Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Arterioscler Thromb Vasc Biol ; 38(11): 2678-2690, 2018 11.
Article in English | MEDLINE | ID: mdl-30354247

ABSTRACT

Objective- Circulating complement factors are activated by tissue damage and contribute to acute brain injury. The deposition of MBL (mannose-binding lectin), one of the initiators of the lectin complement pathway, on the cerebral endothelium activated by ischemia is a major pathogenic event leading to brain injury. The molecular mechanisms through which MBL influences outcome after ischemia are not understood yet. Approach and Results- Here we show that MBL-deficient (MBL-/-) mice subjected to cerebral ischemia display better flow recovery and less plasma extravasation in the brain than wild-type mice, as assessed by in vivo 2-photon microscopy. This results in reduced vascular dysfunction as shown by the shift from a pro- to an anti-inflammatory vascular phenotype associated with MBL deficiency. We also show that platelets directly bind MBL and that platelets from MBL-/- mice have reduced inflammatory phenotype as indicated by reduced IL-1α (interleukin-1α) content, as early as 6 hours after ischemia. Cultured human brain endothelial cells subjected to oxygen-glucose deprivation and exposed to platelets from MBL-/- mice present less cell death and lower CXCL1 (chemokine [C-X-C motif] ligand 1) release (downstream to IL-1α) than those exposed to wild-type platelets. In turn, MBL deposition on ischemic vessels significantly decreases after ischemia in mice treated with IL-1 receptor antagonist compared with controls, indicating a reciprocal interplay between MBL and IL-1α facilitating endothelial damage. Conclusions- We propose MBL as a hub of pathogenic vascular events. It acts as an early trigger of platelet IL-1α release, which in turn favors MBL deposition on ischemic vessels promoting an endothelial pro-inflammatory phenotype.


Subject(s)
Blood Platelets/metabolism , Endothelial Cells/metabolism , Infarction, Middle Cerebral Artery/metabolism , Inflammation/metabolism , Interleukin-1alpha/metabolism , Mannose-Binding Lectin/metabolism , Middle Cerebral Artery/metabolism , Platelet Activation , Animals , Cell Death , Cell Hypoxia , Cells, Cultured , Chemokine CXCL1/metabolism , Disease Models, Animal , Endothelial Cells/pathology , Hemodynamics , Humans , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Inflammation/genetics , Inflammation/pathology , Inflammation/physiopathology , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Male , Mannose-Binding Lectin/deficiency , Mannose-Binding Lectin/genetics , Mice, Inbred C57BL , Mice, Knockout , Middle Cerebral Artery/pathology , Middle Cerebral Artery/physiopathology , Receptors, Interleukin-1 Type I/genetics , Receptors, Interleukin-1 Type I/metabolism , Signal Transduction
2.
eNeuro ; 5(2)2018.
Article in English | MEDLINE | ID: mdl-29662944

ABSTRACT

Diffuse activation of interleukin-1 inflammatory cytokine signaling after traumatic brain injury (TBI) elicits progressive neurodegeneration and neuropsychiatric dysfunction, and thus represents a potential opportunity for therapeutic intervention. Although interleukin (IL)-1α and IL-1ß both activate the common type 1 IL-1 receptor (IL-1RI), they manifest distinct injury-specific roles in some models of neurodegeneration. Despite its potential relevance to treating patients with TBI, however, the individual contributions of IL-1α and IL-1ß to TBI-pathology have not been previously investigated. To address this need, we applied genetic and pharmacologic approaches in mice to dissect the individual contributions of IL-1α, IL-ß, and IL-1RI signaling to the pathophysiology of fluid percussion-mediated TBI, a model of mixed focal and diffuse TBI. IL-1RI ablation conferred a greater protective effect on brain cytokine expression and cognitive function after TBI than did individual IL-1α or IL-1ß ablation. This protective effect was recapitulated by treatment with the drug anakinra, a recombinant naturally occurring IL-1RI antagonist. Our data thus suggest that broad targeting of IL-1RI signaling is more likely to reduce neuroinflammation and preserve cognitive function after TBI than are approaches that individually target IL-1α or IL-1ß signaling.


Subject(s)
Brain Injuries, Traumatic , Cognitive Dysfunction/prevention & control , Inflammation/prevention & control , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Signal Transduction , Animals , Behavior, Animal/drug effects , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/immunology , Brain Injuries, Traumatic/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/immunology , Cognitive Dysfunction/metabolism , Disease Models, Animal , Inflammation/etiology , Inflammation/immunology , Inflammation/metabolism , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1alpha/antagonists & inhibitors , Interleukin-1alpha/deficiency , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/drug effects , Signal Transduction/immunology
3.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R90-R103, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29513560

