Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.827
Filter
1.
Biomed Res Int ; 2024: 3610879, 2024.
Article in English | MEDLINE | ID: mdl-38707766

ABSTRACT

Background: There is no conclusive evidence on the association between interleukin- (IL-) 6 gene polymorphism and type 2 diabetes mellitus (type 2 DM). Thus, this study is aimed at evaluating the role of rs1800795 and rs1800796 polymorphisms in the pathogenesis of type 2 DM among Ghanaians in the Ho Municipality. Materials and Methods: We recruited into this hospital-based case-control study 174 patients with type 2 DM (75 DM alone and 99 with DM+HTN) and 149 healthy individuals between 2018 and 2020. Demographic, lifestyle, clinical, anthropometric, and haemodynamic variables were obtained. Fasting blood samples were collected for haematological, biochemical, and molecular analyses. Genomic DNA was extracted, amplified using Tetra-primer amplification refractory mutation system-polymerase chain reaction (T-ARMS-PCR) technique, and genotyped for IL-6 gene polymorphism. Logistic regression analyses were performed to assess the association between IL-6 gene polymorphism and type 2 DM. Results: The minor allele frequency (MAF) of the rs1800795 and rs1800796 polymorphisms was higher in DM alone (57.5%, 62.0%) and DM with HTN groups (58.3%, 65.3%) than controls (33.1%, 20.0%). Carriers of the rs1800795GC genotype (aOR = 2.35, 95% CI: 1.13-4.90, p = 0.022) and mutant C allele (aOR = 2.41, 95% CI: 1.16-5.00, p = 0.019) as well as those who carried the rs1800796GC (aOR = 8.67, 95% CI: 4.00-18.90, p < 0.001) and mutant C allele (aOR = 8.84, 95% CI: 4.06-19.26, p = 0.001) had increased odds of type 2 DM. For both polymorphisms, carriers of the GC genotype had comparable levels of insulin, HOMA-IR, and fasting blood glucose (FBG) with those who carried the GG genotype. IL-6 levels were higher among carriers of the rs1800796GC variant compared to carriers of the rs1800796GG variant (p = 0.023). The rs1800796 polymorphism, dietary sugar intake, and exercise status, respectively, explained approximately 3% (p = 0.046), 3.2% (p = 0.038, coefficient = 1.456), and 6.2% (p = 0.004, coefficient = -2.754) of the variability in IL-6 levels, suggesting weak effect sizes. Conclusion: The GC genotype and mutant C allele are risk genetic variants associated with type 2 DM in the Ghanaian population. The rs1800796 GC variant, dietary sugar intake, and exercise status appear to contribute significantly to the variations in circulating IL-6 levels but with weak effect sizes.


Subject(s)
Diabetes Mellitus, Type 2 , Gene Frequency , Genetic Predisposition to Disease , Interleukin-6 , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 2/genetics , Female , Male , Interleukin-6/genetics , Middle Aged , Case-Control Studies , Ghana/epidemiology , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease/genetics , Gene Frequency/genetics , Adult , Aged , Genotype , Alleles
2.
Biomed Environ Sci ; 37(4): 354-366, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727158

ABSTRACT

Objective: This study investigated the impact of occupational mercury (Hg) exposure on human gene transcription and expression, and its potential biological mechanisms. Methods: Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN low-expression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA. Results: Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model (25 and 10 µmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression. Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels. Conclusion: This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.


Subject(s)
Down-Regulation , Inflammation , Mercury , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Inflammation/chemically induced , Inflammation/metabolism , Mercury/toxicity , Signal Transduction/drug effects , Occupational Exposure/adverse effects , HEK293 Cells , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/blood
3.
Sci Rep ; 14(1): 12224, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806529

ABSTRACT

Post-ERCP pancreatitis (PEP) is an acute pancreatitis caused by endoscopic-retrograde-cholangiopancreatography (ERCP). About 10% of patients develop PEP after ERCP. Here we show that gamma-glutamyltransferase 1 (GGT1)-SNP rs5751901 is an eQTL in pancreatic cells associated with PEP and a positive regulator of the IL-6 amplifier. More PEP patients had the GGT1 SNP rs5751901 risk allele (C) than that of non-PEP patients at Hokkaido University Hospital. Additionally, GGT1 expression and IL-6 amplifier activation were increased in PEP pancreas samples with the risk allele. A mechanistic analysis showed that IL-6-mediated STAT3 nuclear translocation and STAT3 phosphorylation were suppressed in GGT1-deficient cells. Furthermore, GGT1 directly associated with gp130, the signal-transducer of IL-6. Importantly, GGT1-deficiency suppressed inflammation development in a STAT3/NF-κB-dependent disease model. Thus, the risk allele of GGT1-SNP rs5751901 is involved in the pathogenesis of PEP via IL-6 amplifier activation. Therefore, the GGT1-STAT3 axis in pancreas may be a prognosis marker and therapeutic target for PEP.


