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37058857

ABSTRACT

Decidual immunological mediators modulate placental formation, decidualization and fetal development. However, the effect of maternal hyperthyroidism on decidual immunology needs further research. The aim of this study was to evaluate the population of uterine natural killer cells (uNKs) and the expression of immunological mediators in the decidua of female rats throughout pregnancy. Wistar rats were used and hyperthyroidism was induced by daily administration of L-thyroxine (T4) throughout pregnancy. The population of uNK cells in decidua was evaluated by immunostaining Lectin DBA, as well as the expression of interferon γ (INFγ), macrophage migration inhibitory factor (MIF), interleukin 15 (IL-15) and inducible nitric oxide synthase (iNOS) at 7, 10, 12, 14 and 19 days of gestation (DG). Maternal hyperthyroidism reduced the DBA+ uNK cell population in the decidua at 7 (P < 0.05) and 10 (P < 0.01) DGs compared to that in the control group, while it increased in the basal decidua (P < 0.05) and metrial gland (P < 0.0001) at the 12th DG. Hyperthyroidism also increased immunostaining of IL-15 (P < 0.0001), INFγ (P < 0.05), and MIF (P < 0.05) in the 7th DG, and increased immunostaining of IL-15 (P < 0.0001) and MIF (P < 0.01) in the 10th DG. However, excess thyroxine reduced IL-15 expression in the metrial gland and/or basal decidua in the 12th (P < 0.05), 14th (P < 0.01), and 19th (P < 0.001) DGs, as was also observed for INFγ in the basal decidua (P<0.001) and metrial gland (P < 0.0001) in the 12th DG. Regarding iNOS, an antiinflammatory cytokine, lower expression was observed in the basal decidua of hyperthyroid animals at 7 and 12 DGs (P < 0.05), whereas an increase occurred in the 10th DG (P < 0.05). These data demonstrate that maternal hyperthyroidism in female rats, particularly between 7 and 10 DGs, reduces the population of DBA+ uNKs in the decidua and increases the expression of inflammatory cytokines, suggesting a more proinflammatory environment in early pregnancy caused by this gestational disease.


Subject(s)
Hyperthyroidism , Placenta , Rats , Pregnancy , Female , Animals , Placenta/metabolism , Decidua/metabolism , Interleukin-15/metabolism , Interleukin-15/pharmacology , Rats, Wistar , Killer Cells, Natural/metabolism , Hyperthyroidism/metabolism
14.
J Biomed Sci ; 30(1): 20, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36959575

ABSTRACT

BACKGROUND: Although immune checkpoint blockade (ICB) therapy has brought survival benefits to patients with specific cancer types, most of cancer patients remain refractory to the ICB therapy, which is largely attributed to the immunosuppressive tumor microenvironment. Thereby, it is urgent to profile key molecules and signal pathways responsible for modification of tumor microenvironment. METHODS: Multiple databases of esophageal squamous cell carcinoma (ESCC) were integratively analyzed to screen candidate genes responsible for infiltration of CD8+ T cells. Expression of pescadillo ribosomal biogenesis factor 1 (PES1) in clinical ESCC samples was examined by qRT-PCR, western blotting, and immunohistochemistry. The mechanisms of PES1 were investigated via RNA sequencing and mass spectrometry followed by immunoprecipitation and proximity ligation assay. The clinical and therapeutic significance of PES1 in ESCC was comprehensively investigated using ESCC cells and mouse model. RESULTS: PES1 was significantly upregulated and correlated with poor prognosis in ESCC patients. PES1 knockdown decreased ESCC cell growth in vitro and in vivo and enhanced the efficacy of ICB therapy in mouse model, which was established through subcutaneous inoculation with ESCC cells. Analyses on RNA sequencing and mass spectrometry suggested that PES1 expression was negatively correlated with IL15 and ILF3 was one of the PES1-associated proteins. It has been known that ILF3 interacts with and stabilizes IL15 mRNA to increase IL15 protein level. Our data further indicated that PES1 interfered with the interaction between ILF3 and IL15 mRNA and impaired ILF3-mediated stabilization of IL15 mRNA, which eventually reduced the protein level of IL15. Interestingly, the inhibitory effect of ICB therapy boosted by PES1 knockdown dramatically antagonized by knockdown of IL15, which suppressed the tumor-infiltrated CD8+ T cells in ESCC. Finally, we confirmed the relationships among PES1, IL15, and CD8+ T cell infiltration in 10 locally advanced ESCC patients receiving ICB neoadjuvant therapy and demonstrated that ICB therapy would be more effective in those with low expression of PES1. CONCLUSIONS: Altogether, our findings herein provided novel insights on biological function and clinical significance of PES1 and suggested that high expression of PES1 could suppress ILF3-IL15 axis-mediated immunosurveillance and promote resistance to ICB through restraining tumor-infiltrated CD8+ T cells.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Mice , CD8-Positive T-Lymphocytes , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/therapy , Immunotherapy , Interleukin-15/pharmacology , Interleukin-15/therapeutic use , Tumor Microenvironment , RNA-Binding Proteins/metabolism , Nuclear Factor 90 Proteins/metabolism
15.
Cancer Immunol Res ; 11(5): 674-686, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36807510

