Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81.413
Filter
1.
Iran J Allergy Asthma Immunol ; 23(2): 197-220, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822514

ABSTRACT

Systemic sclerosis (SSc) is an autoimmune systemic disease that is characterized by immune dysregulation, inflammation, vasculopathy, and fibrosis. Tissue fibrosis plays an important role in SSc and can affect several organs such as the dermis, lungs, and heart. Dysregulation of interferon (IFN) signaling contributes to the SSc pathogenesis and interferon regulatory factor 1 (IRF1) has been indicated as the main regulator of type I IFN. This study aimed to clarify the effect of IFN-gamma (-γ) and dexamethasone (DEX) on the IRF1, extracellular signal-regulated kinase 1/2 (ERK1/2), and the expression of alpha-smooth muscle actin (α-SMA) in myofibroblasts and genes involved in the inflammation and fibrosis processes in early diffuse cutaneous systemic sclerosis (dcSSc). A total of 10 early dcSSc patients (diffuse cutaneous form) and 10 unaffected control dermis biopsies were obtained to determine IFNγ and DEX effects on inflammation and fibrosis. Fibroblasts were treated with IFNγ and DEX at optimum time and dose. The expression level of genes and proteins involved in the fibrosis and inflammation processes have been quantified by quantitative real-time PCR (RT-qPCR) and western blot, respectively. IFNγ could up-regulate some of the inflammation-related genes (Interleukin-6; IL6) and down-regulate some of the fibrosis-related genes (COL1A1) in cultured fibroblasts of patients with early dcSSc compared to the untreated group. Besides, it has been revealed that IFNγ can induce fibroblast differentiation to the myofibroblast that expresses α-SMA. Concerning the inhibitory effect of IFNγ on some fibrotic genes and its positive effect on the inflammatory genes and myofibroblast differentiation, it seems that IFNγ may play a dual role in SSc.


Subject(s)
Actins , Fibroblasts , Interferon-gamma , Interleukin-6 , Scleroderma, Systemic , Humans , Actins/metabolism , Actins/genetics , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Interleukin-6/metabolism , Interleukin-6/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/drug effects , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/immunology , Cells, Cultured , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Dexamethasone/pharmacology , Fibrosis , Male , Female , Adult , Myofibroblasts/metabolism , Myofibroblasts/pathology , Middle Aged , Gene Expression Regulation/drug effects
2.
Mol Biol Rep ; 51(1): 712, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824221

ABSTRACT

INTRODUCTION: Coronary artery disease (CAD) in young adults can have devastating consequences. The cardiac developmental gene MEIS1 plays important roles in vascular networks and heart development. This gene effects on the regeneration capacity of the heart. Considering role of MEIS1 in cardiac tissue development and the progression of myocardial infarction this study investigated the expression levels of the MEIS1, HIRA, and Myocardin genes in premature CAD patients compared to healthy subjects and evaluated the relationships between these genes and possible inflammatory factors. METHODS AND RESULTS: The study conducted a case-control design involving 35 CAD patients and 35 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were collected, and gene expression analysis was performed using real-time PCR. Compared with control group, the number of PBMCs in the CAD group exhibited greater MEIS1 and HIRA gene expression, with fold changes of 2.45 and 3.6. The expression of MEIS1 exhibited a negative correlation with IL-10 (r= -0.312) expression and positive correlation with Interleukin (IL)-6 (r = 0.415) and tumor necrosis factor (TNF)-α (r = 0.534) gene expression. Moreover, there was an inverse correlation between the gene expression of HIRA and that of IL-10 (r= -0.326), and a positive correlation was revealed between the expression of this gene and that of the IL-6 (r = 0.453) and TNF-α (r = 0.572) genes. CONCLUSION: This research demonstrated a disparity in expression levels of MEIS1, HIRA, and Myocardin, between CAD and healthy subjects. The results showed that, MEIS1 and HIRA play significant roles in regulating the synthesis of proinflammatory cytokines, namely, TNF-α and IL-6.


Subject(s)
Coronary Artery Disease , Myeloid Ecotropic Viral Integration Site 1 Protein , Nuclear Proteins , Trans-Activators , Humans , Coronary Artery Disease/genetics , Female , Male , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Case-Control Studies , Adult , Middle Aged , Interleukin-6/genetics , Interleukin-6/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Leukocytes, Mononuclear/metabolism , Interleukin-10/genetics , Gene Expression Regulation/genetics , Gene Expression/genetics
3.
J Transl Med ; 22(1): 533, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831470