Subject(s)
Cholangiopancreatography, Endoscopic Retrograde , Interleukin-6 , Pancreatitis , Polymorphism, Single Nucleotide , Quantitative Trait Loci , STAT3 Transcription Factor , gamma-Glutamyltransferase , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Pancreatitis/genetics , Pancreatitis/etiology , Humans , Interleukin-6/metabolism , Interleukin-6/genetics , Animals , gamma-Glutamyltransferase/metabolism , gamma-Glutamyltransferase/genetics , Mice , Male , Female , Middle Aged , Alleles , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , Genetic Predisposition to Disease , NF-kappa B/metabolism , Signal Transduction
4.
Clin Exp Pharmacol Physiol ; 51(7): e13874, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797519

ABSTRACT

Glycolysis is vital for the excessive proliferation of keratinocytes in psoriasis, and uridine phosphorylase-1 (UPP1) functions as an enhancer of cancer cell proliferation. However, little is known about whether UPP1 promotes keratinocyte proliferation and accelerates psoriasis development. This study revealed that UPP1 facilitates cell viability and cell-cycle progression in human epidermal keratinocytes (HEKs) by modulating the glycolytic pathway. Bioinformatics analysis of UPP1 gene expression and its correlation with the Reactome revealed that UPP1 mRNA expression, cell-cycle progression, the interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway and glycolysis were positively associated with psoriasis. Cell proliferation, the cell cycle and glycolysis were evaluated after UPP1 was silenced or overexpressed. The results showed that UPP1 overexpression increased cell proliferation, cell-cycle progression and glycolysis, which was contrary to the effects of UPP1 silencing. However, the STAT3 inhibitor diminished UPP1 expression because STAT3 can bind to the UPP1 promoter. In conclusion, UPP1 was significantly activated by the IL-6/STAT3 pathway and could modulate glycolysis to regulate cell proliferation and cell-cycle progression in keratinocytes during the development of psoriasis.


Subject(s)
Cell Cycle , Cell Survival , Glycolysis , Keratinocytes , STAT3 Transcription Factor , Uridine Phosphorylase , Humans , Keratinocytes/metabolism , Uridine Phosphorylase/metabolism , Uridine Phosphorylase/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Cell Proliferation , Psoriasis/pathology , Psoriasis/metabolism , Psoriasis/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Signal Transduction , Epidermis/metabolism , Epidermis/pathology
5.
J Pharmacol Sci ; 155(3): 94-100, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797538

ABSTRACT

Interleukin (IL-19) belongs to the IL-10 family of cytokines and plays diverse roles in inflammation, cell development, viral responses, and lipid metabolism. Acute lung injury (ALI) is a severe respiratory condition associated with various diseases, including severe pneumonia, sepsis, and trauma, lacking established treatments. However, the role of IL-19 in acute inflammation of the lungs is unknown. We reported the impact of IL-19 functional deficiency in mice crossed with an ALI model using HCl. Lungs damages, neutrophil infiltration, and pulmonary edema induced by HCl were significantly worse in IL-19 knockout (KO) mice than in wild-type (WT) mice. mRNA expression levels of C-X-C motif chemokine ligand 1 (CXCL1) and IL-6 in the lungs were significantly higher in IL-19 KO mice than in WT mice. Little apoptosis was detected in lung injury in WT mice, whereas apoptosis was observed in exacerbated area of lung injury in IL-19 KO mice. These results are the first to show that IL-19 is involved in acute inflammation of the lungs, suggesting a novel molecular mechanism in acute respiratory failures. If it can be shown that neutrophils have IL-19 receptors and that IL-19 acts directly on them, it would be a novel drug target.


Subject(s)
Acute Lung Injury , Hydrochloric Acid , Interleukins , Mice, Knockout , Animals , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Interleukins/genetics , Interleukins/metabolism , Mice, Inbred C57BL , Interleukin-6/metabolism , Interleukin-6/genetics , Disease Models, Animal , Neutrophil Infiltration , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Male , Lung/pathology , Lung/metabolism , Apoptosis/genetics , Apoptosis/drug effects , Mice , Neutrophils , Pulmonary Edema/etiology , Gene Expression
6.
BMC Med Genomics ; 17(1): 139, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783290

