Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.814
Filter
1.
Sci Adv ; 10(19): eadj9911, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728406

ABSTRACT

During cerebral cortex development, excitatory pyramidal neurons (PNs) establish specific projection patterns while receiving inputs from GABAergic inhibitory interneurons (INs). Whether these inhibitory inputs can shape PNs' projection patterns is, however, unknown. While layer 4 (L4) PNs of the primary somatosensory (S1) cortex are all born as long-range callosal projection neurons (CPNs), most of them acquire local connectivity upon activity-dependent elimination of their interhemispheric axons during postnatal development. Here, we demonstrate that precise developmental regulation of inhibition is key for the retraction of S1L4 PNs' callosal projections. Ablation of somatostatin INs leads to premature inhibition from parvalbumin INs onto S1L4 PNs and prevents them from acquiring their barrel-restricted local connectivity pattern. As a result, adult S1L4 PNs retain interhemispheric projections responding to tactile stimuli, and the mice lose whisker-based texture discrimination. Overall, we show that temporally ordered IN activity during development is key to shaping local ipsilateral S1L4 PNs' projection pattern, which is required for fine somatosensory processing.


Subject(s)
GABAergic Neurons , Interneurons , Somatosensory Cortex , Animals , Interneurons/metabolism , Interneurons/physiology , Interneurons/cytology , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , GABAergic Neurons/cytology , Somatosensory Cortex/physiology , Somatosensory Cortex/metabolism , Somatosensory Cortex/cytology , Mice , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Parvalbumins/metabolism
2.
Elife ; 132024 May 15.
Article in English | MEDLINE | ID: mdl-38748470

ABSTRACT

Acetylcholine is widely believed to modulate the release of dopamine in the striatum of mammals. Experiments in brain slices clearly show that synchronous activation of striatal cholinergic interneurons is sufficient to drive dopamine release via axo-axonal stimulation of nicotinic acetylcholine receptors. However, evidence for this mechanism in vivo has been less forthcoming. Mohebi, Collins and Berke recently reported that, in awake behaving rats, optogenetic activation of striatal cholinergic interneurons with blue light readily evokes dopamine release measured with the red fluorescent sensor RdLight1 (Mohebi et al., 2023). Here, we show that blue light alone alters the fluorescent properties of RdLight1 in a manner that may be misconstrued as phasic dopamine release, and that this artefactual photoactivation can account for the effects attributed to cholinergic interneurons. Our findings indicate that measurements of dopamine using the red-shifted fluorescent sensor RdLight1 should be interpreted with caution when combined with optogenetics. In light of this and other publications that did not observe large acetylcholine-evoked dopamine transients in vivo, the conditions under which such release occurs in behaving animals remain unknown.


Subject(s)
Cholinergic Neurons , Dopamine , Interneurons , Optogenetics , Dopamine/metabolism , Animals , Interneurons/metabolism , Interneurons/physiology , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Rats , Optogenetics/methods , Motivation , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Acetylcholine/metabolism
3.
J Biotechnol ; 389: 1-12, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38697361

ABSTRACT

Aging is associated with the slowdown of neuronal processing and cognitive performance in the brain; however, the exact cellular mechanisms behind this deterioration in humans are poorly elucidated. Recordings in human acute brain slices prepared from tissue resected during brain surgery enable the investigation of neuronal changes with age. Although neocortical fast-spiking cells are widely implicated in neuronal network activities underlying cognitive processes, they are vulnerable to neurodegeneration. Herein, we analyzed the electrical properties of 147 fast-spiking interneurons in neocortex samples resected in brain surgery from 106 patients aged 11-84 years. By studying the electrophysiological features of action potentials and passive membrane properties, we report that action potential overshoot significantly decreases and spike half-width increases with age. Moreover, the action potential maximum-rise speed (but not the repolarization speed or the afterhyperpolarization amplitude) significantly changed with age, suggesting a particular weakening of the sodium channel current generated in the soma. Cell passive membrane properties measured as the input resistance, membrane time constant, and cell capacitance remained unaffected by senescence. Thus, we conclude that the action potential in fast-spiking interneurons shows a significant weakening in the human neocortex with age. This may contribute to the deterioration of cortical functions by aging.


