Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.629
Filter
1.
J Exp Clin Cancer Res ; 43(1): 251, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218928

ABSTRACT

BACKGROUND: Combining interleukin-2 (IL-2) with radiotherapy (RT) and immune checkpoint blockade (ICB) has emerged as a promising approach to address ICB resistance. However, conventional IL-2 cytokine therapy faces constraints owing to its brief half-life and adverse effects. RDB 1462, the mouse ortholog of Nemvaleukin alfa, is an engineered IL-2 with an intermediate affinity that selectively stimulates antitumor CD8 T and NK cells while limiting regulatory T cell expansion. This study aimed to evaluate the antitumor activity and mechanism of action of the combination of RDB 1462, RT, and anti-PD1 in mouse tumor models. METHODS: Two bilateral lung adenocarcinoma murine models were established using 344SQ-Parental and 344SQ anti-PD1-resistant cell lines. Primary tumors were treated with RT, and secondary tumors were observed for evidence of abscopal effects. We performed immune phenotyping by flow cytometry, analyzed 770 immune-related genes using NanoString, and performed T cell receptor (TCR) repertoire analysis. Serum pro-inflammatory cytokine markers were analyzed by 23-plex kit. RESULTS: Compared to native IL-2 (RDB 1475), RDB 1462 demonstrated superior systemic antitumoral responses, attributable, at least in part, to augmented levels of CD4 and CD8 T cells with the latter. Our findings reveal substantial reductions in primary and secondary tumor volumes compared to monotherapy controls, with some variability observed among different dosing schedules of RDB 1462 combined with RT. Blood and tumor tissue-based flow cytometric phenotyping reveals an increase in effector memory CD8 and CD4 T cells and a decrease in immunosuppressive cells accompanied by a significant increase in IL-2, IFN-γ, and GM-CSF levels in the combination group. Transcriptomic profiling and TCR sequencing reveal favorable gene expression and T cell repertoire patterns with the dual combination. Furthermore, integrating anti-PD1 therapy with RT and RDB 1462 further reduced primary and secondary tumor volumes, prolonged survival, and decreased lung metastasis. Observations of immune cell profiles indicated that RT with escalating doses of RDB 1462 significantly reduced tumor growth and increased tumor-specific immune cell populations. CONCLUSION: The addition of Nemvaleukin therapy may enhance responses to RT alone and in combination with anti-PD1.


Subject(s)
Interleukin-2 , Animals , Mice , Interleukin-2/pharmacology , Interleukin-2/therapeutic use , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Female , Lung Neoplasms/therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Cell Line, Tumor , Disease Models, Animal
2.
Front Immunol ; 15: 1433989, 2024.
Article in English | MEDLINE | ID: mdl-39114660

ABSTRACT

Discovered over 4 decades ago in the supernatants of activated T cells, interleukin-2 (IL-2) is a potent pleiotropic cytokine involved in the regulation of immune responses. It is required for effector T cell expansion and differentiation as well as for peripheral tolerance induced by regulatory T cells. High-dose IL-2 treatment was the first FDA-approved immunotherapy for renal cell carcinoma and melanoma, achieving single agent complete and durable responses, albeit only in a small proportion of patients. The therapeutic potential of wild type IL-2 is clinically limited by its short half-life and severe vascular toxicity. Moreover, the activation of regulatory T cells and the terminal differentiation of effector T cells on IL-2 pose additional restrictions. To overcome the toxicity of IL-2 in order to realize its full potential for patients, several novel engineering strategies are being developed and IL-2 based immunotherapy for cancer has emerged as a burgeoning field of clinical and experimental research. In addition, combination of IL-2 with PD-1/L1 pathway blockade shows vastly improved anti-tumor efficacy over either monotherapy in preclinical tumor models. In this review we discuss the biological characteristics of IL-2 and its receptors, as well as its efficacy and treatment limiting toxicities in cancer patients. We also explore the efforts aimed at developing novel and safer IL-2 therapies to harness the full therapeutic potential of this cytokine.