ABSTRACT

The symptoms of SARS-CoV-2 infection vary widely, ranging from asymptomatic cases to severe forms marked by acute respiratory distress syndrome, multi-organ damage, and fatalities. Studies indicate a correlation between specific genes and susceptibility to SARS-CoV-2 infection and disease severity, particularly involving variants in genes linked to inflammation and immune responses. The objective of this study is to investigate the association between rs1800795 (- 174 G > C) and rs1800797 (- 597 A > G) variants in the interleukin-6 (IL-6) promoter region and susceptibility to SARS-CoV-2 infection. Additionally, we aim to explore their correlation with COVID-19 severity in a Moroccan population. In this case-control study, we enrolled 270 unvaccinated COVID-19 patients, consisting of 132 with severe COVID-19 and 138 with asymptomatic-moderate COVID-19. Additionally, we included 339 SARS-CoV-2-negative group. Genotyping of rs1800795 and rs1800797 polymorphisms of the IL-6 gene was performed using predesigned TaqMan SNP genotyping. The median age of SARS-CoV-2-negative controls was 50 years, while severe COVID-19 cases exhibited a median age of 61 years. Additionally, individuals with asymptomatic to moderate COVID-19 had a median age of 36 years. We observed a significant age difference between severe and mild COVID-19 patients (p < 0.0001), and an association was noted between gender and the severity of COVID-19 (p = 0.011). The allele and genotype frequencies of the IL-6 - 597G > A and - 174G > C variants did not show significant associations with susceptibility to SARS-CoV-2 infection (p > 0.05). However, further analysis revealed that the linkage disequilibrium between rs1800797 and rs1800795 indicated that individuals with the GC* haplotype (OR = 0.04, 95% CI 0.01-0.30, p = 0.001) and AG* haplotype (OR = 0.11, 95% CI 0.03-0.46, p = 0.002) were significantly associated with protection against SARS-CoV-2 infection. Moreover, in the overdominant model, the IL-6 - 174 G/C genotype was found to be protective against the development of severe disease compared to those with the G/G-C/C genotypes (p = 0.03; OR = 0.41, 95% CI 0.18-0.96). However, correlations between complete blood count markers, hematological markers, D-dimer, C-reactive protein, and ferritin levels according to - 597 A > G and - 174G > C genotypes showed no significant differences (all p > 0.05). Our findings provide valuable insights into the pathogenesis of COVID-19, suggesting that genetic variations at the IL-6 gene may contribute to the susceptibility to severe SARS-CoV-2 infection within the Moroccan population.


Subject(s)
COVID-19 , Genetic Predisposition to Disease , Interleukin-6 , Polymorphism, Single Nucleotide , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/genetics , COVID-19/virology , Interleukin-6/genetics , Female , Male , Case-Control Studies , Morocco , Middle Aged , Adult , Promoter Regions, Genetic , Aged , Gene Frequency , Haplotypes
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 319-326, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710516

ABSTRACT

Objective To investigate the impact of the cannabinoid receptor agonist arachidonyl-2'-chloroethylamide (ACEA) on cognitive function in mice with sepsis-associated encephalopathy (SAE). Methods C57BL/6 mice were randomly divided into artificial cerebrospinal fluid (ACSF) and lipopolysaccharide (LPS) groups. The SAE model was established by intraventricular injection of LPS. The severity of sepsis in mice was assessed by sepsis severity score (MSS) and body mass changes. Behavioral paradigms were used to evaluate motor ability (open field test) and cognitive function (contextual fear conditioning test, Y-maze test). To evaluate the effects of ACEA intervention on SAE, mice were randomly assigned to ACSF group, ACEA intervention combined with ACSF group, LPS group, and ACEA intervention combined with LPS group. The dosage of ACEA intervention was 1.5 mg/kg. Real-time quantitative PCR was used to measure the mRNA expression levels of interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor α (TNF-α) in mouse hippocampal tissues. Western blot analysis was used to assess the protein levels of IL-6 and TNF-α in the hippocampus. Nissl staining was performed to examine neuronal damage in the CA1 region of the mouse hippocampus. Behavioral paradigms were again employed to evaluate motor ability and cognitive function. Results Three days after intraventricular LPS injection, mice exhibited significant cognitive dysfunction, confirming SAE modeling. Compared to the control group, the LPS group showed significant increases in mRNA of inflammatory factors such as IL-6, TNF-α, and IL-1ß, together with significant increases in IL-6 and TNF-α protein levels in the hippocampus, a decrease in Nissl bodies in the CA1 region, and significant cognitive dysfunction. Compared to the LPS group, the ACEA intervention group showed a significant decrease in the mRNA of IL-6, TNF-α, and IL-1ß, a significant reduction in IL-6 and TNF-α protein levels, an increase in Nissl bodies, and improved cognitive function. Conclusion ACEA improves cognitive function in SAE mice by inhibiting the expression levels of inflammatory factors IL-6 and TNF-α.


