Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.307
Filter
1.
Exp Dermatol ; 33(5): e15104, 2024 May.
Article in English | MEDLINE | ID: mdl-38794817

ABSTRACT

Psoriasis is a chronic systemic inflammatory cutaneous disease. Where the immune system plays an important role in its pathogenesis, with key inflammatory intercellular signalling peptides and proteins including IL-17 and IL-23. The psychoneurological system also figures prominently in development of psoriasis. There is a high prevalence of comorbidity between psoriasis and mental health disorders such as depression, anxiety and mania. Patients with psoriasis often suffer from pathological pain in the lesions, and their neurological accidents could improve the lesions in innervated areas. The immune system and the psychoneurological system interact closely in the pathogenesis of psoriasis. Patients with psoriasis exhibit abnormal levels of neuropeptides both in circulating and localized lesion, acting as immunomodulators involved in the inflammatory response. Moreover, receptors for inflammatory factors are expressed in both peripheral and central nervous systems (CNSs), suggesting that nervous system can receive and be influenced by signals from immune system. Key inflammatory intercellular signalling peptides and proteins in psoriasis, such as IL-17 and IL-23, can be involved in sensory signalling and may affect synaptic plasticity and the blood-brain barrier of CNS through the circulation. This review provides an overview of the multiple effects on the peripheral and CNS under conditions of systemic inflammation in psoriasis, providing a framework and inspiration for in-depth studies of neuroimmunomodulation in psoriasis.


Subject(s)
Central Nervous System , Interleukin-17 , Interleukin-23 , Psoriasis , Psoriasis/metabolism , Psoriasis/immunology , Humans , Central Nervous System/metabolism , Interleukin-23/metabolism , Interleukin-17/metabolism , Neuroimmunomodulation , Neuropeptides/metabolism , Inflammation/metabolism , Peripheral Nervous System/metabolism , Animals , Signal Transduction
2.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747908

ABSTRACT

BACKGROUND: miR-34a has been implicated in many autoimmune diseases and gastrointestinal diseases. However, the expression of miR-34 in ulcerative colitis (UC) patients were not fully studied. This study was performed to in-vestigate the association of blood and intestinal tissue miR-34a expression of patients with disease severity in UC patients. METHODS: Our study enrolled 82 patients with UC and 80 age- and gender- matched healthy individuals. Blood miR-34a expressions were detected using reverse transcription-polymerase chain reaction (RT-PCR). Local intestinal miR-34a, STAT3 mRNA and IL-23 mRNA expressions were also detected in the lesioned area and adjacent non-affected intestinal tissue in patients. Disease severity of UC was assessed by Mayo score. The diagnostic value of both blood and local miR-34a expression for UC patients was assessed by receiver operating characteristic (ROC) curve. RESULTS: Blood miR-34a was increased in UC patients in contrast with healthy individuals with statistical significance. In UC patients, local intestinal miR-34a expressions were markedly upregulated compared to adjacent non-affected intestinal tissue. Local intestinal miR-34a expressions were positively correlated with STAT3 mRNA and IL-23 mNRA. Both blood and local miR-34a expressions were significantly and positively related to Mayo scores. ROC curve analysis indicated that both blood and local miR-34a expressions may act as decent marker for Mayo grade. CONCLUSIONS: Blood and intestinal tissue miR-34a expressions are correlated with disease severity in UC patients. Both blood and intestinal tissue miR-34a expressions may serve as potential diagnostic and prognostic makers for UC. Therapeutic methods targeting miR-34a may act as potential ways for UC treatment.