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a common disease in the urinary system, with a high incidence and poor prognosis in advanced stages. Although γ-interferon-inducible protein 16 (IFI16) has been reported to play a role in various tumors, its involvement in ccRCC remains poorly documented, and the molecular mechanisms are not yet clear. METHODS: We conducted bioinformatics analysis to study the expression of IFI16 in ccRCC using public databases. Additionally, we analyzed and validated clinical specimens that we collected. Subsequently, we explored the impact of IFI16 on ccRCC cell proliferation, migration, and invasion through in vitro and in vivo experiments. Furthermore, we predicted downstream molecules and pathways using transcriptome analysis and confirmed them through follow-up experimental validation. RESULTS: IFI16 was significantly upregulated in ccRCC tissue and correlated with poor patient prognosis. In vitro, IFI16 promoted ccRCC cell proliferation, migration, and invasion, while in vivo, it facilitated subcutaneous tumor growth and the formation of lung metastatic foci. Knocking down IFI16 suppressed its oncogenic function. At the molecular level, IFI16 promoted the transcription and translation of IL6, subsequently activating the PI3K/AKT signaling pathway and inducing epithelial-mesenchymal transition (EMT). CONCLUSION: IFI16 induced EMT through the IL6/PI3K/AKT axis, promoting the progression of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Interleukin-6 , Kidney Neoplasms , Nuclear Proteins , Phosphatidylinositol 3-Kinases , Phosphoproteins , Proto-Oncogene Proteins c-akt , Signal Transduction , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Cell Line, Tumor , Interleukin-6/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Animals , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Neoplasm Invasiveness , Male , Female , Prognosis
4.
Front Endocrinol (Lausanne) ; 15: 1408312, 2024.
Article in English | MEDLINE | ID: mdl-38828409

ABSTRACT

Pancreatic cancer is difficult to diagnose early and progresses rapidly. Researchers have found that a cytokine called Interleukin-6 (IL-6) is involved in the entire course of pancreatic cancer, promoting its occurrence and development. From the earliest stages of pancreatic intraepithelial neoplasia to the invasion and metastasis of pancreatic cancer cells and the appearance of tumor cachexia, IL-6 drives oncogenic signal transduction pathways and immune escape that accelerate disease progression. IL-6 is considered a biomarker for pancreatic cancer diagnosis and prognosis, as well as a potential target for treatment. IL-6 antibodies are currently being explored as a hot topic in oncology. This article aims to systematically explain how IL-6 induces the deterioration of normal pancreatic cells, with the goal of finding a breakthrough in pancreatic cancer diagnosis and treatment.


Subject(s)
Disease Progression , Interleukin-6 , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Interleukin-6/metabolism , Animals , Signal Transduction , Biomarkers, Tumor/metabolism , Prognosis
5.
Nat Commun ; 15(1): 4711, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830841

ABSTRACT

The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.


Subject(s)
Fetus , Lipopolysaccharides , Liver , Lung , Placenta , Female , Pregnancy , Placenta/metabolism , Placenta/immunology , Animals , Fetus/immunology , Fetus/metabolism , Lung/immunology , Lung/metabolism , Liver/metabolism , Liver/immunology , Docosahexaenoic Acids/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Mice , Inflammation/immunology , Inflammation/metabolism , Mice, Inbred C57BL , Adaptation, Physiological/immunology , Fetal Development/immunology , Maternal-Fetal Exchange/immunology , Interleukin-6/metabolism , Interleukin-6/immunology
6.
Nat Commun ; 15(1): 4309, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830846

ABSTRACT

The efficacy of costimulation blockade with CTLA4-Ig (belatacept) in transplantation is limited due to T cell-mediated rejection, which also persists after induction with anti-thymocyte globulin (ATG). Here, we investigate why ATG fails to prevent costimulation blockade-resistant rejection and how this barrier can be overcome. ATG did not prevent graft rejection in a murine heart transplant model of CTLA4-Ig therapy and induced a pro-inflammatory cytokine environment. While ATG improved the balance between regulatory T cells (Treg) and effector T cells in the spleen, it had no such effect within cardiac allografts. Neutralizing IL-6 alleviated graft inflammation, increased intragraft Treg frequencies, and enhanced intragraft IL-10 and Th2-cytokine expression. IL-6 blockade together with ATG allowed CTLA4-Ig therapy to achieve long-term, rejection-free heart allograft survival. This beneficial effect was abolished upon Treg depletion. Combining ATG with IL-6 blockade prevents costimulation blockade-resistant rejection, thereby eliminating a major impediment to clinical use of costimulation blockers in transplantation.


Subject(s)
Abatacept , Antilymphocyte Serum , Graft Rejection , Graft Survival , Heart Transplantation , Interleukin-6 , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , Animals , Graft Rejection/immunology , Graft Rejection/prevention & control , Interleukin-6/metabolism , Heart Transplantation/adverse effects , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Abatacept/pharmacology , Abatacept/therapeutic use , Antilymphocyte Serum/pharmacology , Antilymphocyte Serum/therapeutic use , Graft Survival/drug effects , Graft Survival/immunology , Mice, Inbred BALB C , Allografts/immunology , Male , Immunosuppressive Agents/pharmacology , Lymphocyte Depletion , Interleukin-10/metabolism , Interleukin-10/immunology
7.
Nat Commun ; 15(1): 4682, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824130

ABSTRACT

Interleukin-6 (IL-6) has been long considered a key player in cancer cachexia. It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia. However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, is a critical mediator of IL-6 function in cancer cachexia in male mice. We find that circulating IL-6 can rapidly enter the AP and activate neurons in the AP and its associated network. Peripheral tumor, known to increase circulating IL-6, leads to elevated IL-6 in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons and AP network hyperactivity. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an anti-IL-6 antibody attenuates cachexia and the hyperactivity in the AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra, the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing Gfral-expressing AP neurons also attenuates cancer cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer cachexia.