Subject(s)
Arachidonic Acids , Mice, Inbred C57BL , Sepsis-Associated Encephalopathy , Animals , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Mice , Male , Arachidonic Acids/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Lipopolysaccharides/adverse effects , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/agonists , Cognition/drug effects , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism
8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 296-302, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710513

ABSTRACT

Objective To evaluate the effects of heme oxygenase-1 (HO-1) gene deletion on immune cell composition and inflammatory injury in lung tissues of mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods C57BL/6 wild-type (WT) mice and HO-1 conditional-knockout (HO-1-/-) mice on the same background were randomly divided into four groups (n=5 in every group): WT control group, LPS-treated WT group, HO-1-/- control group and LPS-treated HO-1-/- group. LPS-treated WT and HO-1-/- groups were injected with LPS (15 mg/kg) through the tail vein to establish ALI model, while WT control group and HO-1-/- control group were injected with an equivalent volume of normal saline through the tail vein, respectively. Twelve hours later, the mice were sacrificed and lung tissues from each group were collected for analysis. Histopathological alterations of lung tissues were assessed by HE staining. The levels of mRNA expression of tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and IL-6 were determined by PCR. The percentages of neutrophils (CD45+CD11b+Ly6G+Ly6C-), total monocytes (CD45+CD11b+Ly6Chi), pro-inflammatory monocyte subsets (CD45+CD11b+Ly6ChiCCR2hi) and total macrophages (CD45+CD11b+F4/80+), M1 macrophage (CD45+CD11b+F4/80+CD86+), M2 macrophage (CD45+CD11b+F4/80+CD206+), total T cells (CD45+CD3+), CD3+CD4+ T cells, CD3+CD8+ T cells and myeloid suppressor cells (MDSCs, CD45+CD11b+Gr1+) were detected by flow cytometry. Results Compared with the corresponding control groups, HE staining exhibited increased inflammation in the lung tissues of both LPS-treated WT and HO-1-/- model mice; mRNA expression levels of TNF-α, IL-1ß and IL-6 were up-regulated; the proportions of neutrophils, total monocytes, pro-inflammatory monocyte subsets, MDSCs and total macrophages increased significantly. The percentage of CD3+, CD3+CD4+ and CD3+CD8+ T cells decreased significantly. Under resting-state, compared with WT control mice, the proportion of neutrophils, monocytes and pro-inflammatory monocyte subset increased in lung tissues of HO-1-/- control mice, while the proportion of CD3+ and CD3+CD8+ T cells decreased. Compared with LPS-treated WT mice, the mRNA expression levels of TNF-α and IL-1ß were up-regulated in lung tissues of LPS-treated HO-1-/- mice; the proportion of total monocytes, pro-inflammatory monocyte subsets, M1 macrophages and M1/M2 ratio increased greatly; the percentage of CD3+CD8+ T cells decreased significantly. Conclusion The deletion of HO-1 affects the function of the lung immune system and aggravates the inflammatory injury after LPS stimulation in ALI mice.


Subject(s)
Acute Lung Injury , Heme Oxygenase-1 , Lipopolysaccharides , Lung , Mice, Inbred C57BL , Mice, Knockout , Animals , Male , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Inflammation/genetics , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Lung/pathology , Lung/immunology , Lung/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Nat Commun ; 15(1): 4034, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740814

ABSTRACT

Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.


Subject(s)
Cell Proliferation , Hepatocytes , Lipid Metabolism , Organoids , Transcriptome , Humans , Hepatocytes/metabolism , Hepatocytes/cytology , Organoids/metabolism , Fetus/metabolism , Adult , Interleukin-6/metabolism , Interleukin-6/genetics , Cells, Cultured
10.
Oncoimmunology ; 13(1): 2352179, 2024.
Article in English | MEDLINE | ID: mdl-38746869

ABSTRACT

Cancer-associated fibroblasts (CAFs) exhibit remarkable phenotypic heterogeneity, with specific subsets implicated in immunosuppression in various malignancies. However, whether and how they attenuate anti-tumor immunity in gastric cancer (GC) remains elusive. CPT1C, a unique isoform of carnitine palmitoyltransferase pivotal in regulating fatty acid oxidation, is briefly indicated as a protumoral metabolic mediator in the tumor microenvironment (TME) of GC. In the present study, we initially identified specific subsets of fibroblasts exclusively overexpressing CPT1C, hereby termed them as CPT1C+CAFs. Subsequent findings indicated that CPT1C+CAFs fostered a stroma-enriched and immunosuppressive TME as they correlated with extracellular matrix-related molecular features and enrichment of both immunosuppressive subsets, especially M2-like macrophages, and multiple immune-related pathways. Next, we identified that CPT1C+CAFs promoted the M2-like phenotype of macrophage in vitro. Bioinformatic analyses unveiled the robust IL-6 signaling between CPT1C+CAFs and M2-like phenotype of macrophage and identified CPT1C+CAFs as the primary source of IL-6. Meanwhile, suppressing CPT1C expression in CAFs significantly decreased IL-6 secretion in vitro. Lastly, we demonstrated the association of CPT1C+CAFs with therapeutic resistance. Notably, GC patients with high CPT1C+CAFs infiltration responded poorly to immunotherapy in clinical cohort. Collectively, our data not only present the novel identification of CPT1C+CAFs as immunosuppressive subsets in TME of GC, but also reveal the underlying mechanism that CPT1C+CAFs impair tumor immunity by secreting IL-6 to induce the immunosuppressive M2-like phenotype of macrophage in GC.