Subject(s)
Colitis, Ulcerative , Intestinal Mucosa , MicroRNAs , STAT3 Transcription Factor , Severity of Illness Index , Humans , MicroRNAs/blood , MicroRNAs/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/blood , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/metabolism , Female , Male , Intestinal Mucosa/metabolism , Adult , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Middle Aged , Case-Control Studies , ROC Curve , Biomarkers/blood , Interleukin-23/blood , Interleukin-23/genetics , RNA, Messenger/genetics , RNA, Messenger/blood , RNA, Messenger/metabolism
3.
Dermatol Clin ; 42(3): 365-375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796268

ABSTRACT

Significant research advances in our understanding of psoriatic disease have led to the development of several highly selective, effective, and safe topical and systemic treatments. These treatments have led to unprecedented levels of disease clearance and control for most patients with psoriasis with cutaneous disease. However, there remains a need for improved treatments for those patients with recalcitrant disease, psoriatic arthritis, or nonplaque disease variants. Recently approved therapies and investigational products in ongoing clinical development programs that target IL-17A/F, IL-23, TYK2, PDE4, AhR or IL-36 cytokine signaling are improving the clinician's ability to care for a broader range of patients affected by psoriasis.


Subject(s)
Dermatologic Agents , Phosphodiesterase 4 Inhibitors , Psoriasis , Humans , Psoriasis/drug therapy , Dermatologic Agents/therapeutic use , Phosphodiesterase 4 Inhibitors/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Interleukin-23/antagonists & inhibitors , Ustekinumab/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Antibodies, Monoclonal/therapeutic use , Interleukin-17/antagonists & inhibitors , Arthritis, Psoriatic/drug therapy , TYK2 Kinase/antagonists & inhibitors , Thalidomide/analogs & derivatives
4.
Dermatol Clin ; 42(3): 339-355, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796266

ABSTRACT

Biologic therapies targeting tumor necrosis factor alpha (TNF-α) (infliximab, adalimumab, certolizumab, etanercept), the p40 subunit shared by IL-12 and IL-23 (ustekinumab), the p19 subunit of IL-23 (guselkumab, tildrakizumab, risankizumab), IL-17A (secukinumab, ixekizumab), IL-17-RA (brodalumab) and both IL-17A and IL-17F (bimekizumab) have revolutionized the treatment of psoriasis. In both the short and long term, risankizumab had highest Psoriasis Area and Severity Index 90 scores compared to other oral and injectable biologics. IL-23 inhibitors had lowest rates of short-term and long-term adverse events and most favorable long-term risk-benefit profile compared to IL-17, IL-12/23, and TNF-α inhibitors.


Subject(s)
Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal , Biological Products , Psoriasis , Ustekinumab , Psoriasis/drug therapy , Humans , Biological Products/therapeutic use , Ustekinumab/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Etanercept/therapeutic use , Adalimumab/therapeutic use , Infliximab/therapeutic use , Interleukin-17/antagonists & inhibitors , Dermatologic Agents/therapeutic use , Certolizumab Pegol/therapeutic use , Interleukin-23/antagonists & inhibitors , Interleukin-12/antagonists & inhibitors
5.
Biomolecules ; 14(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38785955

ABSTRACT

Psoriasis is a lifelong, systemic, immune mediated inflammatory skin condition, affecting 1-3% of the world's population, with an impact on quality of life similar to diseases like cancer or diabetes. Genetics are the single largest risk factor in psoriasis, with Genome-Wide Association (GWAS) studies showing that many psoriasis risk genes lie along the IL-23/Th17 axis. Potential psoriasis risk genes determined through GWAS can be annotated and characterised using functional genomics, allowing the identification of novel drug targets and the repurposing of existing drugs. This review is focused on the IL-23/Th17 axis, providing an insight into key cell types, cytokines, and intracellular signaling pathways involved. This includes examination of currently available biological treatments, time to relapse post drug withdrawal, and rates of primary/secondary drug failure, showing the need for greater understanding of the underlying genetic mechanisms of psoriasis and how they can impact treatment. This could allow for patient stratification towards the treatment most likely to reduce the burden of disease for the longest period possible.