Subject(s)
Immunotherapy , Interleukin-2 , Neoplasms , Humans , Interleukin-2/therapeutic use , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Immunotherapy/adverse effects , Animals
3.
Ann Oncol ; 35(10): 860-872, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39053767

ABSTRACT

BACKGROUND: Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL-ACT) has consistently shown efficacy in advanced melanoma. New results in the field provide now the opportunity to assess overall survival (OS) after TIL-ACT and to examine the effect of prior anti-programmed cell death protein 1/programmed death-ligand 1 [anti-PD-(L)1] therapy on its efficacy. METHODS: A comprehensive search was conducted in PubMed up to 29 February 2024. Ιn this meta-analysis we focused on studies including high-dose interleukin 2, doubling the patient numbers from our previous meta-analysis conducted up to December 2018 and using OS as the primary endpoint. Objective response rate (ORR), complete response rate (CRR), and duration of response were secondary endpoints. Findings are synthesized using tables, Kaplan-Meier plots, and forest plots. Pooled estimates for ORR and CRR were derived from fixed or random effects models. RESULTS: A total of 13 high-dose interleukin 2 studies were included in this updated meta-analysis, with OS information available for 617 patients. No difference was found in median OS between studies with prior anti-PD-(L)1 treatment {n = 238; 17.5 months [95% confidence interval (CI) 13.8-20.5 months]} and without [n = 379; 16.3 months (95% CI 14.2-20.6 months)] (log-rank P = 0.53). ORR was estimated to be 34% (95% CI 16%-52%) and 44% (95% CI 37%-51%), for the studies with and without prior anti-PD-(L)1, respectively. The pooled estimate for CRR was 10% for both groups. No statistically significant difference was observed between the two groups, either for ORR (P = 0.15) or CRR (P = 0.45). CONCLUSIONS: Prior anti-PD-(L)1 treatment has no effect on the clinical response or survival benefit from TIL-ACT in advanced cutaneous melanoma. The benefit of TIL therapy in the second-line setting is also present after anti-PD-(L)1 treatment. Our data reinforce the evidence that TIL-ACT should be considered as a treatment of choice in second line for metastatic melanoma patients failing anti-PD-(L)1 therapy.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Melanoma/mortality , Skin Neoplasms/drug therapy , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Skin Neoplasms/mortality , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma, Cutaneous Malignant , Immunotherapy, Adoptive/methods , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-2/therapeutic use , Treatment Outcome
4.
Cancer Discov ; 14(7): 1145-1146, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946323

ABSTRACT

Despite its long history of toxicity and limited efficacy, IL2 has re-entered the clinic as a companion to the recently FDA-approved tumor infiltrating lymphocyte therapy. In back-to-back articles, Moynihan and Kaptein introduce a new fusion protein that delivers a biased IL2 mutein to CD8 T cells. See related article by Moynihan et al., p. 1206 (6). See related article by Kaptein et al., p. 1226 (7).


Subject(s)
Interleukin-2 , Neoplasms , Humans , Interleukin-2/therapeutic use , Neoplasms/drug therapy , CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism
5.
Cancer Immunol Res ; 12(8): 1022-1038, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38842347

ABSTRACT

Despite clinical evidence of antitumor activity, the development of cytokine therapies has been hampered by a narrow therapeutic window and limited response rates. Two cytokines of high interest for clinical development are interleukin 2 (IL2) and interleukin 12 (IL12), which potently synergize to promote the activation and proliferation of T cells and NK cells. However, the only approved human IL2 therapy, Proleukin, is rarely used in the clinic due to systemic toxicities, and no IL12 product has been approved to date due to severe dose-limiting toxicities. Here, we describe CLN-617, a first-in-class therapeutic for intratumoral (IT) injection that co-delivers IL2 and IL12 on a single molecule in a safe and effective manner. CLN-617 is a single-chain fusion protein comprised of IL2, leukocyte-associated immunoglobulin-like receptor 2 (LAIR2), human serum albumin (HSA), and IL12. LAIR2 and HSA function to retain CLN-617 in the treated tumor by binding collagen and increasing molecular weight, respectively. We found that IT administration of a murine surrogate of CLN-617, mCLN-617, eradicated established treated and untreated tumors in syngeneic models, significantly improved response to anti-PD1 checkpoint therapy, and generated a robust abscopal response dependent on cellular immunity and antigen cross-presentation. CLN-617 is being evaluated in a clinical trial in patients with advanced solid tumors (NCT06035744).


Subject(s)
Interleukin-12 , Interleukin-2 , Animals , Female , Humans , Mice , Cell Line, Tumor , Interleukin-12/metabolism , Interleukin-2/therapeutic use , Interleukin-2/pharmacology , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Xenograft Model Antitumor Assays
6.
J Clin Oncol ; 42(23): 2800-2811, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38838287