ABSTRACT

Immune checkpoint blockade (ICB) has changed the standard of care for many patients with cancer, yet no ICB is approved for ovarian cancer. We hypothesized that maintenance therapy with an IL15 "superagonist" (N-803) and ICB in combination could induce potent immune activation in ovarian cancer. Using flow cytometry, cytometry by time of flight analysis, and cytotoxicity assays, we analyzed patient samples from women with advanced epithelial ovarian cancer treated with N-803 for indications of PD-1/PD-L1 upregulation with this treatment. In addition, ICB and N-803 were evaluated in preclinical studies to determine the functional impact of combination therapy on natural killer (NK) cells in vitro and in vivo. We observed that N-803 stimulated initial NK-cell expansion in patient samples; however, proliferation was not sustained beyond 2 weeks despite continued treatment. This result was reverse translated back to the laboratory to determine the functional relevance of this finding. The addition of ICB with an antibody-dependent cellular cytotoxicity IgG1 antibody against PD-L1 (avelumab) or an IgG4 antibody against PD-1 (pembrolizumab) enhanced N-803 induced NK-cell function in vitro. Using models of human ovarian cancer and NK-cell adoptive transfer in mice, we showed enhanced antitumor control with N-803 and ICB, as well as a combination effect that enhanced NK-cell persistence and expansion in vivo. This work suggests that PD-1/PD-L1 blockade combined with IL15 signaling may overcome resistance to cytokine therapy in ovarian cancer.


Subject(s)
B7-H1 Antigen , Ovarian Neoplasms , Humans , Female , Animals , Mice , Interleukin-15/pharmacology , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Immunotherapy , Ovarian Neoplasms/drug therapy
16.
RMD Open ; 9(1)2023 01.
Article in English | MEDLINE | ID: mdl-36599629

ABSTRACT

OBJECTIVES: Macrophage subsets, activated by T cells, are increasingly recognised to play a central role in rheumatoid arthritis (RA) pathogenesis. Janus kinase (JAK) inhibitors have proven beneficial clinical effects in RA. In this study, we investigated the effect of JAK inhibitors on the generation of cytokine-activated T (Tck) cells and the production of cytokines and chemokines induced by Tck cell/macrophage interactions. METHODS: CD14+ monocytes and CD4+ T cells were purified from peripheral blood mononuclear cells from buffy coats of healthy donors. As representative JAK inhibitors, tofacitinib or ruxolitinib were added during Tck cell differentiation. Previously validated protocols were used to generate macrophages and Tck cells from monocytes and CD4+ T cells, respectively. Cytokine and chemokine including TNF, IL-6, IL-15, IL-RA, IL-10, MIP1α, MIP1ß and IP10 were measured by ELISA. RESULTS: JAK inhibitors prevented cytokine-induced maturation of Tck cells and decreased the production of proinflammatory cytokines TNF, IL-6, IL-15, IL-1RA and the chemokines IL-10, MIP1α, MIP1ß, IP10 by Tck cell-activated macrophages in vitro (p<0.05). CONCLUSIONS: Our findings show that JAK inhibition disrupts T cell-induced macrophage activation and reduces downstream proinflammatory cytokine and chemokine responses, suggesting that suppressing the T cell-macrophage interaction contributes to the therapeutic effect of JAK inhibitors.