Subject(s)
Action Potentials , Aging , Interneurons , Neocortex , Humans , Neocortex/physiology , Neocortex/cytology , Aged , Interneurons/physiology , Aged, 80 and over , Adult , Aging/physiology , Adolescent , Child , Middle Aged , Action Potentials/physiology , Male , Young Adult , Female
4.
Proc Natl Acad Sci U S A ; 121(21): e2406565121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753507

ABSTRACT

While depolarization of the neuronal membrane is known to evoke the neurotransmitter release from synaptic vesicles, hyperpolarization is regarded as a resting state of chemical neurotransmission. Here, we report that hyperpolarizing neurons can actively signal neural information by employing undocked hemichannels. We show that UNC-7, a member of the innexin family in Caenorhabditis elegans, functions as a hemichannel in thermosensory neurons and transmits temperature information from the thermosensory neurons to their postsynaptic interneurons. By monitoring neural activities in freely behaving animals, we find that hyperpolarizing thermosensory neurons inhibit the activity of the interneurons and that UNC-7 hemichannels regulate this process. UNC-7 is required to control thermotaxis behavior and functions independently of synaptic vesicle exocytosis. Our findings suggest that innexin hemichannels mediate neurotransmission from hyperpolarizing neurons in a manner that is distinct from the synaptic transmission, expanding the way of neural circuitry operations.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Interneurons , Neurons , Synaptic Transmission , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Synaptic Transmission/physiology , Interneurons/metabolism , Interneurons/physiology , Neurons/physiology , Neurons/metabolism , Synaptic Vesicles/metabolism , Synaptic Vesicles/physiology , Taxis Response/physiology , Connexins/metabolism , Connexins/genetics , Membrane Proteins
5.
Nat Commun ; 15(1): 4495, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802410

ABSTRACT

Unified visual perception requires integration of bottom-up and top-down inputs in the primary visual cortex (V1), yet the organization of top-down inputs in V1 remains unclear. Here, we used optogenetics-assisted circuit mapping to identify how multiple top-down inputs from higher-order cortical and thalamic areas engage V1 excitatory and inhibitory neurons. Top-down inputs overlap in superficial layers yet segregate in deep layers. Inputs from the medial secondary visual cortex (V2M) and anterior cingulate cortex (ACA) converge on L6 Pyrs, whereas ventrolateral orbitofrontal cortex (ORBvl) and lateral posterior thalamic nucleus (LP) inputs are processed in parallel in Pyr-type-specific subnetworks (Pyr←ORBvl and Pyr←LP) and drive mutual inhibition between them via local interneurons. Our study deepens understanding of the top-down modulation mechanisms of visual processing and establishes that V2M and ACA inputs in L6 employ integrated processing distinct from the parallel processing of LP and ORBvl inputs in L5.


Subject(s)
Optogenetics , Primary Visual Cortex , Animals , Primary Visual Cortex/physiology , Male , Thalamus/physiology , Visual Pathways/physiology , Neurons/physiology , Visual Cortex/physiology , Gyrus Cinguli/physiology , Interneurons/physiology , Visual Perception/physiology , Mice , Female , Brain Mapping
6.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791587

ABSTRACT

Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.


Subject(s)
Alzheimer Disease , Epilepsy , Interneurons , Parvalbumins , Humans , Interneurons/metabolism , Interneurons/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Parvalbumins/metabolism , Animals , Epilepsy/physiopathology , Epilepsy/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Brain/metabolism , Brain/physiopathology
7.
Nat Commun ; 15(1): 4053, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744848

ABSTRACT

The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.