ABSTRACT

PURPOSE: Bempegaldesleukin (BEMPEG) is a pegylated interleukin (IL)-2 cytokine prodrug engineered to provide controlled and sustained activation of the clinically validated IL-2 pathway, with the goal of preferentially activating and expanding effector CD8+ T cells and natural killer cells over immunosuppressive regulator T cells in the tumor microenvironment. The open-label, phase III randomized controlled PIVOT-09 trial investigated the efficacy and safety of BEMPEG plus nivolumab (NIVO) as first-line treatment for advanced/metastatic clear cell renal cell carcinoma (ccRCC) with intermediate-/poor-risk disease. METHODS: Patients with previously untreated advanced/metastatic ccRCC were randomly assigned (1:1) to BEMPEG plus NIVO, or investigator's choice of tyrosine kinase inhibitor (TKI; sunitinib or cabozantinib). Coprimary end points were objective response rate (ORR) by blinded independent central review and overall survival (OS) in patients with International Metastatic RCC Database Consortium (IMDC) intermediate-/poor-risk disease. RESULTS: Overall, 623 patients were randomly assigned to BEMPEG plus NIVO (n = 311) or TKI (n = 312; sunitinib n = 225, cabozantinib n = 87), of whom 514 (82.5%) had IMDC intermediate-/poor-risk disease. In patients with IMDC intermediate-/poor-risk disease, ORR with BEMPEG plus NIVO versus TKI was 23.0% (95% CI, 18.0 to 28.7) versus 30.6% (95% CI, 25.1 to 36.6; difference, -7.7 [95% CI, -15.2 to -0.2]; P = .0489), and median OS was 29.0 months versus not estimable (hazard ratio, 0.82 [95% CI, 0.61 to 1.10]; P = .192), respectively. More frequent all-grade treatment-related adverse events (TRAEs) with BEMPEG plus NIVO versus TKI included pyrexia (32.6% v 2.0%) and pruritus (31.3% v 8.8%). Grade 3/4 TRAEs were less frequent with BEMPEG plus NIVO (25.8%) versus TKI (56.5%). CONCLUSION: First-line BEMPEG plus NIVO for advanced/metastatic ccRCC did not improve efficacy in patients with intermediate-/poor-risk disease but led to fewer grade 3/4 TRAEs versus TKI.


Subject(s)
Anilides , Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Renal Cell , Kidney Neoplasms , Nivolumab , Polyethylene Glycols , Pyridines , Sunitinib , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Anilides/administration & dosage , Anilides/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Female , Male , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Nivolumab/administration & dosage , Nivolumab/therapeutic use , Nivolumab/adverse effects , Aged , Pyridines/administration & dosage , Pyridines/therapeutic use , Sunitinib/therapeutic use , Sunitinib/administration & dosage , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/adverse effects , Adult , Interleukin-2/administration & dosage , Interleukin-2/therapeutic use , Interleukin-2/adverse effects , Interleukin-2/analogs & derivatives , Aged, 80 and over
8.
BMC Med ; 22(1): 207, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769543

ABSTRACT

BACKGROUND: Tumor-infiltrating lymphocyte (TIL) therapy has been restricted by intensive lymphodepletion and high-dose intravenous interleukin-2 (IL-2) administration. To address these limitations, we conducted preclinical and clinical studies to evaluate the safety, antitumor activity, and pharmacokinetics of an innovative modified regimen in patients with advanced gynecologic cancer. METHODS: Patient-derived xenografts (PDX) were established from a local recurrent cervical cancer patient. TILs were expanded ex vivo from minced tumors without feeder cells in the modified TIL therapy regimen. Patients underwent low-dose cyclophosphamide lymphodepletion followed by TIL infusion without intravenous IL-2. The primary endpoint was safety; the secondary endpoints included objective response rate, duration of response, and T cell persistence. RESULTS: In matched patient-derived xenografts (PDX) models, homologous TILs efficiently reduced tumor size (p < 0.0001) and underwent IL-2 absence in vivo. In the clinical section, all enrolled patients received TIL infusion using a modified TIL therapy regimen successfully with a manageable safety profile. Five (36%, 95% CI 16.3-61.2) out of 14 evaluable patients experienced objective responses, and three complete responses were ongoing at 19.5, 15.4, and 5.2 months, respectively. Responders had longer overall survival (OS) than non-responders (p = 0.036). Infused TILs showed continuous proliferation and long-term persistence in all patients and showed greater proliferation in responders which was indicated by the Morisita overlap index (MOI) of TCR clonotypes between infused TILs and peripheral T cells on day 14 (p = 0.004) and day 30 (p = 0.004). Higher alteration of the CD8+/CD4+ ratio on day 14 indicated a longer OS (p = 0.010). CONCLUSIONS: Our modified TIL therapy regimen demonstrated manageable safety, and TILs could survive and proliferate without IL-2 intravenous administration, showing potent efficacy in patients with advanced gynecologic cancer. TRIAL REGISTRATION: NCT04766320, Jan 04, 2021.