ABSTRACT

Skeletal muscle regeneration after injury is a complex process involving interactions between inflammatory microenvironments and satellite cells. Interleukin (IL)-1 is a key mediator of inflammatory responses and exerts pleiotropic impacts on various cell types. Thus, we aimed to investigate the role of IL-1 during skeletal muscle regeneration. We herein show that IL-1α/ß-double knockout (IL-1KO) mice exhibit delayed muscle regeneration after cardiotoxin (CTX) injection, characterized by delayed infiltrations of immune cells accompanied by suppressed local production of proinflammatory factors including IL-6 and delayed increase of paired box 7 (PAX7)-positive satellite cells postinjury compared with those of wild-type (WT) mice. A series of in vitro experiments using satellite cells obtained from the IL-1KO mice unexpectedly revealed that IL-1KO myoblasts have impairments in terms of both proliferation and differentiation, both of which were reversed by exogenous IL-1ß administration in culture. Intriguingly, the delay in myogenesis was not attributable to the myogenic transcriptional program since MyoD and myogenin were highly upregulated in IL-1KO cells, instead appearing, at least in part, to be due to dysregulation of cellular fusion events, possibly resulting from aberrant actin regulatory systems. We conclude that IL-1 plays a positive role in muscle regeneration by coordinating the initial interactions among inflammatory microenvironments and satellite cells. Our findings also provide compelling evidence that IL-1 is intimately engaged in regulating the fundamental function of myocytes.


Subject(s)
Cell Proliferation , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Muscle Development , Muscle, Skeletal/metabolism , Muscular Diseases/metabolism , Regeneration , Satellite Cells, Skeletal Muscle/metabolism , Toxins, Biological , Animals , Disease Models, Animal , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1beta/deficiency , Interleukin-1beta/genetics , Male , Mice, Inbred BALB C , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Diseases/chemically induced , Muscular Diseases/genetics , Muscular Diseases/pathology , MyoD Protein/genetics , MyoD Protein/metabolism , Myogenin/genetics , Myogenin/metabolism , Satellite Cells, Skeletal Muscle/pathology , Signal Transduction , Stem Cell Niche , Time Factors
4.
Arterioscler Thromb Vasc Biol ; 36(5): 886-97, 2016 05.
Article in English | MEDLINE | ID: mdl-26941015

ABSTRACT

OBJECTIVE: Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell-wall extract (LCWE)-induced KD vasculitis mouse model. METHODS AND RESULTS: We discovered that in addition to aortitis, coronary arteritis and myocarditis, the LCWE-induced KD mouse model is also associated with abdominal aorta dilatation and AAA, as well as renal and iliac artery aneurysms. AAA induced in KD mice was exclusively infrarenal, both fusiform and saccular, with intimal proliferation, myofibroblastic proliferation, break in the elastin layer, vascular smooth muscle cell loss, and inflammatory cell accumulation in the media and adventitia. Il1r(-/-), Il1a(-/-), and Il1b(-/-) mice were protected from KD associated AAA. Infiltrating CD11c(+) macrophages produced active caspase-1, and caspase-1 or NLRP3 deficiency inhibited AAA formation. Treatment with interleukin (IL)-1R antagonist (Anakinra), anti-IL-1α, or anti-IL-1ß mAb blocked LCWE-induced AAA formation. CONCLUSIONS: Similar to clinical KD, the LCWE-induced KD vasculitis mouse model can also be accompanied by AAA formation. Both IL-1α and IL-1ß play a key role, and use of an IL-1R blocking agent that inhibits both pathways may be a promising therapeutic target not only for KD coronary arteritis, but also for the other systemic arterial aneurysms including AAA that maybe seen in severe cases of KD. The LCWE-induced vasculitis model may also represent an alternative model for AAA disease.


Subject(s)
Aorta, Abdominal/metabolism , Aortic Aneurysm, Abdominal/metabolism , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Mucocutaneous Lymph Node Syndrome/complications , Receptors, Interleukin-1 Type I/metabolism , Signal Transduction , Animals , Aorta, Abdominal/drug effects , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/prevention & control , Aortitis/genetics , Aortitis/metabolism , Aortitis/pathology , Caspase 1/deficiency , Caspase 1/genetics , Cell Proliferation , Cell Wall , Dilatation, Pathologic , Disease Models, Animal , Elastin/metabolism , Female , Gene Expression Profiling , Genotype , Humans , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1beta/deficiency , Interleukin-1beta/genetics , Lacticaseibacillus casei , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Mucocutaneous Lymph Node Syndrome/chemically induced , Mucocutaneous Lymph Node Syndrome/drug therapy , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phenotype , Receptors, Interleukin-1 Type I/deficiency , Receptors, Interleukin-1 Type I/genetics , Signal Transduction/drug effects , Time Factors
5.
J Hepatol ; 63(4): 926-33, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26022690