Subject(s)
Cachexia , Interleukin-6 , Neurons , Receptors, Interleukin-6 , Animals , Cachexia/metabolism , Cachexia/etiology , Interleukin-6/metabolism , Male , Neurons/metabolism , Mice , Receptors, Interleukin-6/metabolism , Mice, Inbred C57BL , Neoplasms/metabolism , Neoplasms/complications , Cell Line, Tumor , Humans
8.
Clin Interv Aging ; 19: 981-991, 2024.
Article in English | MEDLINE | ID: mdl-38827237

ABSTRACT

Background: Dexmedetomidine (Dex) may have anti-inflammatory properties and potentially reduce the incidence of postoperative organ injury. Objective: To investigate whether Dex protects pulmonary and renal function via its anti-inflammatory effects in elderly patients undergoing prolonged major hepatobiliary and pancreatic surgery. Design and Setting: Between October 2019 and December 2020, this randomized controlled trial was carried out at a tertiary hospital in Chongqing, China. Patients: 86 patients aged 60-75 who underwent long-duration (> 4 hrs) hepatobiliary and pancreatic surgery without significant comorbidities were enrolled and randomly assigned into two groups at a 1:1 ratio. Interventions: Patients were given either Dex or an equivalent volume of 0.9% saline (Placebo) with a loading dose of 1 µg kg-1 for 10 min, followed by 0.5 µg kg-1 hr-1 for maintenance until the end of surgery. Main Outcome Measures: The changes in serum concentrations of interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) were primary outcomes. Results: At one hour postoperatively, serum IL-6 displayed a nine-fold increase (P<0.05) in the Placebo group. Administration of Dex decreased IL-6 to 278.09 ± 45.43 pg/mL (95% CI: 187.75 to 368.43) compared to the Placebo group (P=0.019; 432.16 ± 45.43 pg/mL, 95% CI: 341.82 to 522.50). However, no significant differences in TNF-α were observed between the two groups. The incidence of postoperative acute kidney injury was twice as high in the Placebo group (9.30%) compared to the Dex group (4.65%), and the incidence of postoperative acute lung injury was 23.26% in the Dex group, lower than that in the Placebo group (30.23%), although there was no statistical significance between the two groups. Conclusion: Dex administration in elderly patients undergoing major hepatobiliary and pancreatic surgery reduces inflammation and potentially protects kidneys and lungs. Registration: Chinese Clinical Trials Registry, identifier: ChiCTR1900024162, on 28 June 2019.


Subject(s)
Dexmedetomidine , Interleukin-6 , Postoperative Complications , Tumor Necrosis Factor-alpha , Humans , Dexmedetomidine/administration & dosage , Dexmedetomidine/pharmacology , Male , Female , Aged , Postoperative Complications/prevention & control , Middle Aged , Interleukin-6/blood , Tumor Necrosis Factor-alpha/blood , Inflammation/prevention & control , China , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Double-Blind Method , Biliary Tract Surgical Procedures/adverse effects , Acute Kidney Injury/prevention & control , Acute Kidney Injury/etiology
9.
Scand Cardiovasc J ; 58(1): 2347293, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832868

ABSTRACT

OBJECTIVES: Minimally invasive cardiac surgery techniques are increasingly used but have longer cardiopulmonary bypass time, which may increase inflammatory response and negatively affect coagulation. Our aim was to compare biomarkers of inflammation and coagulation as well as transfusion rates after minimally invasive mitral valve repair and mitral valve surgery using conventional sternotomy. DESIGN: A prospective non-randomized study was performed enrolling 71 patients undergoing mitral valve surgery (35 right mini-thoracotomy and 36 conventional sternotomy procedures). Blood samples were collected pre- and postoperatively to assess inflammatory response. Thromboelastometry (ROTEM) was performed to assess coagulation, and transfusion rates were monitored. RESULTS: The minimally invasive group had longer cardiopulmonary bypass times compared to the sternotomy group: 127 min ([115-146] vs 79 min [65-112], p < 0.001) and were cooled to a lower temperature during cardiopulmonary bypass, 34 °C vs 36 °C (p = 0.04). IL-6 was lower in the minimally invasive group compared to the conventional sternotomy group when measured at the end of the surgical procedure, (38 [23-69] vs 61[41-139], p = 0.008), but no differences were found at postoperative day 1 or postoperative day 3. The transfusion rate was lower in the minimally invasive group (14%) compared to full sternotomy (35%, p = 0.04) and the chest tube output was reduced, (395 ml [190-705] vs 570 ml [400-1040], p = 0.04). CONCLUSIONS: Our data showed that despite the longer use of extra corporal circulation during surgery, minimally invasive mitral valve repair is associated with reduced inflammatory response, lower rates of transfusion, and reduced chest tube output.


