Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41.569
Filter
1.
Food Res Int ; 188: 114326, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823825

ABSTRACT

Tormentilla erecta (L.) Raeusch is a widespread plant in Europe and Western Asia. Its rhizomes (Tormentilae rhizoma) are the main ingredient of herbal alcoholic beverages and can be used as a natural preservative in beer production. Apart from its unique taste qualities, therapeutic properties in gastrointestinal tract ailments are attributed to the tincture obtained from Tormentillae rhizoma. The presented research aimed to determine the mutual relationship between the components of Tormentillae tincture, present in popular alcoholic beverages, and intestinal epithelium (Caco-2 cell monolayers). A comprehensive qualitative and quantitative analysis of the tincture was performed, including the determination of condensed and hydrolyzable tannins as well as triterpenoids (UHPLC-DAD-MS/MS). Incubation of the tincture with Caco-2 monolayers has shown that only triterpenes pass through the monolayer, while condensed tannins are mainly bound to the monolayer surface. Ellagic acid derivatives were the only components of the Tormentillae tinctura being metabolized by cell monolayers to the compounds not previously described in the literature, which may be crucial in the treatment of intestinal diseases with inflammatory background.


Subject(s)
Intestinal Mucosa , Rhizome , Humans , Caco-2 Cells , Rhizome/chemistry , Intestinal Mucosa/metabolism , Triterpenes/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Tandem Mass Spectrometry , Biological Transport , Chromatography, High Pressure Liquid , Alcoholic Beverages/analysis , Proanthocyanidins/metabolism , Hydrolyzable Tannins/metabolism , Ellagic Acid/metabolism
2.
Food Res Int ; 188: 114502, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823845

ABSTRACT

Lycium barbarum L. berries have a remarkable chemical composition and extensive biological activities, being a valuable component of health and nutraceutical practices. Nevertheless, a deep insight on the intestinal permeation of the pro-healthy bioactive compounds is urgently needed to predict the real effects on human body. This study attempted, for the first time, to optimize the Ultrasound-Assisted Extraction (UAE) of goji berries using a Response Surface Methodology approach and establish the intestinal permeation of the principal pro-healthy compounds. The optimal extraction conditions were a solid:liquid ratio of 8.75 % for 56.21 min, using an intensity of 59.05 W/m2. The optimal extract displayed a remarkable antioxidant capacity, with LC/DAD-ESI-MS analysis unveiled a diverse phytochemical profile, encompassing different compounds (e.g. glu-lycibarbarspermidine F, 2-glu-kukoamine, rutin, 3,5-dicaffeoylquinic acid). The intestinal co-culture model demonstrated that glu-lycibarbarspermidine F (isomer 2) (73.70 %), 3,5-dicaffeoylquinic acid (52.66 %), and isorhamnetin-3-O-rutinoside (49.31 %) traversed the intestinal cell layer, exerting beneficial health-promoting effects.


Subject(s)
Antioxidants , Fruit , Lycium , Plant Extracts , Lycium/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Humans , Permeability , Ultrasonic Waves , Phytochemicals/isolation & purification , Intestinal Mucosa/metabolism , Caco-2 Cells , Intestinal Absorption , Rutin/isolation & purification , Ultrasonics/methods , Intestinal Barrier Function
3.
Mol Biol Rep ; 51(1): 704, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824233

ABSTRACT

BACKGROUND: Tumor modeling using organoids holds potential in studies of cancer development, enlightening both the intracellular and extracellular molecular mechanisms behind different cancer types, biobanking, and drug screening. Intestinal organoids can be generated in vitro using a unique type of adult stem cells which are found at the base of crypts and are characterized by their high Lgr5 expression levels. METHODS AND RESULTS: In this study, we successfully established intestinal cancer organoid models by using both the BALB/c derived and mouse embryonic stem cells (mESCs)-derived intestinal organoids. In both cases, carcinogenesis-like model was developed by using azoxymethane (AOM) treatment. Carcinogenesis-like model was verified by H&E staining, immunostaining, relative mRNA expression analysis, and LC/MS analysis. The morphologic analysis demonstrated that the number of generated organoids, the number of crypts, and the intensity of the organoids were significantly augmented in AOM-treated intestinal organoids compared to non-AOM-treated ones. Relative mRNA expression data revealed that there was a significant increase in both Wnt signaling pathway-related genes and pluripotency transcription factors in the AOM-induced intestinal organoids. CONCLUSION: We successfully developed simple carcinogenesis-like models using mESC-based and Lgr5 + stem cell-based intestinal organoids. Intestinal organoid based carcinogenesi models might be used for personalized cancer therapy in the future.