ABSTRACT

BACKGROUND & AIMS: ER stress promotes liver fat accumulation and induction of inflammatory cytokines, which contribute to the development of steatohepatitis. Unresolved ER stress upregulates the pro-apoptotic CHOP. IL-1α is localized to the nucleus in apoptotic cells, but is released when these cells become necrotic and induce sterile inflammation. We investigated whether IL-1α is involved in ER stress-induced apoptosis and steatohepatitis. METHODS: We employed WT and IL-1α-deficient mice to study the role of IL-1α in ER stress-induced steatohepatitis. RESULTS: Liver CHOP mRNA was induced in a time dependent fashion in the atherogenic diet-induced steatohepatitis model, and was twofold lower in IL-1α deficient compared to WT mice. In the ER stress-driven steatohepatitis model, IL-1α deficiency decreased the elevation in serum ALT levels, the number of apoptotic cells (measured as caspase-3-positive hepatocytes), and the expression of IL-1ß, IL-6, TNFα, and CHOP, with no effect on the degree of fatty liver formation. IL-1α was upregulated in ER-stressed-macrophages and the protein was localized to the nucleus. IL-1ß mRNA and CHOP mRNA and protein levels were lower in ER-stressed-macrophages from IL-1α deficient compared to WT mice. ER stress induced the expression of IL-1α and IL-1ß also in mouse primary hepatocytes. Recombinant IL-1α treatment in hepatocytes did not affect CHOP expression but upregulated both IL-1α and IL-1ß mRNA levels. CONCLUSION: We show that IL-1α is upregulated in response to ER stress and IL-1α deficiency reduces ER stress-induced CHOP expression, apoptosis and steatohepatitis. As a dual function cytokine, IL-1α may contribute to the induction of CHOP intracellularly, while IL-1α released from necrotic cells accelerates steatohepatitis via induction of inflammatory cytokines by neighboring cells.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation , Interleukin-1alpha/deficiency , Liver Diseases/genetics , RNA, Messenger/genetics , Transcription Factor CHOP/genetics , Animals , Blotting, Western , Cells, Cultured , Disease Models, Animal , Interleukin-1alpha/biosynthesis , Interleukin-1alpha/genetics , Liver Diseases/metabolism , Liver Diseases/pathology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Transcription Factor CHOP/biosynthesis
6.
J Pathol ; 235(5): 698-709, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25421226

ABSTRACT

Macrophages play a central role in immune and tissue responses of granulomatous lung diseases induced by pathogens and foreign bodies. Circulating monocytes are generally viewed as central precursors of these tissue effector macrophages. Here, we provide evidence that granulomas derive from alveolar macrophages serving as a local reservoir for the expansion of activated phagocytic macrophages. By exploring lung granulomatous responses to silica particles in IL-1-deficient mice, we found that the absence of IL-1α, but not IL-1ß, was associated with reduced CD11b(high) phagocytic macrophage accumulation and fewer granulomas. This defect was associated with impaired alveolar clearance and resulted in the development of pulmonary alveolar proteinosis (PAP). Reconstitution of IL-1α(-/-) mice with recombinant IL-1α restored lung clearance functions and the pulmonary accumulation of CD11b(high) phagocytic macrophages. Mechanistically, IL-1α induced the proliferation of CD11b(low) alveolar macrophages and differentiated these cells into CD11b(high) macrophages which perform critical phagocytic functions and organize granuloma. We newly discovered here that IL-1α triggers lung responses requiring macrophage proliferation and maturation from tissue-resident macrophages.


Subject(s)
CD11b Antigen/metabolism , Cell Proliferation , Granuloma/metabolism , Interleukin-1alpha/metabolism , Lung Diseases/metabolism , Macrophage Activation , Macrophages, Alveolar/metabolism , Pulmonary Alveolar Proteinosis/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Granuloma/chemically induced , Granuloma/genetics , Granuloma/pathology , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lung Diseases/chemically induced , Lung Diseases/genetics , Lung Diseases/pathology , Macrophages, Alveolar/pathology , Mice, Knockout , Phagocytosis , Phenotype , Pulmonary Alveolar Proteinosis/chemically induced , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/pathology , Silicon Dioxide , Time Factors
7.
Eur J Immunol ; 45(2): 525-30, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25367678

ABSTRACT

The immune system is implicated in a wide range of disorders affecting the brain and is, therefore, an attractive target for therapy. Interleukin-1 (IL-1) is a potent regulator of the innate immune system important for host defense but is also associated with injury and disease in the brain. Here, we show that IL-1 is a key mediator driving an innate immune response to inflammatory challenge in the mouse brain but is dispensable in extracerebral tissues including the lung and peritoneum. We also demonstrate that IL-1α is an important ligand contributing to the CNS dependence on IL-1 and that IL-1 derived from the CNS compartment (most likely microglia) is the major source driving this effect. These data reveal previously unknown tissue-specific requirements for IL-1 in driving innate immunity and suggest that IL-1-mediated inflammation in the brain could be selectively targeted without compromising systemic innate immune responses that are important for resistance to infection. This property could be exploited to mitigate injury- and disease-associated inflammation in the brain without increasing susceptibility to systemic infection, an important complication in several neurological disorders.


Subject(s)
Brain/immunology , Encephalitis/immunology , Interleukin-1alpha/genetics , Interleukin-1beta/genetics , Microglia/immunology , Signal Transduction/immunology , Animals , Brain/pathology , Encephalitis/chemically induced , Encephalitis/genetics , Encephalitis/pathology , Gene Expression Regulation , Immunity, Innate , Injections, Intraventricular , Interleukin-1alpha/deficiency , Interleukin-1alpha/immunology , Interleukin-1beta/deficiency , Interleukin-1beta/immunology , Lipopolysaccharides , Lung/immunology , Mice , Mice, Knockout , Microglia/pathology , Neutrophil Infiltration , Neutrophils/immunology , Neutrophils/pathology , Organ Specificity , Peritoneum/immunology
8.
Proc Natl Acad Sci U S A ; 111(34): 12492-7, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25114230