Subject(s)
Interleukin-2 , Lymphocytes, Tumor-Infiltrating , Humans , Female , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Middle Aged , Interleukin-2/administration & dosage , Interleukin-2/therapeutic use , Animals , Aged , Adult , Mice , Genital Neoplasms, Female/therapy , Genital Neoplasms, Female/drug therapy , Treatment Outcome , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use
9.
J Immunother Cancer ; 12(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38702147

ABSTRACT

Patients with advanced cancer, previously treated with immune checkpoint blockade therapy, may retain residual treatment when undergoing the initial infusion of experimental monotherapy in phase 1 clinical trials. ANV419, an antibody-cytokine fusion protein, combines interleukin-2 (IL-2) with an anti-IL-2 monoclonal antibody, aiming to stimulate the expansion of CD8 T and natural killer lymphocytes while restricting regulatory T lymphocytes. In the recent publication of the phase 1 dose escalation study of ANV419, a notable gap exists in detailed information regarding patients' prior antitumoral treatments, specifically programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) targeted monoclonal antibodies. Some patients likely retained residual anti-PD-1/PD-L1 monoclonal antibodies, potentially influencing the outcomes of ANV419. In a separate clinical cohort, we retrospectively measured the residual concentration of nivolumab and pembrolizumab, revealing persistent serum concentrations of anti-PD-1/PD-L1 antibodies even months after treatment cessation. This underscores the importance of comprehensively documenting prior immunotherapy details in clinical trials. Such information is crucial for understanding potential interactions that may impact both immunological and clinical effects.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Male , Female , Middle Aged , Aged , Interleukin-2/therapeutic use , Interleukin-2/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/administration & dosage , Adult , Recombinant Fusion Proteins/therapeutic use , Recombinant Fusion Proteins/administration & dosage
10.
Front Immunol ; 15: 1359041, 2024.
Article in English | MEDLINE | ID: mdl-38711497

ABSTRACT

Background: Immunotherapy targeting factors related to immune imbalance has been widely employed for RA treatment. This study aimed to evaluate the efficacy and safety of low-dose interleukin (IL)-2 combined with tocilizumab (TCZ), a biologics targeting IL-6, in RA patients. Methods: Fifty adults with active RA who met the criteria with complete clinical data were recruited, and divided into three groups: control group (n=15), IL-2 group (n=26), and IL-2+TCZ group (n=9). In addition to basic treatment, participants in the IL-2 group received IL-2 (0.5 MIU/day), while participants in the IL-2+TCZ group received IL-2 (0.5 MIU/day) along with one dose of TCZ (8 mg/kg, maximum dose: 800 mg). All subjects underwent condition assessment, laboratory indicators and safety indicators detection, and records before treatment and one week after treatment. Results: Compared with the baseline, all three groups showed significant improvement in disease conditions, as evidenced by significantly reduced disease activity indicators. The low-dose IL-2 and combination treatment groups demonstrated a violent proliferation of Tregs, while the absolute number of Th1, Th2, and Th17 cells in the latter group showed a decreasing trend. The decrease in the Th17/Treg ratio was more pronounced in the IL-2+TCZ groups. No significant adverse reactions were observed in any of the patients. Conclusion: Exogenous low doses of IL-2 combined TCZ were found to be safe and effective in reducing effector T cells and appropriately increasing Treg levels in RA patients with high effector T cell levels. This approach helps regulate immune homeostasis and contributes to the prevention of disease deterioration. Clinical trial registration: https://www.chictr.org.cn/showprojEN.html?proj=13909, identifier ChiCTR-INR-16009546.


Subject(s)
Antibodies, Monoclonal, Humanized , Arthritis, Rheumatoid , Drug Therapy, Combination , Interleukin-2 , Adult , Aged , Female , Humans , Male , Middle Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/adverse effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Interleukin-2/administration & dosage , Interleukin-2/adverse effects , Interleukin-2/therapeutic use , Treatment Outcome
11.
J Immunother Cancer ; 12(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599661