Subject(s)
Azoxymethane , Carcinogenesis , Mouse Embryonic Stem Cells , Organoids , Wnt Signaling Pathway , Animals , Organoids/metabolism , Organoids/pathology , Mice , Azoxymethane/toxicity , Carcinogenesis/pathology , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Mouse Embryonic Stem Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice, Inbred BALB C , Intestines/pathology , Intestinal Neoplasms/pathology , Intestinal Neoplasms/chemically induced , Intestinal Neoplasms/genetics , Intestinal Neoplasms/metabolism , Disease Models, Animal , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
4.
Gut Microbes ; 16(1): 2359500, 2024.
Article in English | MEDLINE | ID: mdl-38825783

ABSTRACT

The gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.


Subject(s)
Archaea , Bacteria , Biofilms , Feces , Gastrointestinal Microbiome , Humans , Biofilms/growth & development , Archaea/classification , Archaea/metabolism , Archaea/genetics , Archaea/isolation & purification , Adult , Middle Aged , Female , Male , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Feces/microbiology , Colon/microbiology , Methanobrevibacter/metabolism , Methanobrevibacter/genetics , Methanobrevibacter/growth & development , Methanobrevibacter/isolation & purification , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/metabolism , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/metabolism , Aged , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Ileum/microbiology , Fatty Acids, Volatile/metabolism , Young Adult , Bile Acids and Salts/metabolism
5.
Front Immunol ; 15: 1405622, 2024.
Article in English | MEDLINE | ID: mdl-38827741

ABSTRACT

Background: Severe acute pancreatitis (SAP) is an inflammatory disorder affecting the gastrointestinal system. Intestinal injury plays an important role in the treatment of severe acute pancreatitis. In this study, we mainly investigated the role of S1PR2 in regulating macrophage pyroptosis in the intestinal injury of severe acute pancreatitis. Methods: The SAP model was constructed using cerulein and lipopolysaccharide, and the expression of S1PR2 was inhibited by JTE-013 to detect the degree of pancreatitis and intestinal tissue damage in mice. Meanwhile, the level of pyroptosis-related protein was detected by western blot, the level of related mRNA was detected by PCR, and the level of serum inflammatory factors was detected by ELISA. In vitro experiments, LPS+ATP was used to construct the pyroptosis model of THP-1. After knockdown and overexpression of S1PR2, the pyroptosis proteins level was detected by western blot, the related mRNA level was detected by PCR, and the level of cell supernatant inflammatory factors were detected by ELISA. A rescue experiment was used to verify the sufficient necessity of the RhoA/ROCK pathway in S1PR2-induced pyroptosis. Meanwhile, THP-1 and FHC were co-cultured to verify that cytokines released by THP-1 after damage could regulate FHC damage. Results: Our results demonstrated that JTE-013 effectively attenuated intestinal injury and inflammation in mice with SAP. Furthermore, we observed a significant reduction in the expression of pyroptosis-related proteins within the intestinal tissue of SAP mice upon treatment with JTE-013. We confirmed the involvement of S1PR2 in THP-1 cell pyroptosis in vitro. Specifically, activation of S1PR2 triggered pyroptosis in THP-1 cells through the RhoA/ROCK signaling pathway. Moreover, it was observed that inflammatory factors released during THP-1 cell pyroptosis exerted an impact on cohesin expression in FHC cells. Conclusion: The involvement of S1PR2 in SAP-induced intestinal mucosal injury may be attributed to its regulation of macrophage pyroptosis.


Subject(s)
Disease Models, Animal , Macrophages , Pancreatitis , Pyroptosis , Sphingosine-1-Phosphate Receptors , Animals , Mice , Humans , Macrophages/metabolism , Macrophages/immunology , Pancreatitis/metabolism , Pancreatitis/immunology , Pancreatitis/pathology , Pancreatitis/chemically induced , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Male , Signal Transduction , Mice, Inbred C57BL , rhoA GTP-Binding Protein/metabolism , THP-1 Cells , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/pathology , Intestines/immunology , Cytokines/metabolism , Lipopolysaccharides , Pyrazoles , Pyridines
6.
World J Gastroenterol ; 30(16): 2258-2271, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38690023

ABSTRACT

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG (n = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, n = 11) and positive control (phloroglucinol at 1.5 g/d HED, n = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration (P < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction (P < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception (P < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.