ABSTRACT

Oocyte endowment dwindles away during prepubertal and adult life until menopause occurs, and apoptosis has been identified as a central mechanism responsible for oocyte elimination. A few recent reports suggest that uncontrolled inflammation may adversely affect ovarian reserve. We tested the possible role of the proinflammatory cytokine IL-1 in the age-related exhaustion of ovarian reserve using IL-1α and IL-1ß-KO mice. IL-1α-KO mice showed a substantially higher pregnancy rate and litter size compared with WT mice at advanced age. The number of secondary and antral follicles was significantly higher in 2.5-mo-old IL-1α-KO ovaries compared with WT ovaries. Serum anti-Müllerian hormone, a putative marker of ovarian reserve, was markedly higher in IL-1α-KO mice from 2.5 mo onward, along with a greater ovarian response to gonadotropins. IL-1ß-KO mice displayed a comparable but more subtle prolongation of ovarian lifespan compared with IL-1α-KO mice. The protein and mRNA of both IL-1α and IL-1ß mice were localized within the developing follicles (oocytes and granulosa cells), and their ovarian mRNA levels increased with age. Molecular analysis revealed decreased apoptotic signaling [higher B-cell lymphoma 2 (BCL-2) and lower BCL-2-associated X protein levels], along with a marked attenuation in the expression of genes coding for the proinflammatory cytokines IL-1ß, IL-6, and TNF-α in ovaries of IL-1α-KO mice compared with WT mice. Taken together, IL-1 emerges as an important participant in the age-related exhaustion of ovarian reserve in mice, possibly by enhancing the expression of inflammatory genes and promoting apoptotic pathways.


Subject(s)
Interleukin-1alpha/deficiency , Interleukin-1beta/deficiency , Ovary/physiology , Aging , Animals , Anti-Mullerian Hormone/blood , Apoptosis , Female , Gene Expression , Inflammation Mediators/metabolism , Interleukin-1alpha/genetics , Interleukin-1alpha/physiology , Interleukin-1beta/genetics , Interleukin-1beta/physiology , Litter Size , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovary/cytology , Ovary/immunology , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, FSH/genetics , Receptors, FSH/physiology , Receptors, Interleukin-1 Type I/deficiency , Receptors, Interleukin-1 Type I/genetics , Receptors, Interleukin-1 Type I/physiology
9.
Dig Liver Dis ; 46(5): 433-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24582082

ABSTRACT

BACKGROUND: The role of Kupffer cell interleukin (IL)-1 in non-alcoholic steatohepatitis development remains unclear. AIMS: To evaluate the role of Kupffer cell IL-1α, IL-1ß or IL-1 receptor type-1 (IL-1R1) in steatohepatitis. METHODS: C57BL/6 mice were irradiated and transplanted with bone marrow-derived cells from WT, IL-1α-/-, IL-1ß-/- or IL-1R1-/- mice combined with Kupffer cell ablation with Gadolinium Chloride, and fed atherogenic diet. Plasma and liver triglycerides and cholesterol, serum alanine aminotransferase (ALT), liver histology and expression levels of inflammatory genes were assessed. RESULTS: The ablation and replacement of Kupffer cells with bone marrow-derived cells was confirmed. The atherogenic diet elevated plasma and liver cholesterol, reduced plasma and liver triglycerides and increased serum ALT levels in all groups. Steatosis and steatohepatitis were induced, but without liver fibrosis. A reduction in the severity of portal inflammation was observed only in mice with Kupffer cell deficiency of IL-1α. Accordingly, liver mRNA levels of inflammatory genes encoding for IL-1α, IL-1ß, TNFα, SAA1 and IL-6 were significantly lower in mice with Kupffer cell deficiency of IL-1α compared to WT mice. CONCLUSION: Selective deficiency of IL-1α in Kupffer cells reduces liver inflammation and expression of inflammatory cytokines, which may implicate Kupffer cell-derived IL-1α in steatohepatitis development.


Subject(s)
Cholesterol/metabolism , Fatty Liver/metabolism , Hepatitis/blood , Hypercholesterolemia/metabolism , Interleukin-1alpha/deficiency , Kupffer Cells/metabolism , Triglycerides/metabolism , Alanine Transaminase/blood , Animals , Diet, Atherogenic , Fatty Liver/genetics , Fatty Liver/pathology , Female , Gene Expression , Hepatitis/genetics , Hepatitis/pathology , Hypercholesterolemia/genetics , Interleukin-1alpha/genetics , Interleukin-1beta/deficiency , Interleukin-1beta/genetics , Interleukin-6/genetics , Male , Mice , Mice, Knockout , Portal System , RNA, Messenger/metabolism , Receptors, Interleukin-1 Type I/deficiency , Receptors, Interleukin-1 Type I/genetics , Serum Amyloid A Protein/genetics , Tumor Necrosis Factor-alpha/genetics , Vasculitis/metabolism
10.
Prostate ; 74(2): 121-33, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24185914