ABSTRACT

BACKGROUND: Glioblastoma (GBM), a highly immunosuppressive and often fatal primary brain tumor, lacks effective treatment options. GBMs contain a subpopulation of GBM stem-like cells (GSCs) that play a central role in tumor initiation, progression, and treatment resistance. Oncolytic viruses, especially oncolytic herpes simplex virus (oHSV), replicate selectively in cancer cells and trigger antitumor immunity-a phenomenon termed the "in situ vaccine" effect. Although talimogene laherparepvec (T-VEC), an oHSV armed with granulocyte macrophage-colony stimulating factor (GM-CSF), is Food and Drug Administration (FDA)-approved for melanoma, its use in patients with GBM has not been reported. Interleukin 2 (IL-2) is another established immunotherapy that stimulates T cell growth and orchestrates antitumor responses. IL-2 is FDA-approved for melanoma and renal cell carcinoma but has not been widely evaluated in GBM, and IL-2 treatment is limited by its short half-life, minimal tumor accumulation, and significant systemic toxicity. We hypothesize that local intratumoral expression of IL-2 by an oHSV would avoid the systemic IL-2-related therapeutic drawbacks while simultaneously producing beneficial antitumor immunity. METHODS: We developed G47Δ-mIL2 (an oHSV expressing IL-2) using the flip-flop HSV BAC system to deliver IL-2 locally within the tumor microenvironment (TME). We then tested its efficacy in orthotopic mouse GBM models (005 GSC, CT-2A, and GL261) and evaluated immune profiles in the treated tumors and spleens by flow cytometry and immunohistochemistry. RESULTS: G47Δ-mIL2 significantly prolonged median survival without any observable systemic IL-2-related toxicity in the 005 and CT-2A models but not in the GL261 model due to the non-permissive nature of GL261 cells to HSV infection. The therapeutic activity of G47Δ-mIL2 in the 005 GBM model was associated with increased intratumoral infiltration of CD8+ T cells, critically dependent on the release of IL-2 within the TME, and CD4+ T cells as their depletion completely abrogated therapeutic efficacy. The use of anti-PD-1 immune checkpoint blockade did not improve the therapeutic outcome of G47Δ-mIL2. CONCLUSIONS: Our findings illustrate that G47Δ-mIL2 is efficacious, stimulates antitumor immunity against orthotopic GBM, and may also target GSC. OHSV expressing IL-2 may represent an agent that merits further exploration in patients with GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Herpes Simplex , Oncolytic Virotherapy , Animals , Humans , Mice , Brain Neoplasms/pathology , CD8-Positive T-Lymphocytes , Glioblastoma/pathology , Herpesvirus 2, Human , Interleukin-2/therapeutic use , Melanoma/therapy , Tumor Microenvironment , United States
12.
RMD Open ; 10(2)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38580347

ABSTRACT

BACKGROUND: Systemic sclerosis (SSc) is a chronic autoimmune disease, with impaired immune response, increased fibrosis and endothelial dysfunction. Regulatory T cells (Tregs), which are essential to control inflammation, tissue repair and autoimmunity, have a decreased frequency and impaired function in SSc patients. Low-dose interleukin-2 (IL-2LD) can expand and activate Tregs and has, therefore, a therapeutic potential in SSc. OBJECTIVE: We aimed to assess the safety and biological efficacy of IL-2LD in patients with SSc. METHODS: As part of the TRANSREG open-label phase IIa basket trial in multiple autoimmune diseases, we studied nine patients with SSc without severe organ involvement. Patients received 1 million international units (MIU)/day of IL-2 for 5 days, followed by fortnightly injections for 6 months. Laboratory and clinical evaluations were performed between baseline and month 6. RESULTS: At day 8, the primary endpoint (Treg frequency) was reached with a 1.8±0.5-fold increase of Treg levels among CD4+ T lymphocytes (p=0.0015). There were no significant changes in effector T cells nor in B cells. IL-2LD was well tolerated, and no serious adverse events related to treatment occurred. There was a globally stable measurement in the modified Rodnan skin score and Valentini score at month 6. Disease activity and severity measures, the quality of life evaluated by EuroQL-5D-5L and pulmonary function test parameters remained stable during the study period. CONCLUSION: IL-2LD at a dosage of 1 MIU/day safely and selectively activates and expands Tregs. Clinical signs remain stable during the study period. This opens the door to properly powered phase II efficacy trials investigating IL-2LD therapeutic efficacy in SSc.


Subject(s)
Interleukin-2 , Scleroderma, Systemic , T-Lymphocytes, Regulatory , Humans , Autoimmune Diseases/drug therapy , Interleukin-2/adverse effects , Interleukin-2/therapeutic use , Quality of Life , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/immunology , T-Lymphocytes, Regulatory/drug effects
13.
Math Biosci ; 372: 109187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575057

ABSTRACT

A basic mathematical model for IL-2-based cancer immunotherapy is proposed and studied. Our analysis shows that the outcome of therapy is mainly determined by three parameters, the relative death rate of CD4+ T cells, the relative death rate of CD8+ T cells, and the dose of IL-2 treatment. Minimal equilibrium tumor size can be reached with a large dose of IL-2 in the case that CD4+ T cells die out. However, in cases where CD4+ and CD8+ T cells persist, the final tumor size is independent of the IL-2 dose and is given by the relative death rate of CD4+ T cells. Two groups of in silico clinical trials show some short-term behaviors of IL-2 treatment. IL-2 administration can slow the proliferation of CD4+ T cells, while high doses for a short period of time over several days transiently increase the population of CD8+ T cells during treatment before it recedes to its equilibrium. IL-2 administration for a short period of time over many days suppresses the tumor population for a longer time before approaching its steady-state levels. This implies that intermittent administration of IL-2 may be a good strategy for controlling tumor size.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Interleukin-2 , Neoplasms , Interleukin-2/therapeutic use , Interleukin-2/administration & dosage , Immunotherapy/methods , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Models, Theoretical , Mathematical Concepts
14.
Cancer Immunol Immunother ; 73(6): 107, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642109