Subject(s)
Biomarkers , Blood Coagulation , Blood Transfusion , Cardiopulmonary Bypass , Inflammation Mediators , Mitral Valve , Sternotomy , Thoracotomy , Humans , Prospective Studies , Female , Male , Biomarkers/blood , Middle Aged , Mitral Valve/surgery , Mitral Valve/physiopathology , Inflammation Mediators/blood , Cardiopulmonary Bypass/adverse effects , Aged , Treatment Outcome , Time Factors , Sternotomy/adverse effects , Thoracotomy/adverse effects , Thrombelastography , Interleukin-6/blood , Inflammation/blood , Inflammation/etiology , Inflammation/diagnosis , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Diseases/surgery , Heart Valve Diseases/blood , Risk Factors
10.
Arch Microbiol ; 206(7): 287, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833010

ABSTRACT

Hepcidin is a crucial regulator of iron homeostasis with protective effects on liver fibrosis. Additionally, gut microbiota can also affect liver fibrosis and iron metabolism. Although the hepatoprotective potential of Akkermansia muciniphila and Faecalibacterium duncaniae, formerly known as F. prausnitzii, has been reported, however, their effects on hepcidin expression remain unknown. We investigated the direct and macrophage stimulation-mediated effects of active, heat-inactivated, and cell-free supernatant (CFS) forms of A. muciniphila and F. duncaniae on hepcidin expression in HepG2 cells by RT-qPCR analysis. Following stimulation of phorbol-12-myristate-13-acetate (PMA) -differentiated THP-1 cells with A. muciniphila and F. duncaniae, IL-6 concentration was assessed via ELISA. Additionally, the resulting supernatant was treated with HepG2 cells to evaluate the effect of macrophage stimulation on hepcidin gene expression. The expression of genes mediating iron absorption and export was also examined in HepG2 and Caco-2 cells via RT-qPCR. All forms of F. duncaniae increased hepcidin expression while active and heat-inactivated/CFS forms of A. muciniphila upregulated and downregulated its expression, respectively. Active, heat-inactivated, and CFS forms of A. muciniphila and F. duncaniae upregulated hepcidin expression, consistent with the elevation of IL-6 released from THP-1-stimulated cells as a macrophage stimulation effect in HepG2 cells. A. muciniphila and F. duncaniae in active, inactive, and CFS forms altered the expression of hepatocyte and intestinal iron-mediated absorption /exporter genes, namely dcytb and dmt1, and fpn in HepG2 and Caco-2 cells, respectively. In conclusion, A. muciniphila and F. duncaniae affect not only directly but also through macrophage stimulation the expression of hepcidin gene in HepG2 cells. These findings underscore the potential of A. muciniphila and F. duncaniae as a potential therapeutic target for liver fibrosis by modulating hepcidin and intestinal and hepatocyte iron metabolism mediated gene expression.


Subject(s)
Akkermansia , Hepcidins , Macrophages , Humans , Hepcidins/genetics , Hepcidins/metabolism , Hep G2 Cells , Caco-2 Cells , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , THP-1 Cells , Iron/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Macrophage Activation , Gastrointestinal Microbiome
11.
Wiad Lek ; 77(3): 393-401, 2024.
Article in English | MEDLINE | ID: mdl-38691778

ABSTRACT

OBJECTIVE: Aim: To investigate and analyze homeostatic disorders in patients with a combination of Chronic Pancreatitis(CP) and Arterial Hypertension (AH) and to develop correcting ways of the detected changes. PATIENTS AND METHODS: Materials and Methods: General clinical, laboratory-instrumental examination of 121 patients, who were undergoing inpatient treatment with a diagnosis of Chronic Pancreatitis in combination with Arterial Hypertension of the II stage during 2021-2022. RESULTS: Results: In the majority of cases of patients signs the increasing in IL-1,6 and Cortisol levels were found. A decrease in Ca to the lower limit of the norm was observed (2.18 ± 0.26 mmol/l to the data of control group patients (2.32 ± 0.12 mmol/l, p= 0.01 ), the levels of trace elements Zn and Se were determined within the reference values. The Atherogenic Index was increased 1.8 times and was significantly different from the control group date. During the FE-1 study, a decrease in the level of this indicator was revealed by 151.71±13.91 mg/g of feces, both to the values of reference values and a significant difference to the data of the control group (241.28±29.17 mg/g of feces, p<0 .05). CONCLUSION: Conclusions: Based on the multivariate linear regression analysis of the obtained data, formulas have been developed that can be used to predict the dynamics of the dependent variable (FE-1, IL-1, Selenium level, Glutathione Peroxidase, blood pressure) according to changes in the studied influencing factors.