ABSTRACT

INTRODUCTION. Overexpression of bone morphogenetic protein-6 (BMP-6) has been reported in human prostate cancer tissues. Previously we have demonstrated that BMP-6 enhances prostate cancer growth in mice and not in tissue culture. Herein, we have investigated the mechanism of BMP-6's pro-tumorigenic effect in prostate cancer. METHODS. Tramp C2 murine and LNCaP human prostate cancer cell lines were co-cultured with RAW 264.7 and THP-1 cells, respectively. IL-1a knockout mice were used to confirm the role of BMP-6/IL-1a loop in vivo. Lastly, conditional macrophage null mice cd11b-DTR was used. RESULTS. The results demonstrated that BMP-6 induced the expression of IL-1a in macrophages via a cross-talk between NF-kB1 p50 and Smad1. When endothelial cells were treated with conditioned media harvested from macrophages incubated with BMP-6, tube formation was detected. In the presence of IL-1a neutralizing antibody, endothelial tube formation was blocked. In vivo, tumor growth and neovascularization decreased significantly when BMP-6 was expressed in IL-1a knockout and conditional macrophage-null mice. CONCLUSIONS. Prostate cancer-derived BMP-6 stimulates tumor-associated macrophages to produce IL-1a through a crosstalk between Smad1 and NF-kB1; IL-1a, in turn, promotes angiogenesis and prostate cancer growth.


Subject(s)
Bone Morphogenetic Protein 6/physiology , Carcinogenesis/pathology , Interleukin-1alpha/physiology , Macrophages/pathology , Neovascularization, Pathologic/physiopathology , Prostatic Neoplasms/pathology , Animals , Cell Differentiation/physiology , Cell Line, Tumor , Cell Proliferation , Coculture Techniques , Endothelium, Vascular/pathology , Humans , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/physiology , Prostatic Neoplasms/blood supply , Signal Transduction/physiology , Smad1 Protein/physiology
11.
Nature ; 498(7453): 224-7, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23708968

ABSTRACT

The protein-tyrosine phosphatase SHP-1 has critical roles in immune signalling, but how mutations in SHP-1 cause inflammatory disease in humans remains poorly defined. Mice homozygous for the Tyr208Asn amino acid substitution in the carboxy terminus of SHP-1 (referred to as Ptpn6(spin) mice) spontaneously develop a severe inflammatory syndrome that resembles neutrophilic dermatosis in humans and is characterized by persistent footpad swelling and suppurative inflammation. Here we report that receptor-interacting protein 1 (RIP1)-regulated interleukin (IL)-1α production by haematopoietic cells critically mediates chronic inflammatory disease in Ptpn6(spin) mice, whereas inflammasome signalling and IL-1ß-mediated events are dispensable. IL-1α was also crucial for exacerbated inflammatory responses and unremitting tissue damage upon footpad microabrasion of Ptpn6(spin) mice. Notably, pharmacological and genetic blockade of the kinase RIP1 protected against wound-induced inflammation and tissue damage in Ptpn6(spin) mice, whereas RIP3 deletion failed to do so. Moreover, RIP1-mediated inflammatory cytokine production was attenuated by NF-κB and ERK inhibition. Together, our results indicate that wound-induced tissue damage and chronic inflammation in Ptpn6(spin) mice are critically dependent on RIP1-mediated IL-1α production, whereas inflammasome signalling and RIP3-mediated necroptosis are dispensable. Thus, we have unravelled a novel inflammatory circuit in which RIP1-mediated IL-1α secretion in response to deregulated SHP-1 activity triggers an inflammatory destructive disease that proceeds independently of inflammasomes and programmed necrosis.


Subject(s)
Inflammasomes , Interleukin-1alpha/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Cell Death , Dermatitis/immunology , Dermatitis/metabolism , Dermatitis/pathology , Disease Models, Animal , Extremities/pathology , Female , Gene Deletion , Humans , Inflammasomes/metabolism , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1beta/metabolism , Male , Mice , NF-kappa B/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/deficiency , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction , Wound Healing , Wounds and Injuries/immunology , Wounds and Injuries/pathology
12.
Cytokine ; 63(2): 135-44, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23684408

ABSTRACT

The cytokine interleukin-1α (IL-1α) is synthesized as a 31kDa peptide that lacks a leader peptide and is not secreted by the conventional secretory pathway. A distinctive characteristic of pro-IL-1α is the presence of a nuclear localization sequence in its amino-terminal moiety that allows its translocation to the nucleus. However no nuclear function(s) of the endogenous pro-IL-1α has been reported to date. In the present study, we used murine macrophages that produce IL-1α in response to pro-inflammatory stimuli, to gain further insight into the biology of the endogenous IL-1α protein in innate immune cells. We show that endogenous IL-1α is essentially found as a chromatin-associated nuclear protein in LPS-stimulated macrophages. In contrast to IL-1ß, IL-1α was not released upon inflammasome activation unless significant cell damage occurred. IL-1ß mRNA and protein levels were specifically decreased in IL-1α deficient macrophages after LPS stimulation. However, overexpression of human pro-IL-1α did not rescue this defective IL-1ß production, suggesting that this finding might be related to the insertion of the targeting construct into the IL-1 locus, rather than to a specific nuclear function of pro-IL-1α. Finally, by using both genomic and proteomic approaches, we could not identify a nuclear function of IL-1α. Taken together, these observations suggest that in macrophages IL-1α primarily acts as an alarmin that is rapidly released upon cell damage to activate early mechanisms of host defense.