ABSTRACT

BACKGROUND: Treatment of metastatic renal cell carcinoma (mRCC) remains a challenge worldwide. Here, we introduced a phase I trial of autologous RAK cell therapy in patients with mRCC whose cancers progressed after prior systemic therapy. Although RAK cells have been used in clinic for many years, there has been no dose-escalation study to demonstrate its safety and efficacy. METHODS: We conducted a phase I trial with a 3 + 3 dose-escalation design to investigate the dose-related safety and efficacy of RAK cells in patients with mRCC whose cancers have failed to response to systemic therapy (ChiCTR1900021334). RESULTS: Autologous RAK cells, primarily composed of CD8+ T and NKT cells, were infused intravenously to patients at a dose of 5 × 109, 1 × 1010 or 1.5 × 1010 cells every 28 days per cycle. Our study demonstrated general safety of RAK cells in a total of 12 patients. Four patients (33.3%) showed tumor shrinkage, two of them achieved durable partial responses. Peripheral blood analysis showed a significant increase in absolute counts of CD3+ and CD8+ T cells after infusion, with a greater fold change observed in naive CD8+ T cells (CD8+CD45RA+). Higher peak values of IL-2 and IFN-γ were observed in responders after RAK infusion. CONCLUSION: This study suggests that autologous RAK cell immunotherapy is safe and has clinical activity in previously treated mRCC patients. The improvement in peripheral blood immune profiling after RAK cell infusion highlights its potential as a cancer treatment. Further investigation is necessary to understand its clinical utility.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Kidney Neoplasms/pathology , CD8-Positive T-Lymphocytes/pathology , Interleukin-2/therapeutic use , Immunotherapy , Adjuvants, Immunologic
15.
J Immunother Cancer ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38604813

ABSTRACT

BACKGROUND: Despite recent advances in immunotherapy, a substantial population of late-stage melanoma patients still fail to achieve sustained clinical benefit. Lack of translational preclinical models continues to be a major challenge in the field of immunotherapy; thus, more optimized translational models could strongly influence clinical trial development. To address this unmet need, we designed a preclinical model reflecting the heterogeneity in melanoma patients' clinical responses that can be used to evaluate novel immunotherapies and synergistic combinatorial treatment strategies. Using our all-autologous humanized melanoma mouse model, we examined the efficacy of a novel engineered interleukin 2 (IL-2)-based cytokine variant immunotherapy. METHODS: To study immune responses and antitumor efficacy for human melanoma tumors, we developed an all-autologous humanized melanoma mouse model using clinically annotated, matched patient tumor cells and peripheral blood mononuclear cells (PBMCs). After inoculating immunodeficient NSG mice with patient tumors and an adoptive cell transfer of autologous PBMCs, mice were treated with anti-PD-1, a novel investigational engineered IL-2-based cytokine (nemvaleukin), or recombinant human IL-2 (rhIL-2). The pharmacodynamic effects and antitumor efficacy of these treatments were then evaluated. We used tumor cells and autologous PBMCs from patients with varying immunotherapy responses to both model the diversity of immunotherapy efficacy observed in the clinical setting and to recapitulate the heterogeneous nature of melanoma. RESULTS: Our model exhibited long-term survival of engrafted human PBMCs without developing graft-versus-host disease. Administration of an anti-PD-1 or nemvaleukin elicited antitumor responses in our model that were patient-specific and were found to parallel clinical responsiveness to checkpoint inhibitors. An evaluation of nemvaleukin-treated mice demonstrated increased tumor-infiltrating CD4+ and CD8+ T cells, preferential expansion of non-regulatory T cell subsets in the spleen, and significant delays in tumor growth compared with vehicle-treated controls or mice treated with rhIL-2. CONCLUSIONS: Our model reproduces differential effects of immunotherapy in melanoma patients, capturing the inherent heterogeneity in clinical responses. Taken together, these data demonstrate our model's translatability for novel immunotherapies in melanoma patients. The data are also supportive for the continued clinical investigation of nemvaleukin as a novel immunotherapeutic for the treatment of melanoma.