Subject(s)
Cancer-Associated Fibroblasts , Carnitine O-Palmitoyltransferase , Interleukin-6 , Macrophages , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Interleukin-6/metabolism , Interleukin-6/genetics , Macrophages/immunology , Macrophages/metabolism , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Phenotype , Animals , Mice , Male , Female , Cell Line, Tumor , Immune Tolerance
11.
Bull Exp Biol Med ; 176(5): 555-561, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38717567

ABSTRACT

The levels of NO metabolites in the plasma and mRNA of the NOS3, ATG9B, and NOS2 genes in peripheral blood leukocytes of healthy people and patients with early forms of non-alcoholic fatty liver disease (steatosis and weak activity non-alcoholic steatohepatitis) were studied. In patients with steatohepatitis, the concentration of NO metabolites in the blood and the level of mRNA of the NOS2 gene were higher than in patients with steatosis and healthy people. These differences can be of diagnostic value for distinguishing between steatosis and weak activity steatohepatitis in non-alcoholic fatty liver disease. A correlation between the levels of NO metabolites and the expression of the NOS2 gene in weak activity steatohepatitis was established, which indicates activation of NO synthesis in non-alcoholic steatohepatitis due to the expression of the inducible NO synthase gene. The level of the NOS2 gene mRNA in peripheral blood leukocytes of patients with weak activity steatohepatitis correlated with the level of TNFα and IL-6 cytokines. An increase in the level of NO in the blood in weak activity steatohepatitis correlated with the level of MDA, an indicator of oxidative stress.


Subject(s)
Interleukin-6 , Nitric Oxide Synthase Type III , Nitric Oxide Synthase Type II , Nitric Oxide , Non-alcoholic Fatty Liver Disease , Tumor Necrosis Factor-alpha , Humans , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Nitric Oxide/blood , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Male , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Female , Adult , Interleukin-6/blood , Interleukin-6/genetics , Middle Aged , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/genetics , RNA, Messenger/genetics , RNA, Messenger/blood , RNA, Messenger/metabolism , Oxidative Stress/genetics , Case-Control Studies , Malondialdehyde/blood
12.
Eur J Med Res ; 29(1): 285, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745325

ABSTRACT

INTRODUCTION: Hydrogen (H2) is regarded as a novel therapeutic agent against several diseases owing to its inherent biosafety. Bronchopulmonary dysplasia (BPD) has been widely considered among adverse pregnancy outcomes, without effective treatment. Placenta plays a role in defense, synthesis, and immunity, which provides a new perspective for the treatment of BPD. This study aimed to investigate if H2 reduced the placental inflammation to protect the neonatal rat against BPD damage and potential mechanisms. METHODS: We induced neonatal BPD model by injecting lipopolysaccharide (LPS, 1 µg) into the amniotic fluid at embryonic day 16.5 as LPS group. LPS + H2 group inhaled 42% H2 gas (4 h/day) until the samples were collected. We primarily analyzed the neonatal outcomes and then compared inflammatory levels from the control group (CON), LPS group and LPS + H2 group. HE staining was performed to evaluate inflammatory levels. RNA sequencing revealed dominant differentially expressed genes. Bioinformatics analysis (GO and KEGG) of RNA-seq was applied to mine the signaling pathways involved in protective effect of H2 on the development of LPS-induced BPD. We further used qRT-PCR, Western blot and ELISA methods to verify differential expression of mRNA and proteins. Moreover, we verified the correlation between the upstream signaling pathways and the downstream targets in LPS-induced BPD model. RESULTS: Upon administration of H2, the inflammatory infiltration degree of the LPS-induced placenta was reduced, and infiltration significantly narrowed. Hydrogen normalized LPS-induced perturbed lung development and reduced the death ratio of the fetus and neonate. RNA-seq results revealed the importance of inflammatory response biological processes and Toll-like receptor signaling pathway in protective effect of hydrogen on BPD. The over-activated upstream signals [Toll-like receptor 4 (TLR4), nuclear factor kappa-B p65 (NF-κB p65), Caspase1 (Casp1) and NLR family pyrin domain containing 3 (NLRP3) inflammasome] in LPS placenta were attenuated by H2 inhalation. The downstream targets, inflammatory cytokines/chemokines [interleukin (IL)-6, IL-18, IL-1ß, C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1)], were decreased both in mRNA and protein levels by H2 inhalation in LPS-induced placentas to rescue them from BPD. Correlation analysis displayed a positive association of TLR4-mediated signaling pathway both proinflammatory cytokines and chemokines in placenta. CONCLUSION: H2 inhalation ameliorates LPS-induced BPD by inhibiting excessive inflammatory cytokines and chemokines via the TLR4-NFκB-IL6/NLRP3 signaling pathway in placenta and may be a potential therapeutic strategy for BPD.