Subject(s)
Arthritis, Rheumatoid , Janus Kinase Inhibitors , Humans , Interleukin-10/pharmacology , Interleukin-10/therapeutic use , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Synovial Membrane/pathology , Interleukin-15/pharmacology , Interleukin-15/therapeutic use , Interleukin-6 , Leukocytes, Mononuclear/pathology , Macrophage Activation , Chemokine CXCL10/pharmacology , Chemokine CXCL10/therapeutic use , Macrophages , Arthritis, Rheumatoid/drug therapy , Cytokines , T-Lymphocytes
17.
J Cancer Res Clin Oncol ; 149(9): 5705-5715, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36547689

ABSTRACT

PURPOSE: NKG2A, an inhibitory receptor expressed on NK cells and T cells, leads to immune evasion by binding to HLA-E expressed on cancer cells. Here, we investigated the relationship between HLA-E surface expression on head and neck squamous cell carcinoma (HNSCC) cell lines and the efficacy of monalizumab, an NKG2A inhibitor, in promoting NK cell activity. METHODS: Six HNSCC cell lines were used as target cells. After exposure to IFN- γ, HLA-E surface expression on HNSCC cell lines was measured by flow cytometry. Peripheral blood mononuclear cells (PBMCs) from healthy donors and isolated NK cells were used as effector cells. NK cells were stimulated by treatment with IL-2 and IL-15 for 5 days, and NK cell-induced cytotoxicity was analyzed by CD107a degranulation and 51Cr release assays. RESULTS: We confirmed that HLA-E expression was increased by IFN-γ secreted by NK cells and that HLA-E expression was different for each cell line upon exposure to IFN-γ. Cell lines with high HLA-E expression showed stronger inhibition of NK cell cytotoxicity, and efficacy of monalizumab was high. Combination with cetuximab increased the efficacy of monalizumab. In addition, stimulation of isolated NK cells with IL-2 and IL-15 increased the efficacy of monalizumab, even in the HLA-E low groups. CONCLUSION: Monalizumab efficacy was correlated with HLA-E surface expression and was enhanced when NK cell activity was increased by cetuximab or cytokines. These results suggest that monalizumab may be potent against HLA-E-positive tumors and that monalizumab efficacy could be improved by promoting NK cell activity.


Subject(s)
Head and Neck Neoplasms , Interleukin-15 , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Cetuximab/pharmacology , Interleukin-15/pharmacology , Interleukin-2/pharmacology , Leukocytes, Mononuclear , Cell Line, Tumor , Killer Cells, Natural , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , HLA-E Antigens
18.
Acta Physiologica Sinica ; (6): 623-628, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1007777

ABSTRACT

The study aims to explore the active molecules of traditional Chinese medicine that specifically bind to interleukin-15 receptor α (IL-15Rα) using molecular docking and surface plasmon resonance (SPR) technology. AutoDock molecular docking software was used to perform simulated docking of more than 3 000 compounds from 48 traditional Chinese medicines at IL-15Rα and screen the specific binding compounds. Then Biocore T200 biomolecular interaction analysis system of SPR was used to confirm the binding specificity of the selected target compounds. Finally, the biological effects of the target compounds on IL-15Rα were verified by cell biological experiments. The results showed that neoprzewaquinone A (Neo) possessed the highest specific binding affinity among the active molecules from traditional Chinese medicine, and the dissociation constant (KD) value was (0.62 ± 0.20) µmol/L. The results of cell experiment showed that Neo significantly inhibited the proliferation of Mo7e cells induced by IL-15, and the IC50 was 1.075 µmol/L, approximately 1/120 of the IC50 of Cefazolin (IL-15 specific antagonist). These results suggest that Neo is a specific inhibitor of IL-15Rα and may be a potential active drug for the treatment of diseases related to the dysfunction of the IL-15Rα signaling.