Subject(s)
Hypertension , Pancreatitis, Chronic , Humans , Pancreatitis, Chronic/complications , Male , Female , Hypertension/complications , Middle Aged , Multivariate Analysis , Adult , Models, Theoretical , Hydrocortisone/metabolism , Interleukin-1/blood , Interleukin-6/blood , Interleukin-6/metabolism
12.
Yakugaku Zasshi ; 144(5): 489-496, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692922

ABSTRACT

The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular adaptors that regulate cellular signaling through members of the TNFR and Toll-like receptor superfamily. Mammals have seven TRAF molecules numbered sequentially from TRAF1 to TRAF7. Although TRAF5 was identified as a potential regulator of TNFR superfamily members, the in vivo function of TRAF5 has not yet been fully elucidated. We identified an unconventional role of TRAF5 in interleukin-6 (IL-6) receptor signaling involving CD4+ T cells. Moreover, TRAF5 binds to the signal-transducing glycoprotein 130 (gp130) receptor for IL-6 and inhibits the activity of the janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In addition, Traf5-deficient CD4+ T cells exhibit significantly enhanced IL-6-driven differentiation of T helper 17 (Th17) cells, which exacerbates neuroinflammation in experimental autoimmune encephalomyelitis. Furthermore, TRAF5 demonstrates a similar activity to gp130 for IL-27, another cytokine of the IL-6 family. Additionally, Traf5-deficient CD4+ T cells display significantly increased IL-27-mediated differentiation of Th1 cells, which increases footpad swelling in delayed-type hypersensitivity response. Thus, TRAF5 functions as a negative regulator of gp130 in CD4+ T cells. This review aimed to explain how TRAF5 controls the differentiation of CD4+ T cells and discuss how the expression of TRAF5 in T cells and other cell types can influence the development and progression of autoimmune and inflammatory diseases.


Subject(s)
CD4-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Signal Transduction , TNF Receptor-Associated Factor 5 , Humans , Animals , TNF Receptor-Associated Factor 5/genetics , TNF Receptor-Associated Factor 5/metabolism , TNF Receptor-Associated Factor 5/physiology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Cytokine Receptor gp130/physiology , Cytokine Receptor gp130/metabolism , Th17 Cells/immunology , Interleukin-6/metabolism , Interleukin-6/physiology , Cell Differentiation , Receptors, Interleukin-6/physiology , Receptors, Interleukin-6/metabolism , Janus Kinases/metabolism , Janus Kinases/physiology , STAT Transcription Factors/physiology , STAT Transcription Factors/metabolism , Mice
13.
Front Immunol ; 15: 1377014, 2024.
Article in English | MEDLINE | ID: mdl-38694512

ABSTRACT

Background: Acute immune responses to coronavirus disease 2019 (COVID-19) are influenced by variants, vaccination, and clinical severity. Thus, the outcome of these responses may differ between vaccinated and unvaccinated patients and those with and without COVID-19-related pneumonia. In this study, these differences during infection with the Omicron variant were investigated. Methods: A total of 67 patients (including 47 vaccinated and 20 unvaccinated patients) who were hospitalized within 5 days after COVID-19 symptom onset were enrolled in this prospective observational study. Serum neutralizing activity was evaluated using a pseudotyped virus assay and serum cytokines and chemokines were measured. Circulating follicular helper T cell (cTfh) frequencies were evaluated using flow cytometry. Results: Twenty-five patients developed COVID-19 pneumonia on hospitalization. Although the neutralizing activities against wild-type and Delta variants were higher in the vaccinated group, those against the Omicron variant as well as the frequency of developing pneumonia were comparable between the vaccinated and unvaccinated groups. IL-6 and CXCL10 levels were higher in patients with pneumonia than in those without it, regardless of their vaccination status. Neutralizing activity against the Omicron variant were higher in vaccinated patients with pneumonia than in those without it. Moreover, a distinctive correlation between neutralizing activity against Omicron, IL-6 levels, and cTfh proportions was observed only in vaccinated patients. Conclusions: The present study demonstrates the existence of a characteristic relationship between neutralizing activity against Omicron, IL-6 levels, and cTfh proportions in Omicron breakthrough infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Interleukin-6 , SARS-CoV-2 , T Follicular Helper Cells , Humans , COVID-19/immunology , COVID-19/blood , Male , SARS-CoV-2/immunology , Female , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Interleukin-6/blood , Interleukin-6/immunology , Middle Aged , Aged , T Follicular Helper Cells/immunology , Prospective Studies , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Adult , Breakthrough Infections
14.
PLoS One ; 19(5): e0302470, 2024.
Article in English | MEDLINE | ID: mdl-38701101