Subject(s)
Bronchopulmonary Dysplasia , Hydrogen , Inflammation , Lipopolysaccharides , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Signal Transduction , Toll-Like Receptor 4 , Female , Pregnancy , Lipopolysaccharides/toxicity , Hydrogen/pharmacology , Hydrogen/therapeutic use , Animals , Placenta/metabolism , Placenta/drug effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Signal Transduction/drug effects , Rats , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Administration, Inhalation , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/chemically induced , Bronchopulmonary Dysplasia/drug therapy , Bronchopulmonary Dysplasia/prevention & control , Interleukin-6/metabolism , Interleukin-6/genetics , Rats, Sprague-Dawley , Disease Models, Animal
13.
Nutr J ; 23(1): 51, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750566

ABSTRACT

BACKGROUND: Previous research has extensively examined the role of interleukin 6 (IL-6) in sarcopenia. However, the presence of a causal relationship between IL-6, its receptor (IL-6R), and sarcopenia remains unclear. METHOD: In this study, we utilized summary-level data from genome-wide association studies (GWAS) focused on appendicular lean mass (ALM), hand grip strength, and walking pace. Single nucleotide polymorphisms (SNPs) were employed as genetic instruments for IL-6 and IL-6R to estimate the causal effect of sarcopenia traits. We adopted the Mendelian randomization (MR) approach to investigate these associations using the inverse variance weighted (IVW) method as the primary analytical approach. Additionally, we performed sensitivity analyses to validate the reliability of the MR results. RESULT: This study revealed a significant negative association between main IL-6R and eQTL IL-6R on the left grip strength were - 0.013 (SE = 0.004, p < 0.001) and -0.029 (SE = 0.007, p < 0.001), respectively. While for the right grip strength, the estimates were - 0.011 (SE = 0.001, p < 0.001) and - 0.021 (SE = 0.008, p = 0.005). However, no evidence of an association for IL-6R with ALM and walking pace. In addition, IL-6 did not affect sarcopenia traits. CONCLUSION: Our study findings suggest a negative association between IL-6R and hand grip strength. Additionally, targeting IL-6R may hold potential value as a therapeutic approach for the treatment of hand grip-related issues.


Subject(s)
Genome-Wide Association Study , Hand Strength , Interleukin-6 , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Receptors, Interleukin-6 , Sarcopenia , Humans , Interleukin-6/genetics , Interleukin-6/blood , Sarcopenia/genetics , Mendelian Randomization Analysis/methods , Receptors, Interleukin-6/genetics , Hand Strength/physiology , Genome-Wide Association Study/methods
14.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727303

ABSTRACT

Small interfering RNA (siRNA) holds significant therapeutic potential by silencing target genes through RNA interference. Current clinical applications of siRNA have been primarily limited to liver diseases, while achievements in delivery methods are expanding their applications to various organs, including the lungs. Cholesterol-conjugated siRNA emerges as a promising delivery approach due to its low toxicity and high efficiency. This study focuses on developing a cholesterol-conjugated anti-Il6 siRNA and the evaluation of its potency for the potential treatment of inflammatory diseases using the example of acute lung injury (ALI). The biological activities of different Il6-targeted siRNAs containing chemical modifications were evaluated in J774 cells in vitro. The lead cholesterol-conjugated anti-Il6 siRNA after intranasal instillation demonstrated dose-dependent therapeutic effects in a mouse model of ALI induced by lipopolysaccharide (LPS). The treatment significantly reduced Il6 mRNA levels, inflammatory cell infiltration, and the severity of lung inflammation. IL6 silencing by cholesterol-conjugated siRNA proves to be a promising strategy for treating inflammatory diseases, with potential applications beyond the lungs.