Subject(s)
Chitin , Colon , Disease Models, Animal , Glucans , Irritable Bowel Syndrome , Rats, Sprague-Dawley , Visceral Pain , Animals , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/physiopathology , Male , Humans , Colon/drug effects , Colon/pathology , Rats , Visceral Pain/drug therapy , Visceral Pain/physiopathology , Visceral Pain/metabolism , Visceral Pain/etiology , Chitin/pharmacology , Glucans/pharmacology , Glucans/administration & dosage , Mice , Prebiotics/administration & dosage , Trinitrobenzenesulfonic Acid/toxicity , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/physiopathology , Colitis/pathology , HT29 Cells
7.
Cell Stem Cell ; 31(5): 591-592, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701755

ABSTRACT

Recently in Cell Metabolism, Wei et al.1 unveiled a brain-to-gut pathway that conveys psychological stress to intestinal epithelial cells, leading to their dysfunction. This gut-brain axis involves a microbial metabolite, indole-3-acetate (IAA), as a niche signal that hampers mitochondrial respiration to skew intestinal stem cell (ISC) fate.


Subject(s)
Stem Cells , Stem Cells/metabolism , Stem Cells/cytology , Animals , Humans , Intestines/cytology , Intestines/microbiology , Stress, Physiological , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Cell Differentiation , Mitochondria/metabolism
8.
Front Immunol ; 15: 1353614, 2024.
Article in English | MEDLINE | ID: mdl-38698858

ABSTRACT

Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Panax , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Panax/chemistry , Humans , Animals , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Immune System/drug effects , Immune System/metabolism , Immune System/immunology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
9.
Food Res Int ; 186: 114322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729712

ABSTRACT

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Subject(s)
Colitis , Cultured Milk Products , Dextran Sulfate , Gastrointestinal Microbiome , Lactobacillus delbrueckii , Animals , Gastrointestinal Microbiome/drug effects , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Colitis/drug therapy , Lactobacillus delbrueckii/metabolism , Cultured Milk Products/microbiology , Mice , Probiotics/therapeutic use , Male , Mice, Inbred C57BL , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Inflammation , Colon/microbiology , Colon/metabolism , Lactobacillus
10.
Food Res Int ; 186: 114338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729719

ABSTRACT

Women with the extremely prevalent polycystic ovary syndromegather multiple cardiovascular risk factors and chronic subclinical inflammation. Interactions between diet, adiposity, and gut microbiota modulate intestinal permeabilityand bacterial product translocation, and may contribute to the chronic inflammation process associated with the polycystic ovary syndrome. In the present study, we aimed to address the effects of obesity, functional hyperandrogenism, and diverse oral macronutrients on intestinal permeabilityby measuring circulating markers of gut barrier dysfunction and endotoxemia. Participants included 17 non-hyperandrogenic control women, 17 women with polycystic ovary syndrome, and 19 men that were submitted to glucose, lipid, and protein oral loads. Lipopolysaccharide-binding protein, plasma soluble CD14, succinate, zonulin family peptide, and glucagon-like peptide-2 were determined at fasting and after oral challenges. Macronutrient challenges induced diverse changes on circulating intestinal permeabilitybiomarkers in the acute postprancial period, with lipids and proteins showing the most unfavorable and favorable effects, respectively. Particularly, lipopolysaccharide-binding protein, zonulin family peptide, and glucagon-like peptide-2 responses were deregulated by the presence of obesity after glucose and lipid challenges. Obese subjects showed higher fasting intestinal permeabilitybiomarkers levels than non-obese individuals, except for plasma soluble CD14. The polycystic ovary syndromeexacerbated the effect of obesity further increasing fasting glucagon-like peptide-2, lipopolysaccharide-binding protein, and succinate concentrations. We observed specific interactions of the polycystic ovary syndromewith obesity in the postprandial response of succinate, zonulin family peptide, and glucagon-like peptide-2. In summary, obesity and polycystic ovary syndromemodify the effect of diverse macronutrients on the gut barrier, and alsoinfluence intestinal permeabilityat fasting,contributing to the morbidity of functional hyperandrogenism by inducing endotoxemia and subclinical chronic inflammation.