Subject(s)
Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Macrophages/metabolism , Animals , Cell Line , Cell Nucleus , Chromatin/metabolism , Humans , Immunity, Innate , Inflammasomes/immunology , Inflammasomes/metabolism , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1beta/biosynthesis , Lipopolysaccharides , Macrophage Activation , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout
13.
PLoS One ; 8(3): e58639, 2013.
Article in English | MEDLINE | ID: mdl-23516523

ABSTRACT

miR-181a has been presumed to target the 3'-untranslated regions (3'-UTR) of IL1a based on software predictions. miR-181a and IL1a have opposite expression levels in monocytes and macrophages in the inflammatory state. This led us to suspect that mir-181a has an important function in regulating inflammatory response by targeting IL1a. Fluorescence reporter assays showed that miR-181a effectively binds to the 3'-UTR of IL1a. The anti-inflammatory functions of miR-181a were investigated in lipopolysaccharides (LPS)-induced Raw264.7 and phorbol 12-myristate 13-acetate (PMA)/LPS-induced THP-1 cells. We found that miR-181a mimics significantly lowered IL1a expression levels in these cells and, interestingly, miR-181a inhibitors reversed this decrease. In addition, miR-181a mimics significantly inhibited increase in the levels of inflammatory factors (IL1b, IL6, and TNFa) in these cells. Furthermore, miR-181a mimics and inhibitors decreased and increased, respectively, production of reactive oxygen species in PMA/LPS-induced THP-1 cells. These results indicate that miR-181a regulates inflammatory responses by directly targeting the 3'-UTR of IL1a and down-regulating IL1a levels. Interestingly, we found that miR-181a inhibited production of inflammatory factors even in IL1a-induced THP-1 cells, suggesting that the anti-inflammatory effects of miR-181a possibly involves other targets in addition to IL1a. Thus, we provide the first evidence for anti-inflammatory effects of miR-181a mediated at least in part by down-regulating IL1a.


Subject(s)
Macrophages/metabolism , MicroRNAs/metabolism , Monocytes/metabolism , 3' Untranslated Regions/genetics , Animals , Base Sequence , Binding Sites , Cell Line, Tumor , Gene Expression Regulation/drug effects , Humans , Inflammation/genetics , Inflammation/metabolism , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice , MicroRNAs/genetics , Monocytes/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
14.
PLoS One ; 7(9): e45784, 2012.
Article in English | MEDLINE | ID: mdl-23029241

ABSTRACT

Interleukin (IL-) 36 cytokines (previously designated as novel IL-1 family member cytokines; IL-1F5- IL-1F10) constitute a novel cluster of cytokines structurally and functionally similar to members of the IL-1 cytokine cluster. The effects of IL-36 cytokines in inflammatory lung disorders remains poorly understood. The current study sought to investigate the effects of IL-36α (IL-1F6) and test the hypothesis that IL-36α acts as a pro-inflammatory cytokine in the lung in vivo. Intratracheal instillation of recombinant mouse IL-36α induced neutrophil influx in the lungs of wild-type C57BL/6 mice and IL-1αß(-/-) mice in vivo. IL-36α induced neutrophil influx was also associated with increased mRNA expression of neutrophil-specific chemokines CXCL1 and CXCL2 in the lungs of C57BL/6 and IL-1αß(-/-) mice in vivo. In addition, intratracheal instillation of IL-36α enhanced mRNA expression of its receptor IL-36R in the lungs of C57BL/6 as well as IL-1αß(-/-) mice in vivo. Furthermore, in vitro incubation of CD11c(+) cells with IL-36α resulted in the generation of neutrophil-specific chemokines CXCL1, CXCL2 as well as TNFα. IL-36α increased the expression of the co-stimulatory molecule CD40 and enhanced the ability of CD11c(+) cells to induce CD4(+) T cell proliferation in vitro. Furthermore, stimulation with IL-36α activated NF-κB in a mouse macrophage cell line. These results demonstrate that IL-36α acts as a pro-inflammatory cytokine in the lung without the contribution of IL-1α and IL-1ß. The current study describes the pro-inflammatory effects of IL-36α in the lung, demonstrates the functional redundancy of IL-36α with other agonist cytokines in the IL-1 and IL-36 cytokine cluster, and suggests that therapeutic targeting of IL-36 cytokines could be beneficial in inflammatory lung diseases.


Subject(s)
Inflammation Mediators/physiology , Interleukin-1/physiology , Pneumonia/metabolism , Animals , CD11 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/physiology , Cell Proliferation , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Cytokines/physiology , Gene Expression Regulation , Inflammation Mediators/metabolism , Interleukin-1/genetics , Interleukin-1/metabolism , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1beta/deficiency , Interleukin-1beta/genetics , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , NF-kappa B/metabolism , Neutrophil Infiltration , Pneumonia/immunology , Pneumonia/pathology , Spleen/immunology , Spleen/pathology
15.
Respir Res ; 13: 81, 2012 Sep 19.
Article in English | MEDLINE | ID: mdl-22992200