Subject(s)
Acute Lung Injury , Cholesterol , Interleukin-6 , RNA, Small Interfering , Animals , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Acute Lung Injury/therapy , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Cholesterol/metabolism , Mice , Lipopolysaccharides , Male , Disease Models, Animal , Mice, Inbred C57BL , Cell Line , Lung/pathology , Lung/metabolism
15.
Medicine (Baltimore) ; 103(19): e38091, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728467

ABSTRACT

To screen immune-related prognostic biomarkers in low-grade glioma (LGG), and reveal the potential regulatory mechanism. The differential expressed genes (DEGs) between alive and dead patients were initially identified, then the key common genes between DEGs and immune-related genes were obtained. Regarding the key DEGs associated with the overall survival (OS), their clinical value was assessed by Kaplan-Meier, RCS, logistic regression, ROC, and decision curve analysis methods. We also assessed the role of immune infiltration on the association between key DEGs and OS. All the analyses were based on the TGCA-LGG data. Finally, we conducted the molecular docking analysis to explore the targeting binding of key DEGs with the therapeutic agents in LGG. Among 146 DEGs, only interleukin-6 (IL-6) was finally screened as an immune-related biomarker. High expression of IL-6 significantly correlated with poor OS time (all P < .05), showing a linear relationship. The combination of IL-6 with IDH1 mutation had the most favorable prediction performance on survival status and they achieved a good clinical net benefit. Next, we found a significant relationship between IL-6 and immune microenvironment score, and the immune microenvironment played a mediating effect on the association of IL-6 with survival (all P < .05). Detailly, IL-6 was positively related to M1 macrophage infiltration abundance and its biomarkers (all P < .05). Finally, we obtained 4 therapeutic agents in LGG targeting IL-6, and their targeting binding relationships were all verified. IL6, as an immune-related biomarker, was associated with the prognosis in LGG, and it can be a therapeutic target in LGG.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Glioma , Interleukin-6 , Tumor Microenvironment , Humans , Interleukin-6/metabolism , Interleukin-6/genetics , Glioma/immunology , Glioma/genetics , Glioma/mortality , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Prognosis , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Biomarkers, Tumor/genetics , Female , Kaplan-Meier Estimate , Gene Expression Regulation, Neoplastic
16.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691832

ABSTRACT

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Subject(s)
Colitis , Dextran Sulfate , NF-E2-Related Factor 2 , NF-kappa B , Polysaccharides , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Dextran Sulfate/adverse effects , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/drug effects , Liver/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Oxidative Stress/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Mucin-2/genetics , Mucin-2/metabolism
17.
Viral Immunol ; 37(4): 186-193, 2024 05.
Article in English | MEDLINE | ID: mdl-38717821

ABSTRACT

Coronavirus disease 2019 (COVID-19) represented an international health risk. Variants of the interferon-induced transmembrane protein-3 (IFITM3) gene can increase the risk of developing severe viral infections. This cross-sectional study investigated the association between IFITM3 rs12252A>G single nucleotide polymorphism (SNP) and COVID-19 severity and mortality in 100 Egyptian patients. All participants were subjected to serum interleukin-6 (IL-6) determination by ELISA and IFITM3 rs12252 genotyping by real-time polymerase chain reaction. Of all participants, 85.0% had the IFITM3 rs12252 homozygous AA genotype, whereas 15.0% had the heterozygous AG genotype. None of our participants had the homozygous GG genotype. The IFITM3 rs12252A allele was found in 92.5% and the G allele in only 7.5%. There was no significant association (p > 0.05) between the IFITM3 rs12252 SNP and COVID-19 severity, intensive care unit (ICU) admission, or IL-6 serum levels. The heterozygous AG genotype frequency showed a significant increase among participants who died (32.0%) compared with those who had been cured (9.3%). The mutant G allele was associated with patients' death. Its frequency among cured participants was 8.5%, whereas in those who died was 24.2% (p = 0.024) with 3.429 odds ratio [95% confidence interval: 1.1-10.4]. In conclusion, this study revealed a significant association between the G allele variant of IFITM3 rs12252 and COVID-19 mortality. However, results were unable to establish a significant link between rs12252 polymorphism, disease severity, ICU admission, or serum IL-6 levels.


Subject(s)
COVID-19 , Genotype , Interleukin-6 , Membrane Proteins , Polymorphism, Single Nucleotide , RNA-Binding Proteins , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/genetics , Female , Male , Egypt , Middle Aged , Membrane Proteins/genetics , Adult , Interleukin-6/blood , Interleukin-6/genetics , Cross-Sectional Studies , SARS-CoV-2/genetics , RNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Alleles , Severity of Illness Index , Gene Frequency , Aged
18.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732195