Subject(s)
Fasting , Glucagon-Like Peptide 2 , Obesity , Permeability , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Female , Adult , Fasting/blood , Male , Glucagon-Like Peptide 2/blood , Intestinal Mucosa/metabolism , Gastrointestinal Microbiome , Nutrients , Young Adult , Haptoglobins/metabolism , Endotoxemia , Lipopolysaccharide Receptors/blood , Acute-Phase Proteins/metabolism , Biomarkers/blood , Membrane Glycoproteins/blood , Membrane Glycoproteins/metabolism , Dietary Fats , Glucose/metabolism , Intestinal Barrier Function , Carrier Proteins , Protein Precursors
11.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719750

ABSTRACT

Celiac disease (CD) is an autoimmune enteropathy resulting from an interaction between diet, genome, and immunity. Although many patients respond to a gluten-free diet, in a substantive number of individuals, the intestinal injury persists. Thus, other factors might amplify the ongoing inflammation. Candida albicans is a commensal fungus that is well adapted to the intestinal life. However, specific conditions increase Candida pathogenicity. The hypothesis that Candida may be a trigger in CD has been proposed after the observation of similarity between a fungal wall component and two CD-related gliadin T-cell epitopes. However, despite being implicated in intestinal disorders, Candida may also protect against immune pathologies highlighting a more intriguing role in the gut. Herein, we postulated that a state of chronic inflammation associated with microbial dysbiosis and leaky gut are favorable conditions that promote C. albicans pathogenicity eventually contributing to CD pathology via a mast cells (MC)-IL-9 axis. However, the restoration of immune and microbial homeostasis promotes a beneficial C. albicans-MC cross-talk favoring the attenuation of CD pathology to alleviate CD pathology and symptoms.


Subject(s)
Candida albicans , Celiac Disease , Homeostasis , Mast Cells , Celiac Disease/immunology , Celiac Disease/microbiology , Celiac Disease/metabolism , Humans , Candida albicans/pathogenicity , Candida albicans/immunology , Mast Cells/immunology , Mast Cells/metabolism , Gastrointestinal Microbiome/immunology , Dysbiosis/immunology , Candidiasis/immunology , Candidiasis/microbiology , Animals , Candida/pathogenicity , Candida/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism
12.
Mediators Inflamm ; 2024: 7524314, 2024.
Article in English | MEDLINE | ID: mdl-38725539

ABSTRACT

Objective: Microfold cells (M cells) are specific intestinal epithelial cells for monitoring and transcytosis of antigens, microorganisms, and pathogens in the intestine. However, the mechanism for M-cell development remained elusive. Materials and Methods: Real-time polymerase chain reaction, immunofluorescence, and western blotting were performed to analyze the effect of sorbitol-regulated M-cell differentiation in vivo and in vitro, and luciferase and chromatin Immunoprecipitation were used to reveal the mechanism through which sorbitol-modulated M-cell differentiation. Results: Herein, in comparison to the mannitol group (control group), we found that intestinal M-cell development was inhibited in response to sorbitol treatment as evidenced by impaired enteroids accompanying with decreased early differentiation marker Annexin 5, Marcksl1, Spib, sox8, and mature M-cell marker glycoprotein 2 expression, which was attributed to downregulation of receptor activator of nuclear factor kappa-В ligand (RANKL) expression in vivo and in vitro. Mechanically, in the M-cell model, sorbitol stimulation caused a significant upregulation of phosphodiesterase 4 (PDE4) phosphorylation, leading to decreased protein kinase A (PKA)/cAMP-response element binding protein (CREB) activation, which further resulted in CREB retention in cytosolic and attenuated CREB binds to RANKL promoter to inhibit RANKL expression. Interestingly, endogenous PKA interacted with CREB, and this interaction was destroyed by sorbitol stimulation. Most importantly, inhibition of PDE4 by dipyridamole could rescue the inhibitory effect of sorbitol on intestinal enteroids and M-cell differentiation and mature in vivo and in vitro. Conclusion: These findings suggested that sorbitol suppressed intestinal enteroids and M-cell differentiation and matured through PDE4-mediated RANKL expression; targeting to inhibit PDE4 was sufficient to induce M-cell development.