ABSTRACT

BACKGROUND: Evidence suggests that dendritic cells accumulate in the lungs of COPD patients and correlate with disease severity. We investigated the importance of IL-1R1 and its ligands IL-1α and ß to dendritic cell accumulation and maturation in response to cigarette smoke exposure. METHODS: Mice were exposed to cigarette smoke using a whole body smoke exposure system. IL-1R1-, TLR4-, and IL-1α-deficient mice, as well as anti-IL-1α and anti-IL-1ß blocking antibodies were used to study the importance of IL-1R1 and TLR4 to dendritic cell accumulation and activation. RESULTS: Acute and chronic cigarette smoke exposure led to increased frequency of lung dendritic cells. Accumulation and activation of dendritic cells was IL-1R1/IL-1α dependent, but TLR4- and IL-1ß-independent. Corroborating the cellular data, expression of CCL20, a potent dendritic cells chemoattractant, was IL-1R1/IL-1α-dependent. Studies using IL-1R1 bone marrow-chimeric mice revealed the importance of IL-1R1 signaling on lung structural cells for CCL20 expression. Consistent with the importance of dendritic cells in T cell activation, we observed decreased CD4+ and CD8+ T cell activation in cigarette smoke-exposed IL-1R1-deficient mice. CONCLUSION: Our findings convey the importance of IL-1R1/IL-1α to the recruitment and activation of dendritic cells in response to cigarette smoke exposure.


Subject(s)
Chemotaxis/drug effects , Dendritic Cells/drug effects , Interleukin-1alpha/metabolism , Lung/drug effects , Smoke/adverse effects , Smoking/adverse effects , Animals , Antibodies, Blocking , Bone Marrow Transplantation , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Chemokine CCL20/metabolism , Dendritic Cells/immunology , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1beta/metabolism , Lung/immunology , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-1 Type I/deficiency , Receptors, Interleukin-1 Type I/genetics , Signal Transduction , Time Factors , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/genetics , Transplantation Chimera
16.
J Immunol ; 189(1): 381-92, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22661091

ABSTRACT

Cerebrovascular inflammation contributes to diverse CNS disorders through mechanisms that are incompletely understood. The recruitment of neutrophils to the brain can contribute to neurotoxicity, particularly during acute brain injuries, such as cerebral ischemia, trauma, and seizures. However, the regulatory and effector mechanisms that underlie neutrophil-mediated neurotoxicity are poorly understood. In this study, we show that mouse neutrophils are not inherently toxic to neurons but that transendothelial migration across IL-1-stimulated brain endothelium triggers neutrophils to acquire a neurotoxic phenotype that causes the rapid death of cultured neurons. Neurotoxicity was induced by the addition of transmigrated neutrophils or conditioned medium, taken from transmigrated neutrophils, to neurons and was partially mediated by excitotoxic mechanisms and soluble proteins. Transmigrated neutrophils also released decondensed DNA associated with proteases, which are known as neutrophil extracellular traps. The blockade of histone-DNA complexes attenuated transmigrated neutrophil-induced neuronal death, whereas the inhibition of key neutrophil proteases in the presence of transmigrated neutrophils rescued neuronal viability. We also show that neutrophil recruitment in the brain is IL-1 dependent, and release of proteases and decondensed DNA from recruited neutrophils in the brain occurs in several in vivo experimental models of neuroinflammation. These data reveal new regulatory and effector mechanisms of neutrophil-mediated neurotoxicity (i.e., the release of proteases and decondensed DNA triggered by phenotypic transformation during cerebrovascular transmigration). Such mechanisms have important implications for neuroinflammatory disorders, notably in the development of antileukocyte therapies.


Subject(s)
Cerebrovascular Circulation/immunology , DNA, Mitochondrial/antagonists & inhibitors , Neurons/enzymology , Neurons/pathology , Neutrophil Infiltration/immunology , Peptide Hydrolases/metabolism , Animals , Cells, Cultured , Cerebrovascular Circulation/genetics , Culture Media, Conditioned/pharmacology , DNA, Mitochondrial/immunology , DNA, Mitochondrial/metabolism , Endothelium, Vascular/enzymology , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Extracellular Space/enzymology , Extracellular Space/genetics , Extracellular Space/immunology , Immunophenotyping , Interleukin-1alpha/deficiency , Interleukin-1alpha/physiology , Interleukin-1beta/deficiency , Interleukin-1beta/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/immunology , Neutrophil Infiltration/genetics , Peptide Hydrolases/genetics , Primary Cell Culture , Rats , Rats, Sprague-Dawley
17.
J Neuroinflammation ; 9: 65, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22483094

ABSTRACT

BACKGROUND: Microglia and macrophages (MG/MΦ) have a diverse range of functions depending on unique cytokine stimuli, and contribute to neural cell death, repair, and remodeling during central nervous system diseases. While IL-1 has been shown to exacerbate inflammation, it has also been recognized to enhance neuroregeneration. We determined the activating phenotype of MG/MΦ and the impact of IL-1 in an in vivo spinal cord injury (SCI) model of IL-1 knock-out (KO) mice. Moreover, we demonstrated the contribution of IL-1 to both the classical and alternative activation of MG in vitro using an adult MG primary culture. METHODS: SCI was induced by transection of the spinal cord between the T9 and T10 vertebra in wild-type and IL-1 KO mice. Locomotor activity was monitored and lesion size was determined for 14 days. TNFα and Ym1 levels were monitored to determine the MG/MΦ activating phenotype. Primary cultures of MG were produced from adult mice, and were exposed to IFNγ or IL-4 with and without IL-1ß. Moreover, cultures were exposed to IL-4 and/or IL-13 in the presence and absence of IL-1ß. RESULTS: The locomotor activity and lesion area of IL-1 KO mice improved significantly after SCI compared with wild-type mice. TNFα production was significantly suppressed in IL-1 KO mice. Also, Ym1, an alternative activating MG/MΦ marker, did not increase in IL-1 KO mice, suggesting that IL-1 contributes to both the classical and alternative activation of MG/MΦ. We treated primary MG cultures with IFNγ or IL-4 in the presence and absence of IL-1ß. Increased nitric oxide and TNFα was present in the culture media and increased inducible NO synthase was detected in cell suspensions following co-treatment with IFNγ and IL-1ß. Expression of the alternative activation markers Ym1 and arginase-1 was increased after exposure to IL-4 and further increased after co-treatment with IL-4 and IL-1ß. The phenotype was not observed after exposure of cells to IL-13. CONCLUSIONS: We demonstrate here in in vivo experiments that IL-1 suppressed SCI in a process mediated by the reduction of inflammatory responses. Moreover, we suggest that IL-1 participates in both the classical and alternative activation of MG in in vivo and in vitro systems.