Subject(s)
Callithrix , Hippocampus , Spatial Navigation , Animals , Callithrix/physiology , Spatial Navigation/physiology , Hippocampus/physiology , Male , Locomotion/physiology , Vision, Ocular/physiology , Pyramidal Cells/physiology , Head Movements/physiology , Interneurons/physiology , Female , Behavior, Animal/physiology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology
8.
Cell Rep ; 43(4): 114115, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607918

ABSTRACT

In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.


Subject(s)
CA1 Region, Hippocampal , Interneurons , Recognition, Psychology , Vasoactive Intestinal Peptide , Animals , Interneurons/metabolism , Interneurons/physiology , Vasoactive Intestinal Peptide/metabolism , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/cytology , Mice , Male , Recognition, Psychology/physiology , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Mice, Inbred C57BL , Memory/physiology , Parvalbumins/metabolism , Exploratory Behavior/physiology , Somatostatin/metabolism
9.
Proc Natl Acad Sci U S A ; 121(17): e2315379121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625946

ABSTRACT

A key feature of excitatory synapses is the existence of subsynaptic protein nanoclusters (NCs) whose precise alignment across the cleft in a transsynaptic nanocolumn influences the strength of synaptic transmission. However, whether nanocolumn properties vary between excitatory synapses functioning in different cellular contexts is unknown. We used a combination of confocal and DNA-PAINT super-resolution microscopy to directly compare the organization of shared scaffold proteins at two important excitatory synapses-those forming onto excitatory principal neurons (Ex→Ex synapses) and those forming onto parvalbumin-expressing interneurons (Ex→PV synapses). As in Ex→Ex synapses, we find that in Ex→PV synapses, presynaptic Munc13-1 and postsynaptic PSD-95 both form NCs that demonstrate alignment, underscoring synaptic nanostructure and the transsynaptic nanocolumn as conserved organizational principles of excitatory synapses. Despite the general conservation of these features, we observed specific differences in the characteristics of pre- and postsynaptic Ex→PV nanostructure. Ex→PV synapses contained larger PSDs with fewer PSD-95 NCs when accounting for size than Ex→Ex synapses. Furthermore, the PSD-95 NCs were larger and denser. The identity of the postsynaptic cell was also represented in Munc13-1 organization, as Ex→PV synapses hosted larger Munc13-1 puncta that contained less dense but larger and more numerous Munc13-1 NCs. Moreover, we measured the spatial variability of transsynaptic alignment in these synapse types, revealing protein alignment in Ex→PV synapses over a distinct range of distances compared to Ex→Ex synapses. We conclude that while general principles of nanostructure and alignment are shared, cell-specific elements of nanodomain organization likely contribute to functional diversity of excitatory synapses.


Subject(s)
Neurons , Synapses , Neurons/metabolism , Synapses/metabolism , Interneurons/physiology , Synaptic Transmission , Disks Large Homolog 4 Protein/metabolism
10.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38637152

ABSTRACT

Canonically, action potentials of most mammalian neurons initiate at the axon initial segment (AIS) and propagate bidirectionally: orthodromically along the distal axon and retrogradely into the soma and dendrites. Under some circumstances, action potentials may initiate ectopically, at sites distal to the AIS, and propagate antidromically along the axon. These "ectopic action potentials" (EAPs) have been observed in experimental models of seizures and chronic pain, and more rarely in nonpathological forebrain neurons. Here we report that a large majority of parvalbumin-expressing (PV+) interneurons in the upper layers of mouse neocortex, from both orbitofrontal and primary somatosensory areas, fire EAPs after sufficient activation of their somata. Somatostatin-expressing interneurons also fire EAPs, though less robustly. Ectopic firing in PV+ cells occurs in varying temporal patterns and can persist for several seconds. PV+ cells evoke strong synaptic inhibition in pyramidal neurons and interneurons and play critical roles in cortical function. Our results suggest that ectopic spiking of PV+ interneurons is common and may contribute to both normal and pathological network functions of the neocortex.