Subject(s)
Cell Differentiation , Cyclic AMP Response Element-Binding Protein , Cyclic Nucleotide Phosphodiesterases, Type 4 , RANK Ligand , Sorbitol , Sorbitol/pharmacology , RANK Ligand/metabolism , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cell Differentiation/drug effects , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Intestinal Mucosa/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Male , Mice, Inbred C57BL , M Cells
13.
Sci Rep ; 14(1): 10479, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714793

ABSTRACT

Enterochromaffin (EC) cells located within the intestinal mucosal epithelium release serotonin (5-HT) to regulate motility tones, barrier function and the immune system. Electroanalytical methodologies have been able to monitor steady state basal extracellular 5-HT levels but are unable to provide insight into how these levels are influenced by key regulatory processes such as release and uptake. We established a new measurement approach, amperometry approach curve profiling, which monitors the extracellular 5-HT level at different electrode-tissue (E-T) distances. Analysis of the current profile can provide information on contributions of regulatory components on the observed extracellular 5-HT level. Measurements were conducted from ex vivo murine ileum and colon using a boron-doped diamond (BDD) microelectrode. Amperometry approach curve profiling coupled with classical pharmacology demonstrated that extracellular 5-HT levels were significantly lower in the colon when compared to the ileum. This difference was due to a greater degree of activity of the 5-HT transporter (SERT) and a reduced amount of 5-HT released from colonic EC cells. The presence of an inhibitory 5-HT4 autoreceptor was observed in the colon, where a 40% increase in extracellular 5-HT was the half maximal inhibitory concentration for activation of the autoreceptor. This novel electroanalytical approach allows estimates of release and re-uptake and their contribution to 5-HT extracellular concentration from intestinal tissue be obtained from a single series of measurements.


Subject(s)
Colon , Ileum , Intestinal Mucosa , Serotonin , Serotonin/metabolism , Animals , Mice , Ileum/metabolism , Intestinal Mucosa/metabolism , Colon/metabolism , Enterochromaffin Cells/metabolism , Microelectrodes , Serotonin Plasma Membrane Transport Proteins/metabolism , Male , Electrochemical Techniques/methods , Mice, Inbred C57BL
14.
Cell Biol Toxicol ; 40(1): 33, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769285

ABSTRACT

Fumonisin B1 (FB1), a water-soluble mycotoxin released by Fusarium moniliforme Sheld, is widely present in corn and its derivative products, and seriously endangers human life and health. Recent studies have reported that FB1 can lead to pyroptosis, however, the mechanisms by which FB1-induced pyroptosis remain indistinct. In the present study, we aim to investigate the mechanisms of pyroptosis in intestinal porcine epithelial cells (IPEC-J2) and the relationship between FB1-induced endoplasmic reticulum stress (ERS) and pyroptosis. Our experimental results showed that the pyroptosis protein indicators in IPEC-J2 were significantly increased after exposure to FB1. The ERS markers, including glucose-regulated Protein 78 (GRP78), PKR-like ER kinase protein (PERK), and preprotein translocation factor (Sec62) were also significantly increased. Using small interfering RNA silencing of PERK or Sec62, the results demonstrated that upregulation of Sec62 activates the PERK pathway, and activation of the PERK signaling pathway is upstream of FB1-induced pyroptosis. After using the ERS inhibitor 4-PBA reduced the FB1-triggered intestinal injury by the Sec62-PERK pathway. In conclusion, we found that FB1 induced pyroptosis by upregulating Sec62 to activate the PERK pathway, and mild ERS alleviates FB1-triggered damage. It all boils down to one fact, the study provides a new perspective for further, and improving the toxicological mechanism of FB1.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Pyroptosis , Signal Transduction , eIF-2 Kinase , Pyroptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Animals , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Swine , Signal Transduction/drug effects , Endoplasmic Reticulum Chaperone BiP/metabolism , Cell Line , Intestines/drug effects , Intestines/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Fumonisins
15.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731514

ABSTRACT

While FXR has shown promise in regulating bile acid synthesis and maintaining glucose and lipid homeostasis, undesired side effects have been observed in clinical trials. To address this issue, the development of intestinally restricted FXR modulators has gained attention as a new avenue for drug design with the potential for safer systematic effects. Our review examines all currently known intestinally restricted FXR ligands and provides insights into the steps taken to enhance intestinal selectivity.