Subject(s)
Immune Checkpoint Inhibitors , Immunotherapy , Interleukin-2 , Melanoma , Skin Neoplasms , Xenograft Model Antitumor Assays , Humans , Melanoma/therapy , Animals , Mice , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-2/administration & dosage , Interleukin-2/therapeutic use , Skin Neoplasms/therapy , Immunotherapy/methods , Autografts , Mice, Inbred NOD
16.
Cancer J ; 30(2): 120-125, 2024.
Article in English | MEDLINE | ID: mdl-38527266

ABSTRACT

ABSTRACT: Immune checkpoint inhibition and targeted therapies have revolutionized the treatment of melanoma. However, chemotherapy and interleukin 2 (IL-2) therapy may still have a role in the later-line treatment of patients who do not have durable responses to other treatments. Chemotherapy can work transiently in patients whose disease has progressed on immune checkpoint inhibitors and for whom there are no appropriate targeted therapy options. High-dose IL-2 therapy can still be effective for a very small number of patients following progression on other therapies. In addition, modified IL-2 agents and IL-2 in combination with tumor-infiltrating lymphocyte therapy may play a role in future treatments for melanoma.


Subject(s)
Melanoma , Humans , Interleukin-2/therapeutic use , Interleukin-2/adverse effects , Drug Therapy, Combination , Immunotherapy, Adoptive , Immunotherapy
17.
J Ethnopharmacol ; 326: 117984, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38428661

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The efficacy of the herbal formula Yiqi Yangyin Jiedu (YQYYJD) in the treatment of advanced lung cancer has been reported in clinical trials. However, the key anti-lung cancer herbs and molecular mechanisms underlying its inhibition of lung cancer are not well-understood. AIM OF THE STUDY: To identify the key anti-lung cancer herbs in the YQYYJD formula and investigate their therapeutic effect and potential mechanism of action in non-small cell lung cancer (NSCLC) using transcriptomics and bioinformatics techniques. MATERIALS AND METHODS: A mouse Lewis lung carcinoma (LLC) subcutaneous inhibitory tumor model was established with 6 mice in each group. Mice were treated with the YQYYJD split formula: Yiqi Formula (YQ), Yangyin Formula (YY), and Ruanjian Jiedu Formula (RJJD) for 14 days. The tumor volume and mouse weight were recorded, and the status of tumor occurrence was further observed by taking photos. The tumor was stained with hematoxylin-eosin to observe its histopathological changes. Immunohistochemistry was used to detect the expression of the proliferation marker Ki67 and the apoptotic marker Caspase-3 in tumor tissues. Flow cytometry was used to detect the number of CD4+ and CD8+ T cells and cytokines interleukin-2 (IL-2) and interferon-gamma (IFN-γ) in the spleen and tumor tissues. The differential genes of key drugs against tumors were obtained by transcriptome sequencing of tumors. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed on differential genes to obtain pathways and biological processes where targets were aggregated. TIMER2.0 and TISIDB databases were used to evaluate the impact of drugs on immune cell infiltration and immune-related genes. The binding activity of the key targets and compounds was verified by molecular docking. RESULTS: YQ, YY, and RJJD inhibited the growth of subcutaneous transplanted tumors in LLC mice to varying degrees and achieved antitumor effects by inhibiting the expression of tumor cell proliferation, apoptosis, and metastasis-related proteins. Among the three disassembled prescriptions, YQ better inhibited the growth of subcutaneous transplanted tumors in LLC mice, significantly promoted tumor necrosis, significantly increased the expression of Caspase-3 protein in tumor tissue, and significantly decreased the expression of Ki-67 (P < 0.05), thereby increasing the infiltration of CD8+ T cells. YQ significantly increased the expression of CD4+ and CD8+ T cells in tumor and splenic tissues of tumor-bearing mice and up-regulated the expression of IL-2 and IFN-γ. Transcriptome sequencing and bioinformatics results showed that after YQ intervention, differentially expressed genes were enriched in more than one tumor-related pathway and multiple immune regulation-related biological functions. There were 12 key immune-related target genes. CONCLUSION: YQ was the key disassembled prescription of YQYYJD, exerting significant antitumor effects and immune regulation effects on NSCLC. It may have relieved T cell exhaustion and regulated the immune microenvironment to exert antitumor effects by changing lung cancer-related targets, pathways, and biological processes.