Subject(s)
Molecular Docking Simulation , Interleukin-15/pharmacology , Surface Plasmon Resonance , Interleukin-15 Receptor alpha Subunit/metabolism , Protein Binding
19.
Nat Commun ; 13(1): 7658, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496445

ABSTRACT

Sirt6 has been implicated as a key regulator in aging-related diseases, including osteoarthritis. However, its functional role and molecular mechanism in chondrocyte senescence and osteoarthritis pathophysiology remain largely undefined. Here we show that Sirt6 deficiency exaggerates chondrocyte senescence and osteoarthritis progression, whereas intra-articular injection of adenovirus-Sirt6 markedly attenuates surgical destabilization of medial meniscus-induced osteoarthritis. Mechanistically, Sirt6 can directly interact with STAT5 and deacetylate STAT5, thus inhibiting the IL-15/JAK3-induced STAT5 translocation from cytoplasm to nucleus, which inactivates IL-15/JAK3/STAT5 signaling. Mass spectrometry revealed that Sirt6 deacetylated conserved lysine 163 on STAT5. Mutation of lysine 163 to arginine in STAT5 abolished the regulatory effect of Sirt6. In vivo, specific ablation of Sirt6 in chondrocytes exacerbated osteoarthritis. Pharmacological activation of Sirt6 substantially alleviated chondrocyte senescence. Taken together, Sirt6 attenuates chondrocyte senescence by inhibiting IL-15/JAK3/STAT5 signaling. Targeting Sirt6 represents a promising new approach for osteoarthritis.


Subject(s)
Cartilage, Articular , Osteoarthritis , Sirtuins , Humans , Interleukin-15/pharmacology , Lysine/pharmacology , Cellular Senescence/genetics , Chondrocytes , Osteoarthritis/genetics , Sirtuins/genetics
20.
J Immunother Cancer ; 10(12)2022 12.
Article in English | MEDLINE | ID: mdl-36564129

ABSTRACT

BACKGROUND: While radiation and chemotherapy are primarily purposed for their cytotoxic effects, a growing body of preclinical and clinical evidence demonstrates an immunogenic potential for these standard therapies. Accordingly, we sought to characterize the immunogenic potential of radiation and cisplatin in human tumor models of HPV-associated malignancies. These studies may inform rational combination immuno-oncology (IO) strategies to be employed in the clinic on the backbone of standard of care, and in so doing exploit the immunogenic potential of standard of care to improve durable responses in HPV-associated malignancies. METHODS: Retroviral transduction with HPV16 E7 established a novel HPV-associated sinonasal squamous cell carcinoma (SNSCC) cell line. Three established HPV16-positive cell lines were also studied (cervical carcinoma and head and neck squamous cell carcinoma). Following determination of sensitivities to standard therapies using MTT assays, flow cytometry was used to characterize induction of immunogenic cell stress following sublethal exposure to radiation or cisplatin, and the functional consequence of this induction was determined using impedance-based real time cell analysis cytotoxicity assays employing HPV16 E7-specific cytotoxic lymphocytes (CTLs) with or without N803 (IL-15/IL-15-Rα superagonist) or exogenous death receptor ligands. In vitro observations were translated using an in vivo xenograft NSG mouse model of human cervical carcinoma evaluating cisplatin in combination with CTL adoptive cell transfer. RESULTS: We showed that subpopulations surviving clinically relevant doses of radiation or cisplatin therapy were more susceptible to CTL-mediated lysis in four of four tumor models of HPV-associated malignancies, serving as a model for HPV therapeutic vaccine or T-cell receptor adoptive cell transfer. This increased killing was further amplified by IL-15 agonism employing N803. We further characterized that radiation or cisplatin induced immunogenic cell stress in three of three cell lines, and consequently demonstrated that upregulated surface expression of Fas and TRAIL-R2 death receptors at least in part mediated enhanced CTL-mediated lysis. In vivo, cisplatin-induced immunogenic cell stress synergistically potentiated CTL-mediated tumor control in a human model of HPV-associated malignancy. CONCLUSION: Standard of care radiation or cisplatin therapy induced immunogenic cell stress in preclinical models of HPV-associated malignancies, presenting an opportunity poised for exploitation by employing IO strategies in combination with standard of care.


Subject(s)
Antineoplastic Agents , Carcinoma , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Interleukin-15/pharmacology , T-Lymphocytes, Cytotoxic , Papillomavirus Infections/complications , Standard of Care , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Uterine Cervical Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...