Subject(s)
Action Potentials , Interneurons , Mice, Transgenic , Neocortex , Parvalbumins , Animals , Parvalbumins/metabolism , Interneurons/physiology , Interneurons/metabolism , Neocortex/physiology , Action Potentials/physiology , Male , Mice , Female , Mice, Inbred C57BL , Pyramidal Cells/physiology , Somatostatin/metabolism
11.
Math Biosci ; 372: 109192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640998

ABSTRACT

Computational models of brain regions are crucial for understanding neuronal network dynamics and the emergence of cognitive functions. However, current supercomputing limitations hinder the implementation of large networks with millions of morphological and biophysical accurate neurons. Consequently, research has focused on simplified spiking neuron models, ranging from the computationally fast Leaky Integrate and Fire (LIF) linear models to more sophisticated non-linear implementations like Adaptive Exponential (AdEX) and Izhikevic models, through Generalized Leaky Integrate and Fire (GLIF) approaches. However, in almost all cases, these models are tuned (and can be validated) only under constant current injections and they may not, in general, also reproduce experimental findings under variable currents. This study introduces an Adaptive GLIF (A-GLIF) approach that addresses this limitation by incorporating a new set of update rules. The extended A-GLIF model successfully reproduces both constant and variable current inputs, and it was validated against the results obtained using a biophysical accurate model neuron. This enhancement provides researchers with a tool to optimize spiking neuron models using classic experimental traces under constant current injections, reliably predicting responses to synaptic inputs, which can be confidently used for large-scale network implementations.


Subject(s)
CA1 Region, Hippocampal , Interneurons , Models, Neurological , Pyramidal Cells , Pyramidal Cells/physiology , Interneurons/physiology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology , Animals , Action Potentials/physiology , Synapses/physiology , Computer Simulation
12.
Elife ; 122024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655918

ABSTRACT

Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.


Subject(s)
Deglutition , Hypoxia , Animals , Mice , Deglutition/physiology , Hypoxia/metabolism , Hypoxia/physiopathology , Male , Optogenetics , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/metabolism , Cholinergic Neurons/physiology , Cholinergic Neurons/metabolism , Interneurons/physiology , Interneurons/metabolism , Respiration , Female
13.
Proc Natl Acad Sci U S A ; 121(18): e2322550121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657053

ABSTRACT

Pronounced differences in neurotransmitter release from a given presynaptic neuron, depending on the synaptic target, are among the most intriguing features of cortical networks. Hippocampal pyramidal cells (PCs) release glutamate with low probability to somatostatin expressing oriens-lacunosum-moleculare (O-LM) interneurons (INs), and the postsynaptic responses show robust short-term facilitation, whereas the release from the same presynaptic axons onto fast-spiking INs (FSINs) is ~10-fold higher and the excitatory postsynaptic currents (EPSCs) display depression. The mechanisms underlying these vastly different synaptic behaviors have not been conclusively identified. Here, we applied a combined functional, pharmacological, and modeling approach to address whether the main difference lies in the action potential-evoked fusion or else in upstream priming processes of synaptic vesicles (SVs). A sequential two-step SV priming model was fitted to the peak amplitudes of unitary EPSCs recorded in response to complex trains of presynaptic stimuli in acute hippocampal slices of adult mice. At PC-FSIN connections, the fusion probability (Pfusion) of well-primed SVs is 0.6, and 44% of docked SVs are in a fusion-competent state. At PC-O-LM synapses, Pfusion is only 40% lower (0.36), whereas the fraction of well-primed SVs is 6.5-fold smaller. Pharmacological enhancement of fusion by 4-AP and priming by PDBU was recaptured by the model with a selective increase of Pfusion and the fraction of well-primed SVs, respectively. Our results demonstrate that the low fidelity of transmission at PC-O-LM synapses can be explained by a low occupancy of the release sites by well-primed SVs.