ABSTRACT

Network oscillation in the anterior cingulate cortex (ACC) plays a key role in attention, novelty detection and anxiety; however, its involvement in cognitive impairment caused by acute systemic inflammation is unclear. To investigate the acute effects of systemic inflammation on ACC network oscillation and cognitive function, we analyzed cytokine level and cognitive performance as well as network oscillation in the mouse ACC Cg1 region, within 4 hours after lipopolysaccharide (LPS, 30 µg/kg) administration. While the interleukin-6 concentration in the serum was evidently higher in LPS-treated mice, the increases in the cerebral cortex interleukin-6 did not reach statistical significance. The power of kainic acid (KA)-induced network oscillation in the ACC Cg1 region slice preparation increased in LPS-treated mice. Notably, histamine, which was added in vitro, increased the oscillation power in the brain slices from LPS-untreated mice; for the LPS-treated mice, however, the effect of histamine was suppressive. In the open field test, frequency of entries into the center area showed a negative correlation with the power of network oscillation (0.3 µM of KA, theta band (3-8 Hz); 3.0 µM of KA, high-gamma band (50-80 Hz)). These results suggest that LPS-induced systemic inflammation results in increased network oscillation and a drastic change in histamine sensitivity in the ACC, accompanied by the robust production of systemic pro-inflammatory cytokines in the periphery, and that these alterations in the network oscillation and animal behavior as an acute phase reaction relate with each other. We suggest that our experimental setting has a distinct advantage in obtaining mechanistic insights into inflammatory cognitive impairment through comprehensive analyses of hormonal molecules and neuronal functions.


Subject(s)
Cognition , Gyrus Cinguli , Histamine , Inflammation , Lipopolysaccharides , Animals , Gyrus Cinguli/metabolism , Gyrus Cinguli/physiopathology , Inflammation/metabolism , Mice , Male , Histamine/blood , Histamine/metabolism , Kainic Acid , Interleukin-6/blood , Interleukin-6/metabolism , Behavior, Animal , Nerve Net/physiopathology , Mice, Inbred C57BL
15.
Biomed Environ Sci ; 37(4): 354-366, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727158

ABSTRACT

Objective: This study investigated the impact of occupational mercury (Hg) exposure on human gene transcription and expression, and its potential biological mechanisms. Methods: Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN low-expression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA. Results: Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model (25 and 10 µmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression. Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels. Conclusion: This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.


Subject(s)
Down-Regulation , Inflammation , Mercury , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Inflammation/chemically induced , Inflammation/metabolism , Mercury/toxicity , Signal Transduction/drug effects , Occupational Exposure/adverse effects , HEK293 Cells , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/blood
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 706-711, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708504

ABSTRACT

OBJECTIVE: To explore the effects of Rhodiola rosea injection on pulmonary shunt and serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels during single lung ventilation in patients undergoing radical resection of esophageal cancer. METHODS: Forty-six patients undergoing radical operation for esophageal cancer were randomized equally into control group and Rhodiola rosea injection group. In the Rhodiola group, 10 mL of Rhodiola rosea injection was added into 250 mL of normal saline or 5% glucose solution for slow intravenous infusion, and normal saline of the same volume was used in the control group after the patients entered the operation room. At T0, T1 and T3, PaO2 of the patient was recorded and 2 mL of deep venous blood was collected for determination of serum TNF-α and IL-6 levels. The incidence of postoperative atelectasis of the patients was recorded. RESULTS: Compared with those in the control group, the patients receiving Rhodiola rosea injection had significantly higher PaO2 and Qs/Qt at T1 and T2 (P<0.05) and lower serum IL-6 and TNF-α levels at T3 (P<0.05). No significant difference in the incidence of postoperative atelectasis was observed between the two groups (P>0.05). CONCLUSION: Rhodiola rosea injection before anesthesia induction can reduce intrapulmonary shunt during single lung ventilation, improve oxygenation, reduce serum IL-6 and TNF-α levels, and alleviate intraoperative lung injury in patients undergoing radical resection of esophageal cancer.


Subject(s)
Esophageal Neoplasms , Interleukin-6 , One-Lung Ventilation , Rhodiola , Tumor Necrosis Factor-alpha , Humans , Esophageal Neoplasms/surgery , Tumor Necrosis Factor-alpha/blood , Interleukin-6/blood , One-Lung Ventilation/methods , Female , Male , Middle Aged
17.
Sci Rep ; 14(1): 10388, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710760