Subject(s)
Genome-Wide Association Study , Genomics , Psoriasis , Humans , Psoriasis/genetics , Psoriasis/drug therapy , Interleukin-23/genetics , Interleukin-23/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Signal Transduction/genetics , Genetic Predisposition to Disease
6.
Sci Rep ; 14(1): 12293, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811719

ABSTRACT

HLA-B27 is a major risk factor for spondyloarthritis (SpA), yet the underlying mechanisms remain unclear. HLA-B27 misfolding-induced IL-23, which is mediated by endoplasmic reticulum (ER) stress has been hypothesized to drive SpA pathogenesis. Expression of HLA-B27 and human ß2m (hß2m) in rats (HLA-B27-Tg) recapitulates key SpA features including gut inflammation. Here we determined whether deleting the transcription factor CHOP (Ddit3-/-), which mediates ER-stress induced IL-23, affects gut inflammation in HLA-B27-Tg animals. ER stress-mediated Il23a overexpression was abolished in CHOP-deficient macrophages. Although CHOP-deficiency also reduced Il23a expression in immune cells isolated from the colon of B27+ rats, Il17a levels were not affected, and gut inflammation was not reduced. Rather, transcriptome analysis revealed increased expression of pro-inflammatory genes, including Il1a, Ifng and Tnf in HLA-B27-Tg colon tissue in the absence of CHOP, which was accompanied by higher histological Z-scores. RNAScope localized Il17a mRNA to the lamina propria of the HLA-B27-Tg rats and revealed similar co-localization with Cd3e (CD3) in the presence and absence of CHOP. This demonstrates that CHOP-deficiency does not improve, but rather exacerbates gut inflammation in HLA-B27-Tg rats, indicating that HLA-B27 is not promoting gut disease through ER stress-induced IL-23. Hence, CHOP may protect rats from more severe HLA-B27-induced gut inflammation.


Subject(s)
Colitis , Endoplasmic Reticulum Stress , HLA-B27 Antigen , Spondylarthritis , Transcription Factor CHOP , Animals , HLA-B27 Antigen/genetics , HLA-B27 Antigen/metabolism , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Colitis/metabolism , Colitis/genetics , Colitis/chemically induced , Colitis/pathology , Rats , Spondylarthritis/metabolism , Spondylarthritis/pathology , Spondylarthritis/genetics , Disease Models, Animal , Interleukin-23/metabolism , Interleukin-23/genetics , Humans , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/metabolism , Rats, Transgenic , Interleukin-17/metabolism , Interleukin-17/genetics , Colon/pathology , Colon/metabolism , Macrophages/metabolism , Macrophages/immunology
7.
Skin Therapy Lett ; 29(3): 5-8, 2024 May.
Article in English | MEDLINE | ID: mdl-38781953

ABSTRACT

The pathogenesis of psoriasis has been linked to autoimmune and autoinflammatory traits that result in atypical cytokine and keratinocyte activation and proliferation. Many cytokine pathways are involved in the development of inflammation with interleukin-23 (IL-23) playing a significant role in plaque-type psoriasis. Biologic agents that target specific cytokines have shown to be effective therapies in the treatment of plaque-type psoriasis over other conventional treatments such as systemic retinoids. Tildrakizumab is an immunoglobulin G1-kappa monoclonal antibody that inhibits the IL-23/IL-17 pathway and has demonstrated through two three-part randomized Phase 3 clinical trials (reSURFACE 1 and reSURFACE 2) and their extension trials to be an efficacious and safe therapy for the targeted treatment of moderate-to-severe plaque-type psoriasis.


Subject(s)
Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal , Psoriasis , Humans , Psoriasis/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Interleukin-23/antagonists & inhibitors , Randomized Controlled Trials as Topic , Interleukin-17/antagonists & inhibitors , Treatment Outcome , Clinical Trials, Phase III as Topic
8.
Sci Rep ; 14(1): 11624, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773194