Subject(s)
Neurotransmitter Agents , Synaptic Vesicles , Animals , Synaptic Vesicles/metabolism , Synaptic Vesicles/physiology , Mice , Neurotransmitter Agents/metabolism , Hippocampus/metabolism , Hippocampus/physiology , Excitatory Postsynaptic Potentials/physiology , Synaptic Transmission/physiology , Interneurons/metabolism , Interneurons/physiology , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Synapses/metabolism , Synapses/physiology , Models, Neurological
14.
Proc Natl Acad Sci U S A ; 121(17): e2306382121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38640347

ABSTRACT

Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single-cell transcriptome analyses have provided a comprehensive Sst-IN subpopulations census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.


Subject(s)
Hippocampus , Interneurons , Mice , Animals , Interneurons/physiology , Hippocampus/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Somatostatin/genetics , Somatostatin/metabolism
15.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38572735

ABSTRACT

Many studies indicate a broad role of various classes of GABAergic interneurons in the processes related to learning. However, little is known about how the learning process affects intrinsic excitability of specific classes of interneurons in the neocortex. To determine this, we employed a simple model of conditional learning in mice where vibrissae stimulation was used as a conditioned stimulus and a tail shock as an unconditioned one. In vitro whole-cell patch-clamp recordings showed an increase in intrinsic excitability of low-threshold spiking somatostatin-expressing interneurons (SST-INs) in layer 4 (L4) of the somatosensory (barrel) cortex after the conditioning paradigm. In contrast, pseudoconditioning reduced intrinsic excitability of SST-LTS, parvalbumin-expressing interneurons (PV-INs), and vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) with accommodating pattern in L4 of the barrel cortex. In general, increased intrinsic excitability was accompanied by narrowing of action potentials (APs), whereas decreased intrinsic excitability coincided with AP broadening. Altogether, these results show that both conditioning and pseudoconditioning lead to plastic changes in intrinsic excitability of GABAergic interneurons in a cell-specific manner. In this way, changes in intrinsic excitability can be perceived as a common mechanism of learning-induced plasticity in the GABAergic system.


Subject(s)
Neocortex , Mice , Animals , Neocortex/metabolism , Interneurons/physiology , Learning/physiology , Conditioning, Classical/physiology , Parvalbumins/metabolism
16.
Commun Biol ; 7(1): 420, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582915

ABSTRACT

The morpho-functional properties of neural networks constantly adapt in response to environmental stimuli. The olfactory bulb is particularly prone to constant reshaping of neural networks because of ongoing neurogenesis. It remains unclear whether the complexity of distinct odor-induced learning paradigms and sensory stimulation induces different forms of structural plasticity. In the present study, we automatically reconstructed spines in 3D from confocal images and performed unsupervised clustering based on morphometric features. We show that while sensory deprivation decreased the spine density of adult-born neurons without affecting the morphometric properties of these spines, simple and complex odor learning paradigms triggered distinct forms of structural plasticity. A simple odor learning task affected the morphometric properties of the spines, whereas a complex odor learning task induced changes in spine density. Our work reveals distinct forms of structural plasticity in the olfactory bulb tailored to the complexity of odor-learning paradigms and sensory inputs.


Subject(s)
Odorants , Olfactory Bulb , Mice , Animals , Olfactory Bulb/physiology , Interneurons/physiology , Learning , Neurons/physiology
17.
Sci Adv ; 10(15): eadk0002, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38598630