ABSTRACT

Research into the molecular basis of disease trajectory and Long-COVID is important to get insights toward underlying pathophysiological processes. The objective of this study was to investigate inflammation-mediated changes of metabolism in patients with acute COVID-19 infection and throughout a one-year follow up period. The study enrolled 34 patients with moderate to severe COVID-19 infection admitted to the University Clinic of Innsbruck in early 2020. The dynamics of multiple laboratory parameters (including inflammatory markers [C-reactive protein (CRP), interleukin-6 (IL-6), neopterin] as well as amino acids [tryptophan (Trp), phenylalanine (Phe) and tyrosine (Tyr)], and parameters of iron and vitamin B metabolism) was related to disease severity and patients' physical performance. Also, symptom load during acute illness and at approximately 60 days (FU1), and one year after symptom onset (FU2) were monitored and related with changes of the investigated laboratory parameters: During acute infection many investigated laboratory parameters were elevated (e.g., inflammatory markers, ferritin, kynurenine, phenylalanine) and enhanced tryptophan catabolism and phenylalanine accumulation were found. At FU2 nearly all laboratory markers had declined back to reference ranges. However, kynurenine/tryptophan ratio (Kyn/Trp) and the phenylalanine/tyrosine ratio (Phe/Tyr) were still exceeding the 95th percentile of healthy controls in about two thirds of our cohort at FU2. Lower tryptophan concentrations were associated with B vitamin availability (during acute infection and at FU1), patients with lower vitamin B12 levels at FU1 had a prolonged and more severe impairment of their physical functioning ability. Patients who had fully recovered (ECOG 0) presented with higher concentrations of iron parameters (ferritin, hepcidin, transferrin) and amino acids (phenylalanine, tyrosine) at FU2 compared to patients with restricted ability to work. Persistent symptoms at FU2 were tendentially associated with IFN-γ related parameters. Women were affected by long-term symptoms more frequently. Conclusively, inflammation-mediated biochemical changes appear to be related to symptoms of patients with acute and Long Covid.


Subject(s)
Biomarkers , COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Female , Male , Middle Aged , Biomarkers/blood , SARS-CoV-2/isolation & purification , Aged , Adult , Physical Functional Performance , Interleukin-6/blood , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Inflammation , Tryptophan/blood , Tryptophan/metabolism , Neopterin/blood , Phenylalanine/blood , Phenylalanine/metabolism , Amino Acids/blood
18.
BMC Anesthesiol ; 24(1): 172, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720250

ABSTRACT

BACKGROUND: Low immune function after laparoscopic total gastrectomy puts patients at risk of infection-related complications. Low-dose naloxone (LDN) can improve the prognosis of patients suffering from chronic inflammatory diseases or autoimmune diseases. The use of LDN during perioperative procedures may reduce perioperative complications. The purpose of this study was to examine the effects of LDN on endogenous immune function in gastric cancer patients and its specific mechanisms through a randomized controlled trial. METHODS: Fifty-five patients who underwent laparoscopic-assisted total gastrectomy were randomly assigned to either a naloxone group (n = 23) or a nonnaloxone group (n = 22). Patients in the naloxone group received 0.05 µg/kg-1.h- 1naloxone from 3 days before surgery to 5 days after surgery via a patient-controlled intravenous injection (PCIA) pump, and patients in the nonnaloxone group did not receive special treatment. The primary outcomes were the rates of postoperative complications and immune function assessed by NK cell, CD3+ T cell, CD4+ T cell, CD8+ T cell, WBC count, neutrophil percentage, and IL-6 and calcitonin levels. The secondary outcomes were the expression levels of TLR4 (Toll-like receptor), IL-6 and TNF-α in gastric cancer tissue. RESULTS: Compared with the nonnaloxone group, the naloxone group exhibited a lower incidence of infection (in the incision, abdomen, and lungs) (P < 0.05). The numbers of NK cells and CD8+ T cells in the naloxone group were significantly greater than those in the nonnaloxone group at 24 h after surgery (P < 0.05) and at 96 h after surgery (P < 0.05). Compared with those in the nonnaloxone group, the CD3 + T-cell (P < 0.05) and CD4 + T-cell (P < 0.01) counts were significantly lower in the naloxone group 24 h after surgery. At 24 h and 96 h after surgery, the WBC count (P < 0.05) and neutrophil percentage (P < 0.05) were significantly greater in the nonnaloxone group. The levels of IL-6 (P < 0.05) and calcitonin in the nonnaloxone group were significantly greater at 24 h after surgery. At 24 h following surgery, the nonnaloxone group had significantly greater levels of IL-6 (P < 0.05) and calcitonin than did the naloxone group. Compared with those in the naloxone group, the expression levels of TLR4 (P < 0.05) in gastric cancer tissue in the naloxone group were greater; however, the expression levels of IL-6 (P < 0.01) and TNF-α (P < 0.01) in the naloxone group were greater than those in the nonnaloxone group. CONCLUSION: Laparoscopic total gastrectomy patients can benefit from 0.05 ug/kg- 1. h- 1 naloxone by reducing their risk of infection. It is possible that LDN alters the number of cells in lymphocyte subpopulations, such as NK cells, CD3 + T cells, and CD4 + T cells, and the CD4+/CD8 + T-cell ratio or alters TLR4 receptor expression in immune cells, thereby altering immune cell activity. TRIAL REGISTRATION: The trial was registered at the Chinese Clinical Trial Registry on 24/11/2023 (ChiCTR2300077948).