ABSTRACT

The Nova Scotia Duck Tolling Retriever (NSDTR) is predisposed to immune mediated rheumatic disease (IMRD), steroid-responsive meningitis-arteritis (SRMA) and certain forms of cancer. Cytokines are the main regulators of the immune system. Interleukin 2 is a cytokine involved in activation of T regulatory cells, playing a role in central tolerance and tumor immunity. Interleukin 12 and interleukin 23 share the same subunit, p40, and are both pro-inflammatory cytokines. The aim of this study was to compare levels of IL-2 in healthy NSDTRs to those with cancer or autoimmune disease and to compare levels of IL-12/IL-23p40 in healthy NSDTRs and beagles versus NSDTRs with cancer or autoimmune disease. 62 dogs were included in the analysis of IL-12/IL-23p40; healthy NSDTRs (n = 16), healthy beagles (n = 16), NSDTRs autoimmune (n = 18) and NDSTRs lymphoma/mastocytoma (n = 12) and 68 dogs for IL-2; healthy (n = 20), autoimmune (n = 36) and lymphoma/mastocytoma/adenocarcinoma (n = 12). NSDTRs with autoimmune disease had higher levels of IL-12/IL-23p40 compared to healthy dogs (p = 0.008). NSDTRs with lymphoma also had higher levels of IL-12/IL-23p40 compared to healthy NSDTRs (p = 0.002). There was no difference in levels of IL-2 between healthy and diseased NSDTR. Statistical analysis was performed using Bonferroni corrections for multiple testing. These findings can contribute to the knowledge of autoimmune disease and cancer in dogs.


Subject(s)
Autoimmune Diseases , Dog Diseases , Interleukin-12 , Lymphoma , Animals , Dogs , Autoimmune Diseases/veterinary , Autoimmune Diseases/immunology , Lymphoma/veterinary , Lymphoma/immunology , Dog Diseases/immunology , Female , Male , Interleukin-23 , Interleukin-2
9.
PLoS One ; 19(4): e0301982, 2024.
Article in English | MEDLINE | ID: mdl-38593153

ABSTRACT

Our previous study, which aimed to understand the early neurodevelopmental trajectories of children with and without neurodevelopmental disorders, identified five classes of early neurodevelopmental trajectories, categorized as high normal, normal, low normal, delayed, and markedly delayed. This investigation involved measurement using the Mullen Scale of Early Learning in a representative sample of Japanese infants followed up from the age of 0 to 2 years (Nishimura et al., 2016). In the present study, we investigated the potential association between cytokine concentrations in umbilical cord serum with any of the five classes of neurodevelopmental trajectories previously assigned, as follows: high normal (N = 85, 13.0%), normal (N = 322, 49.1%), low normal (N = 137, 20.9%), delayed (N = 87, 13.3%), and markedly delayed (N = 25, 3.8%) in infancy. Decreased interleukin (IL)-23 levels in the cord blood were associated with the markedly delayed class, independent of potential confounders (odds ratio, 0.44; 95%confidence interval: 0.26-0.73). Furthermore, IL-23 levels decreased as the developmental trajectory became more delayed, demonstrating that IL-23 plays an important role in development, and is useful for predicting the developmental trajectory at birth.


Subject(s)
Fetal Blood , Neurodevelopmental Disorders , Child, Preschool , Humans , Infant , Infant, Newborn , Cytokines , Interleukin-23 , Umbilical Cord
10.
Front Immunol ; 15: 1372693, 2024.
Article in English | MEDLINE | ID: mdl-38605952

ABSTRACT

Interleukins (ILs) are vital in regulating the immune system, enabling to combat fungal diseases like candidiasis effectively. Their inhibition may cause enhanced susceptibility to infection. IL inhibitors have been employed to control autoimmune diseases and inhibitors of IL-17 and IL-23, for example, have been associated with an elevated risk of Candida infection. Thus, applying IL inhibitors might impact an individual's susceptibility to Candida infections. Variations in the severity of Candida infections have been observed between individuals with different IL inhibitors, necessitating careful consideration of their specific risk profiles. IL-1 inhibitors (anakinra, canakinumab, and rilonacept), IL-2 inhibitors (daclizumab, and basiliximab), and IL-4 inhibitors (dupilumab) have rarely been associated with Candida infection. In contrast, tocilizumab, an inhibitor of IL-6, has demonstrated an elevated risk in the context of coronavirus disease 2019 (COVID-19) treatment, as evidenced by a 6.9% prevalence of candidemia among patients using the drug. Furthermore, the incidence of Candida infections appeared to be higher in patients exposed to IL-17 inhibitors than in those exposed to IL-23 inhibitors. Therefore, healthcare practitioners must maintain awareness of the risk of candidiasis associated with using of IL inhibitors before prescribing them. Future prospective studies need to exhaustively investigate candidiasis and its associated risk factors in patients receiving IL inhibitors. Implementing enduring surveillance methods is crucial to ensure IL inhibitors safe and efficient utilization of in clinical settings.