ABSTRACT

Sport injuries, including the anterior crucial ligament rupture (ACLR) seem to be related to complex genetic backgrounds, including the genes responsible for inflammatory response. This review and meta-analysis investigated the contribution of the polymorphisms of genes encoding inflammatory cytokines and their receptors to the risk of ACLR. The scientific databases Science Direct, EBSCO host, Scopus, PubMed, and Google Scholar were screened (completed on 14 June 2023) according to the established inclusion/exclusion criteria (only fully accessible, original, human case-control studies written in English concerning the effect of interleukin genes' polymorphisms on the occurrence of ACL injury were included) and statistical meta-analysis using R version 4.0.3 was performed. The PRISMA methodology was used to review articles. The review protocol was registered under the number CRD42024514316 in the Prospero database. Eighty-nine studies were identified and narrowed down to three original case-control studies used for the meta-analysis. The studies analyzed Polish, South African, and Swedish cohorts, altogether 1282 participants. The candidate polymorphisms indicated in the studies involved IL6 rs1800795, IL6R rs2228145 and IL1B rs16944. The systematic review showed the relationships between IL6 rs1800795 polymorphism and ACLR in the Polish subpopulation, and IL6R rs2228145 and IL1B rs16944 in the South African subpopulations. The meta-analysis revealed that the IL6 rs1800795 CG genotype was over-represented (OR = 1.30, 95% CI 1.02-1.66), while the CC genotype was under-represented (OR = 0.75, 95% CI 0.54-1.03) in ACLR subjects, but no significant impact of IL6R rs2228145 was shown. Additionally, a tendency of the IL1B rs16944 CT genotype to be protective (OR 0.89, 95% CI 0.70-1.14), while the TT to be a risk genotype (OR 1.19, 95% CI 0.84-1.68) was observed. Thus, the relationship between the interleukin receptor IL6R rs2228145 and ACLR risk was not confirmed. However, the impact of genes coding pleiotropic IL6 rs1800795 on the incidences of ACLR was clear and the effect of pro-inflammatory IL1B rs16944 was possible.


Subject(s)
Anterior Cruciate Ligament Injuries , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Humans , Anterior Cruciate Ligament Injuries/genetics , Interleukin-6/genetics , Interleukin-1beta/genetics , Receptors, Interleukin-6/genetics , Interleukins/genetics , Risk Factors , Case-Control Studies
19.
J Tradit Chin Med ; 44(3): 478-488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767631

ABSTRACT

OBJECTIVE: To explore the pharmacodynamic effects and potential mechanisms of Shuangling extract against ulcerative colitis (UC). METHODS: The bioinformatics method was used to predict the active ingredients and action targets of Shuangling extract against UC in mice. And the biological experiments such as serum biochemical indexes and histopathological staining were used to verify the pharmacological effect and mechanism of Shuangling extract against UC in mice. RESULTS: The Shuangling extract reduced the levels of seruminterleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-N), interleukin-6 (IL-6) and other inflammatory factors in UC mice and inhibited the inflammatory response. AKT Serine/threonine Kinase 1 and IL-6 may be the main targets of the anti-UC action of Shuangling extract, and the TNF signaling pathway, Forkhead box O signaling pathway and T-cell receptor signaling pathway may be the main signaling pathways. CONCLUSION: The Shuangling extract could inhibit the inflammatory response induced by UC and regulate intestinal immune function through multiple targets and multiple channels, which provided a new option and theoretical basis for anti-UC.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Drugs, Chinese Herbal , Network Pharmacology , Tumor Necrosis Factor-alpha , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Mice , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Dextran Sulfate/adverse effects , Male , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Disease Models, Animal , Signal Transduction/drug effects
20.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791128

ABSTRACT

In endothelial cells, miR-148a-3p is involved in several pathological pathways, including chronic inflammatory conditions. However, the molecular mechanism of miR-148a-3p in endothelial inflammatory states is, to date, not fully elucidated. To this end, we investigated the involvement of miR-148a-3p in mitochondrial dysfunction and cell death pathways in human aortic endothelial cells (teloHAECs) treated with interleukin-6 (IL-6), a major driver of vascular dysfunction. The results showed that during IL6-activated inflammatory pathways, including increased protein levels of sirtuin 7 (SIRT7) (p < 0.01), mitochondrial stress (p < 0.001), and apoptosis (p < 0.01), a decreased expression of miR-148a-3p was observed (p < 0.01). The employment of a miR-148a mimic counteracted the IL-6-induced cytokine release (p < 0.01) and apoptotic cell death (p < 0.01), and ameliorated mitochondria redox homeostasis and respiration (p < 0.01). The targeted relationship between miR-148a-3p and SIRT7 was predicted by a bioinformatics database analysis and validated via the dual-luciferase reporter assay. Mechanistically, miR-148a-3p targets the 3' untranslated regions of SIRT7 mRNA, downregulating its expression (p < 0.01). Herein, these in vitro results support the role of the miR-148a-3p/SIRT7 axis in counteracting mitochondrial damage and apoptosis during endothelial inflammation, unveiling a novel target for future strategies to prevent endothelial dysfunction.


Subject(s)
Apoptosis , Endothelial Cells , Inflammation , MicroRNAs , Sirtuins , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Sirtuins/metabolism , Sirtuins/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Apoptosis/genetics , Endothelial Cells/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Mitochondria/metabolism , Signal Transduction , Gene Expression Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...