Subject(s)
Gastrectomy , Laparoscopy , Naloxone , Postoperative Complications , Stomach Neoplasms , Humans , Naloxone/administration & dosage , Gastrectomy/methods , Male , Female , Laparoscopy/methods , Middle Aged , Stomach Neoplasms/surgery , Postoperative Complications/prevention & control , Aged , Narcotic Antagonists/administration & dosage , Narcotic Antagonists/pharmacology , Perioperative Care/methods , Interleukin-6 , Toll-Like Receptor 4
19.
Cell Biochem Funct ; 42(4): e4027, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715184

ABSTRACT

Bioactive phytocompounds are crucial components in all plants. Since the time of traditional medicine, the utilization of plants has been grounded in the potential of these bioactive compounds to treat or manage specific illnesses. These natural bioactive compounds have sparked growing interest in employing medicinal plants for addressing various conditions, such as inflammatory diseases, diabetes, and cancer. This study focuses on assessing the qualitative phytochemical composition, antioxidant potential, and cytotoxic effects of blueberry (Vaccinium sect. Cyanococcus) extract using three different solvents, namely water, ethanol, and methanol. The extract exhibited notable antioxidant activities, as evidenced by DPPH and H2O2 free radical scavenging assays. The cell viability assay also demonstrated cell growth inhibition in A549 cells. Furthermore, nine specific phytocompounds sourced from existing literature were selected for molecular docking studies against CDK6 and, AMPK key protein kinases which enhance the cancer progression. The molecular docking results also revealed favorable binding scores, with a high score of -9.5 kcal/mol in CDK6 protein and a maximum score of AMPK with targets of -8.8 kcal/mol. The selected phytocompounds' pharmacodynamic properties such as ADMET also supported the study. Furthermore, rutin stated that pre-dominantly present in blueberry plants shows a potent cytotoxicity effect in A549 cells. Functional annotations by bioinformatic analysis for rutin also revealed the strong enrichment in the involvement of PI3K/AKT1/STAT, and p53 signaling pathways. Based on this analysis, the identified rutin and other compounds hold a promising anticancer activity. Overall, the comprehensive evaluation of both in vitro and in silico data suggests that the Vaccinium sect. Cyanococcus extract could serve as a valuable source of pharmaceutical agents and may prove effective in future therapeutic applications.


Subject(s)
Blueberry Plants , Cell Proliferation , ErbB Receptors , Oxidative Stress , Plant Extracts , STAT3 Transcription Factor , Signal Transduction , Tumor Suppressor Protein p53 , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Blueberry Plants/chemistry , Oxidative Stress/drug effects , STAT3 Transcription Factor/metabolism , Tumor Suppressor Protein p53/metabolism , A549 Cells , Signal Transduction/drug effects , Cell Proliferation/drug effects , ErbB Receptors/metabolism , Interleukin-6/metabolism , Molecular Docking Simulation , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Cell Survival/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Drug Screening Assays, Antitumor
20.
PLoS One ; 19(5): e0302847, 2024.
Article in English | MEDLINE | ID: mdl-38709796

ABSTRACT

Heat exposure exceeding the ISO7243:1989 standard limit can contribute to health problems among employees in a variety of workplaces. Ignoring heat standard requirements in hot working conditions such as bakeries results in physiologic and health problems, as well as an elevated risk of later illnesses. In this analytical case-control study, the serum levels of four inflammatory factors (interleukin-1 beta, interleukin-6, tumor necrosis factor-α, and C-reactive protein) were assessed using an enzyme-linked immunosorbent assay. 105 male artisan bakers (in four job classifications in bakeries and staff) were compared based on demographic characteristics and inflammatory factors. The findings of the study showed correlations between serum interleukin-1ß, interleukin-6, and C-reactive protein levels and thermal exposure in the occupational environment and employment type. Moreover, some differences in serum level of interleukin-1ß and job type were observed. Heat overexposure affected the increase of interleukin-1ß and C-reactive protein secretion. As a result of years of working in high-temperature conditions, inflammation can lead to subsequent diseases in workers. To protect their health from this occupational hazard, additional safeguards are needed. Our recommendations could also be applied to overly hot work environments that may cause heat stress in workers.


Subject(s)
C-Reactive Protein , Cytokines , Occupational Exposure , Humans , Male , Iran/epidemiology , Adult , Occupational Exposure/adverse effects , Case-Control Studies , Cytokines/blood , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Interleukin-1beta/blood , Middle Aged , Hot Temperature , Heat Stress Disorders/blood , Heat Stress Disorders/epidemiology , Interleukin-6/blood , Inflammation/blood , Occupational Diseases/blood , Occupational Diseases/epidemiology , Heat-Shock Response
SELECTION OF CITATIONS
SEARCH DETAIL
...