Subject(s)
Candidiasis , Interleukin-17 , Humans , Interleukin Inhibitors , Prospective Studies , Candidiasis/drug therapy , Candidiasis/epidemiology , Interleukin-23
11.
Immunity ; 57(4): 832-834, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599173

ABSTRACT

IL-23 activates pathogenic Th17 cells to drive inflammatory disease at barrier surfaces. Kim et al. now identify oral epithelial cells as the critical producers of IL-23 in human and mouse periodontitis, linking microbial dysbiosis to non-hematopoietic regulation of IL-17-associated inflammation.


Subject(s)
Inflammation , Periodontitis , Humans , Animals , Mice , Inflammation/pathology , Epithelial Cells/pathology , Interleukin-23 , Th17 Cells/pathology , Dysbiosis
12.
Cutis ; 113(2): 82-91, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38593108

ABSTRACT

Psoriasis is a chronic heterogeneous condition with multiple available treatment options that have resulted in dramatic disease improvements for patients. IL-23/IL-17 signaling is the central immune signaling pathway driving psoriasis, though recent research has uncovered other key contributing signals such as IL-17C, IL-17F, IL-36, and tyrosine kinase 2 (TYK2). Novel therapeutic targets inhibiting these cytokines have expanded our understanding of the pathogenesis of psoriasis. IL-23/IL-17 signaling is critical for the development of epidermal hyperplasia and the mature psoriatic plaque in susceptible individuals. Increased IL-17 and IL-23 expression works synergistically with other cytokines, such as IL-12, IL-22, IL-36, tumor necrosis factor (TNF), and interferon (IFN), to help create a self-sustaining, feed-forward circuit in keratinocytes, which contributes to the chronicity of the disease. This clinical review highlights recent discoveries in the immunopathogenesis of psoriasis and summarizes new antipsoriasis therapies targeting IL-36, IL-17F, aryl hydrocarbon receptors (AHRs), phosphodiesterase 4 (PDE4), and TYK2 signaling. Despite recent success in the treatment of psoriasis, continued research is needed to further advance disease understanding and shape management strategies.


Subject(s)
Interleukin-17 , Psoriasis , Humans , Psoriasis/drug therapy , Keratinocytes/metabolism , Keratinocytes/pathology , Cytokines , Interleukin-23
13.
J Physiol Pharmacol ; 75(1)2024 02.
Article in English | MEDLINE | ID: mdl-38583441

ABSTRACT

Several cytokines have been indicated to be significantly involved in urological diseases. Interleukin 17A (IL-17A) and interleukin 23 (IL-23) have recently received attention for their involvement in inflammatory diseases and cancers. The aim of the study was to show changes in the level of pro-inflammatory interleukins IL-17A and IL-23 in patients with bladder cancer (BC) and selected urological diseases. An important cognitive aspect was to study the interdependencies between the studied interleukins and to assess their diagnostic value for such diseases. The material for the study was urine sample from patients with BC, urinary tract infection (UTI), urolithiasis, benign prostatic hyperplasia (BPH), US (urethral stricture), which was compared to the urine sample of healthy people without urological disorders. Interleukin concentrations were measured by the immunoenzymatic method. The levels of IL-17A and IL-23 in the urine of patients with BC, UTI, BPH and US were significantly higher compared to the control group. Statistically significant differences were found in the level of both interleukins compared to the control group in all diseases except urolithiasis. IL-17A and IL-23 correlated with each other in patients with all urological diseases except urolithiasis. The results of the conducted studies showed that selected urological diseases changed the levels of IL-17A and IL-23 in the urine of patients. The observations made confirmed the participation of these interleukins in the course of the urological diseases, especially in BC, and allowed to classify them as potentially useful parameters for diagnostic purposes.