ABSTRACT

Continuity of behaviors requires animals to make smooth transitions between mutually exclusive behavioral states. Neural principles that govern these transitions are not well understood. Caenorhabditis elegans spontaneously switch between two opposite motor states, forward and backward movement, a phenomenon thought to reflect the reciprocal inhibition between interneurons AVB and AVA. Here, we report that spontaneous locomotion and their corresponding motor circuits are not separately controlled. AVA and AVB are neither functionally equivalent nor strictly reciprocally inhibitory. AVA, but not AVB, maintains a depolarized membrane potential. While AVA phasically inhibits the forward promoting interneuron AVB at a fast timescale, it maintains a tonic, extrasynaptic excitation on AVB over the longer timescale. We propose that AVA, with tonic and phasic activity of opposite polarities on different timescales, acts as a master neuron to break the symmetry between the underlying forward and backward motor circuits. This master neuron model offers a parsimonious solution for sustained locomotion consisted of mutually exclusive motor states.


Subject(s)
Caenorhabditis elegans Proteins , Neurons , Animals , Caenorhabditis elegans/physiology , Interneurons/physiology
18.
Proc Natl Acad Sci U S A ; 121(16): e2317783121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588430

ABSTRACT

GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.


Subject(s)
Cerebral Cortex , Neocortex , Mice , Animals , Cerebral Cortex/metabolism , Cell Movement/physiology , Neurogenesis/physiology , Interneurons/physiology , Biomarkers/metabolism , GABAergic Neurons/physiology
19.
Proc Natl Acad Sci U S A ; 121(16): e2311040121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593083

ABSTRACT

Cortical dynamics and computations are strongly influenced by diverse GABAergic interneurons, including those expressing parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP). Together with excitatory (E) neurons, they form a canonical microcircuit and exhibit counterintuitive nonlinear phenomena. One instance of such phenomena is response reversal, whereby SST neurons show opposite responses to top-down modulation via VIP depending on the presence of bottom-up sensory input, indicating that the network may function in different regimes under different stimulation conditions. Combining analytical and computational approaches, we demonstrate that model networks with multiple interneuron subtypes and experimentally identified short-term plasticity mechanisms can implement response reversal. Surprisingly, despite not directly affecting SST and VIP activity, PV-to-E short-term depression has a decisive impact on SST response reversal. We show how response reversal relates to inhibition stabilization and the paradoxical effect in the presence of several short-term plasticity mechanisms demonstrating that response reversal coincides with a change in the indispensability of SST for network stabilization. In summary, our work suggests a role of short-term plasticity mechanisms in generating nonlinear phenomena in networks with multiple interneuron subtypes and makes several experimentally testable predictions.


Subject(s)
Interneurons , Neurons , Interneurons/physiology , Parvalbumins
20.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473860

ABSTRACT

Oxytocin (OT) is a neuropeptide that modulates social-related behavior and cognition in the central nervous system of mammals. In the CA1 area of the hippocampus, the indirect effects of the OT on the pyramidal neurons and their role in information processing have been elucidated. However, limited data are available concerning the direct modulation exerted by OT on the CA1 interneurons (INs) expressing the oxytocin receptor (OTR). Here, we demonstrated that TGOT (Thr4,Gly7-oxytocin), a selective OTR agonist, affects not only the membrane potential and the firing frequency but also the neuronal excitability and the shape of the action potentials (APs) of these INs in mice. Furthermore, we constructed linear mixed-effects models (LMMs) to unravel the dependencies between the AP parameters and the firing frequency, also considering how TGOT can interact with them to strengthen or weaken these influences. Our analyses indicate that OT regulates the functionality of the CA1 GABAergic INs through different and independent mechanisms. Specifically, the increase in neuronal firing rate can be attributed to the depolarizing effect on the membrane potential and the related enhancement in cellular excitability by the peptide. In contrast, the significant changes in the AP shape are directly linked to oxytocinergic modulation. Importantly, these alterations in AP shape are not associated with the TGOT-induced increase in neuronal firing rate, being themselves critical for signal processing.


Subject(s)
Interneurons , Oxytocin , Mice , Animals , Action Potentials , Oxytocin/pharmacology , Interneurons/physiology , Neurons , Hippocampus , Pyramidal Cells , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...