Subject(s)
Interleukin-1/metabolism , Macrophages/metabolism , Microglia/metabolism , Spinal Cord Injuries/pathology , Animals , Arginase/metabolism , CD11b Antigen/metabolism , Cells, Cultured , Central Nervous System/pathology , Cytokines/pharmacology , Disease Models, Animal , Doxorubicin/analogs & derivatives , Doxorubicin/metabolism , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation/genetics , Glial Fibrillary Acidic Protein/metabolism , Interleukin-1/deficiency , Interleukin-1alpha/deficiency , Interleukin-1beta/deficiency , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Microtubule-Associated Proteins/metabolism , Motor Activity/physiology , Myelin Basic Protein/metabolism , Nitric Oxide/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/physiopathology
18.
J Immunol ; 188(7): 2977-80, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22387558

ABSTRACT

Nitrogen-containing bisphosphonates (NBPs) are taken by millions for bone disorders but may cause serious inflammatory reactions. In this study, we used a murine peritonitis model to characterize the inflammatory mechanisms of these agents. At dosages comparable to those used in humans, injection of NBPs into the peritoneum caused recruitment of neutrophils, followed by an influx of monocytes. These cellular changes corresponded to an initial increase in IL-1α, which preceded a rise in multiple other proinflammatory cytokines. IL-1R, IL-1α, and IL-1ß were required for neutrophil recruitment, whereas other MyD88-dependent signaling pathways were needed for the monocyte influx. Mice deficient in mast cells, but not mice lacking lymphocytes, were resistant to NBP-induced inflammation, and reconstitution of these mice with mast cells restored sensitivity to NBPs. These results document the critical role of mast cells and IL-1 in NBP-mediated inflammatory reactions.


Subject(s)
Alendronate/toxicity , Diphosphonates/toxicity , Imidazoles/toxicity , Interleukin-1alpha/physiology , Interleukin-1beta/physiology , Mast Cells/physiology , Peritonitis/chemically induced , Animals , Chemotaxis/physiology , Clodronic Acid/toxicity , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1beta/deficiency , Interleukin-1beta/genetics , Leukocytes/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/physiology , Neutrophils/immunology , Pamidronate , Peritonitis/immunology , Peritonitis/pathology , Receptors, Interleukin-1/deficiency , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/physiology , Zoledronic Acid
19.
J Immunol ; 187(9): 4835-43, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21930960

ABSTRACT

The immune system has evolved to protect the host from invading pathogens and to maintain tissue homeostasis. Although the inflammatory process involving pathogens is well documented, the intrinsic compounds that initiate sterile inflammation and how its progression is mediated are still not clear. Because tissue injury is usually associated with ischemia and the accompanied hypoxia, the microenvironment of various pathologies involves anaerobic metabolites and products of necrotic cells. In the current study, we assessed in a comparative manner the role of IL-1α and IL-1ß in the initiation and propagation of sterile inflammation induced by products of hypoxic cells. We found that following hypoxia, the precursor form of IL-1α, and not IL-1ß, is upregulated and subsequently released from dying cells. Using an inflammation-monitoring system consisting of Matrigel mixed with supernatants of hypoxic cells, we noted accumulation of IL-1α in the initial phase, which correlated with the infiltration of neutrophils, and the expression of IL-1ß correlated with later migration of macrophages. In addition, we were able to show that IL-1 molecules from cells transfected with either precursor IL-1α or mature IL-1ß can recruit neutrophils or macrophages, respectively. Taken together, these data suggest that IL-1α, released from dying cells, initiates sterile inflammation by inducing recruitment of neutrophils, whereas IL-1ß promotes the recruitment and retention of macrophages. Overall, our data provide new insight into the biology of IL-1 molecules as well as on the regulation of sterile inflammation.


Subject(s)
Chemotaxis, Leukocyte/immunology , Inflammation Mediators/physiology , Interleukin-1alpha/physiology , Interleukin-1beta/physiology , Myeloid Cells/immunology , Animals , Cells, Cultured , Chemotaxis, Leukocyte/genetics , HEK293 Cells , Humans , Inflammation/classification , Inflammation/immunology , Inflammation/pathology , Inflammation Mediators/classification , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1beta/deficiency , Interleukin-1beta/genetics , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myeloid Cells/metabolism , Myeloid Cells/pathology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...