Subject(s)
Prostatic Hyperplasia , Urinary Bladder Neoplasms , Urolithiasis , Urologic Diseases , Male , Humans , Interleukin-17 , Urologic Diseases/diagnosis , Urinary Bladder Neoplasms/diagnosis , Interleukins , Urolithiasis/diagnosis , Interleukin-23
14.
Front Immunol ; 15: 1331217, 2024.
Article in English | MEDLINE | ID: mdl-38686385

ABSTRACT

Interleukin (IL)-23, an IL-12 cytokine family member, is a hierarchically dominant regulatory cytokine in a cluster of immune-mediated inflammatory diseases (IMIDs), including psoriasis, psoriatic arthritis, and inflammatory bowel disease. We review IL-23 biology, IL-23 signaling in IMIDs, and the effect of IL-23 inhibition in treating these diseases. We propose studies to advance IL-23 biology and unravel differences in response to anti-IL-23 therapy. Experimental evidence generated from these investigations could establish a novel molecular ontology centered around IL-23-driven diseases, improve upon current approaches to treating IMIDs with IL-23 inhibition, and ultimately facilitate optimal identification of patients and, thereby, outcomes.


Subject(s)
Interleukin-23 , Animals , Humans , Arthritis, Psoriatic/immunology , Arthritis, Psoriatic/drug therapy , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/therapy , Interleukin-23/antagonists & inhibitors , Interleukin-23/immunology , Interleukin-23/metabolism , Psoriasis/immunology , Psoriasis/drug therapy , Signal Transduction
16.
Int Immunopharmacol ; 133: 112033, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608446

ABSTRACT

Psoriasis is an immuno-inflammatory disease characterized by excessive keratinocyte proliferation, requiring extensive lipids. 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) is an essential enzyme in the mevalonate pathway, involved in cholesterol synthesis and the inflammatory response. However, the role of HMGCS1 in psoriasis has remained elusive. This study aims to elucidate the mechanism by which HMGCS1 controls psoriasiform inflammation. We discovered an increased abundance of HMGCS1 in psoriatic lesions when analyzing two Gene Expression Omnibus (GEO) datasets and confirmed this in psoriatic animal models and psoriatic patients by immunohistochemistry. In a TNF-α stimulated psoriatic HaCaT cell line, HMGCS1 was found to be overexpressed. Knockdown of HMGCS1 using siRNA suppressed the migration and proliferation of HaCaT cells. Mechanistically, HMGCS1 downregulation also reduced the expression of IL-23 and the STAT3 phosphorylation level. In imiquimod-induced psoriatic mice, intradermal injection of HMGCS1 siRNA significantly decreased the expression of HMGCS1 in the epidermis, which in turn led to an improvement in the Psoriasis Area and Severity Index score, epidermal thickening, and pathological Baker score. Additionally, expression levels of inflammatory cytokines IL-23, IL1-ß, chemokine CXCL1, and innate immune mediator S100A7-9 were downregulated in the epidermis. In conclusion, HMGCS1 downregulation improved psoriasis in vitro and in vivo through the STAT3/IL-23 axis.


Subject(s)
Cell Proliferation , Hydroxymethylglutaryl-CoA Synthase , Imiquimod , Interleukin-23 , Keratinocytes , Psoriasis , STAT3 Transcription Factor , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/pathology , Animals , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Proliferation/drug effects , Mice , Interleukin-23/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Signal Transduction/drug effects , HaCaT Cells , Cell Line , Male , Disease Models, Animal , Female , Mice, Inbred BALB C
17.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 85-89, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678624