Subject(s)
Carcinoma, Lewis Lung , Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Lung Neoplasms , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Interleukin-2/metabolism , Interleukin-2/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , CD8-Positive T-Lymphocytes , Caspase 3/metabolism , Molecular Docking Simulation , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/genetics , Interferon-gamma/metabolism , Gene Expression Profiling , Tumor Microenvironment
18.
J Immunotoxicol ; 21(1): 2332175, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38526995

ABSTRACT

Novel immunotherapies for cancer and other diseases aim to trigger the immune system to produce durable responses, while overcoming the immunosuppression that may contribute to disease severity, and in parallel considering immunosafety aspects. Interleukin-2 (IL-2) was one of the first cytokines that the FDA approved as a cancer-targeting immunotherapy. However, in the past years, IL-2 immunotherapy is not actively offered to patients, due to limited efficacy, when compared to other novel immunotherapies, and the associated severe adverse events. In order to design improved in vitro and in vivo models, able to predict the efficacy and safety of novel IL-2 alternatives, it is important to delineate the mechanistic immunological events triggered by IL-2. Particularly, in this review we will discuss the effects IL-2 has with the bridging cell type of the innate and adaptive immune responses, dendritic cells. The pathways involved in the regulation of IL-2 by dendritic cells and T-cells in cancer and autoimmune disease will also be explored.


Subject(s)
Interleukin-2 , Neoplasms , Humans , Interleukin-2/therapeutic use , Cytokines , Neoplasms/therapy , T-Lymphocytes , Immunotherapy , Immunity , Immunity, Innate
19.
Front Immunol ; 15: 1280877, 2024.
Article in English | MEDLINE | ID: mdl-38533504

ABSTRACT

Background/Introduction: Adipose tissue (AT) has been highlighted as a promising reservoir of infection for viruses, bacteria and parasites. Among them is Trypanosoma cruzi, which causes Chagas disease. The recommended treatment for the disease in Brazil is Benznidazole (BZ). However, its efficacy may vary according to the stage of the disease, geographical origin, age, immune background of the host and sensitivity of the strains to the drug. In this context, AT may act as an ally for the parasite survival and persistence in the host and a barrier for BZ action. Therefore, we investigated the immunomodulation of T. cruzi-infected human AT in the presence of peripheral blood mononuclear cells (PBMC) where BZ treatment was added. Methods: We performed indirect cultivation between T. cruzi-infected adipocytes, PBMC and the addition of BZ. After 72h of treatment, the supernatant was collected for cytokine, chemokine and adipokine assay. Infected adipocytes were removed to quantify T. cruzi DNA, and PBMC were removed for immunophenotyping. Results: Our findings showed elevated secretion of interleukin (IL)-6, IL-2 and monocyte chemoattractant protein-1 (MCP-1/CCL2) in the AT+PBMC condition compared to the other controls. In contrast, there was a decrease in tumor necrosis factor (TNF) and IL-8/CXCL-8 in the groups with AT. We also found high adipsin secretion in PBMC+AT+T compared to the treated condition (PBMC+AT+T+BZ). Likewise, the expression of CD80+ and HLA-DR+ in CD14+ cells decreased in the presence of T. cruzi. Discussion: Thus, our findings indicate that AT promotes up-regulation of inflammatory products such as IL-6, IL-2, and MCP-1/CCL2. However, adipogenic inducers may have triggered the downregulation of TNF and IL-8/CXCL8 through the peroxisome proliferator agonist gamma (PPAR-g) or receptor expression. On the other hand, the administration of BZ only managed to reduce inflammation in the microenvironment by decreasing adipsin in the infected culture conditions. Therefore, given the findings, we can see that AT is an ally of the parasite in evading the host's immune response and the pharmacological action of BZ.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanosoma cruzi , Humans , Interleukin-8 , Leukocytes, Mononuclear , Complement Factor D , Interleukin-2/therapeutic use , Adipose Tissue , Adipocytes , Tumor Necrosis Factor-alpha/therapeutic use , Immunity , Treatment Failure
20.
J Interferon Cytokine Res ; 44(4): 143-157, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421721

ABSTRACT

Interleukin-2 (IL-2) is a cytokine that acts in dual and paradoxical ways in the immunotherapy of cancers and autoimmune diseases. Numerous clinical trial studies have shown that the use of different doses of this cytokine in various autoimmune diseases, transplantations, and cancers has resulted in therapeutic success. However, side effects of varying severity have been observed in patients. In recent years, to prevent these side effects, IL-2 has been engineered to bind more specifically to its receptors on the cell surface, decreasing IL-2 toxicities in patients. In this review article, we focus on some recent clinical trial studies and analyze them to determine the appropriate dose of IL-2 drug with the least toxicities. In addition, we discuss the engineering performed on IL-2, which shows that engineered IL-2 increases the specificity function of IL-2 and decreases its adverse effects.


Subject(s)
Autoimmune Diseases , Neoplasms , Humans , Interleukin-2/therapeutic use , Neoplasms/drug therapy , Immunotherapy
SELECTION OF CITATIONS
SEARCH DETAIL