ABSTRACT

We aimed to explore the effects of silencing NOD-like receptor protein 3 (NLRP3) on proliferation of psoriasis-like HaCaT cells and expressions of cytokines. HaCaT cells were treated with human keratinocyte growth factor (KGF) and were divided into KGF group, negative control group, NLRP3-RNAi group and control group. Cells proliferation was detected by CCK8, cell clone formation rate was detected by clone formation assay, distribution of cells cycle was detected by flow cytometry, expressions of cyclin B1 (Cyclin B1), cyclin-dependent kinase 2 (CDK2), Ki67 and proliferating cell nuclear antigen (PCNA) proteins were detected by Western blot, and levels of interleukin (IL)-17, IL-23, IL-6 and tumor necrosis factor α (TNF-α) were detected by enzyme-linked immunosorbent assay. Compared with control group, expressions of NLRP3 mRNA and protein, proliferation rate and clonal formation rate were increased in KGF group, percentage of cells in G0/G1 phase was decreased, percentage of cells in S phase was increased, expressions of Cyclin B1, CDK2, Ki67 and PCNA proteins were increased, and levels of IL-17, IL-23, IL-6 and TNF-α were increased. Compared with negative control group, expressions of NLRP3 mRNA and protein, proliferation rate and clonal formation rate were decreased in NLRP3-RNAi group, percentage of cells in G0/G1 phase was increased, percentage of cells in S phase was decreased, expressions of Cyclin B1, CDK2, Ki67 and PCNA proteins were decreased, and levels of IL-17, IL-23, IL-6 and TNF-α were decreased. Silencing NLRP3 gene can inhibit the proliferation of psoriasis-like HaCaT cells, arrest cell cycle, inhibit the expressions of cell proliferation-related proteins and reduce levels of pro-inflammatory factors.


Subject(s)
Cell Proliferation , Cytokines , NLR Family, Pyrin Domain-Containing 3 Protein , Psoriasis , Humans , Cell Cycle/genetics , Cell Proliferation/genetics , Cyclin B1/metabolism , Cyclin B1/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 2/genetics , Cytokines/metabolism , Gene Silencing , HaCaT Cells , Interleukin-17/metabolism , Interleukin-17/genetics , Interleukin-23/metabolism , Interleukin-23/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Ki-67 Antigen/metabolism , Ki-67 Antigen/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Psoriasis/genetics , Psoriasis/metabolism , Psoriasis/pathology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics
18.
Cytokine ; 179: 156619, 2024 07.
Article in English | MEDLINE | ID: mdl-38669908

ABSTRACT

Interleukin (IL)-23 is implicated in the pathogenesis of several inflammatory diseases and is usually linked with helper T cell (Th17) biology. However, there is some data linking IL-23 with innate immune biology in such diseases. We therefore examined the effects of IL-23p19 genetic deletion and/or neutralization on in vitro macrophage activation and in an innate immune-driven peritonitis model. We report that endogenous IL-23 was required for maximal macrophage activation by zymosan as determined by pro-inflammatory cytokine production, including a dramatic upregulation of granulocyte-colony stimulating factor (G-CSF). Furthermore, both IL-23p19 genetic deletion and neutralization in zymosan-induced peritonitis (ZIP) led to a specific reduction in the neutrophil numbers, as well as a reduction in the G-CSF levels in exudate fluids. We conclude that endogenous IL-23 can contribute significantly to macrophage activation during an inflammatory response, mostly likely via an autocrine/paracrine mechanism; of note, endogenous IL-23 can directly up-regulate macrophage G-CSF expression, which in turn is likely to contribute to the regulation of IL-23-dependent neutrophil number and function during an inflammatory response, with potential significance for IL-23 targeting particularly in neutrophil-associated inflammatory diseases.


Subject(s)
Inflammation , Interleukin-23 , Myeloid Cells , Neutrophils , Zymosan , Animals , Inflammation/metabolism , Inflammation/immunology , Interleukin-23/metabolism , Mice , Neutrophils/metabolism , Neutrophils/immunology , Myeloid Cells/metabolism , Peritonitis/metabolism , Peritonitis/immunology , Mice, Inbred C57BL , Granulocyte Colony-Stimulating Factor/metabolism , Macrophage Activation , Macrophages/metabolism , Macrophages/immunology , Interleukin-23 Subunit p19/metabolism , Interleukin-23 Subunit p19/genetics , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...