Subject(s)
Receptors, Cytoplasmic and Nuclear , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Ligands , Animals , Bile Acids and Salts/metabolism , Bile Acids and Salts/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestines/drug effects
16.
AAPS PharmSciTech ; 25(5): 113, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750336

ABSTRACT

Transport of oral nanocarriers across the GI epithelium necessitates transport across hydrophilic mucus layer and the hydrophobic epithelium. Based on hydrophobic-hydrophilic balance, Curcumin-Lipomer (lipid-polymer hybrid nanoparticles) comprising hydrophobic stearic acid and hydrophilic Gantrez™ AN 119 (Gantrez) were developed, by a radical in-situ approach, to successfully traverse both barriers. A monophasic preconcentrate (Cur-Pre) comprising Cur (Curcumin), stearic acid, Gantrez and stabilizers, prepared by simple solution, was added to an aqueous phase to instantaneously generate Curcumin-Lipomer (Cur-Lipo) of nanosize and high entrapment efficiency (EE). Cur-Lipo size and EE was optimized by Box-Behnken Design. Cur-Lipomers of varying hydrophobic-hydrophilic property obtained by varying the stearic acid: Gantrez ratio exhibited size in the range 200-400 nm, EE > 95% and spherical morphology as seen in the TEM. A decrease in contact angle and in mucus interaction, evident with increase in Gantrez concentration, indicated an inverse corelation with hydrophilicity, while a linear corelation was observed for mucopenetration and hydrophilicity. Cur-SLN (solid lipid nanoparticles) which served as the hydrophobic reference revealed contact angle > 90°, maximum interaction with mucus and minimal mucopenetration. The ex-vivo permeation study through chicken ileum, revealed maximum permeation with Cur-Lipo1 and comparable and significantly lower permeation of Cur-Lipo1-D and Cur-SLN proposing the importance of balancing the hydrophobic-hydrophilic property of the nanoparticles. A 1.78-fold enhancement in flux of hydrophobic Cur-SLN, with no significant change in permeation of the hydrophilic Cur-Lipomers (p > 0.05) following stripping off the mucosal layer was observed. This reiterated the significance of hydrophobic-hydrophilic balance as a promising strategy to design nanoformulations with superior permeation across the GI barrier.


Subject(s)
Curcumin , Drug Carriers , Hydrophobic and Hydrophilic Interactions , Intestinal Mucosa , Nanoparticles , Stearic Acids , Nanoparticles/chemistry , Administration, Oral , Animals , Stearic Acids/chemistry , Curcumin/administration & dosage , Curcumin/pharmacokinetics , Curcumin/chemistry , Intestinal Mucosa/metabolism , Drug Carriers/chemistry , Particle Size , Lipids/chemistry , Polymers/chemistry , Biological Transport/physiology , Polyvinyls/chemistry
17.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747908

ABSTRACT

BACKGROUND: miR-34a has been implicated in many autoimmune diseases and gastrointestinal diseases. However, the expression of miR-34 in ulcerative colitis (UC) patients were not fully studied. This study was performed to in-vestigate the association of blood and intestinal tissue miR-34a expression of patients with disease severity in UC patients. METHODS: Our study enrolled 82 patients with UC and 80 age- and gender- matched healthy individuals. Blood miR-34a expressions were detected using reverse transcription-polymerase chain reaction (RT-PCR). Local intestinal miR-34a, STAT3 mRNA and IL-23 mRNA expressions were also detected in the lesioned area and adjacent non-affected intestinal tissue in patients. Disease severity of UC was assessed by Mayo score. The diagnostic value of both blood and local miR-34a expression for UC patients was assessed by receiver operating characteristic (ROC) curve. RESULTS: Blood miR-34a was increased in UC patients in contrast with healthy individuals with statistical significance. In UC patients, local intestinal miR-34a expressions were markedly upregulated compared to adjacent non-affected intestinal tissue. Local intestinal miR-34a expressions were positively correlated with STAT3 mRNA and IL-23 mNRA. Both blood and local miR-34a expressions were significantly and positively related to Mayo scores. ROC curve analysis indicated that both blood and local miR-34a expressions may act as decent marker for Mayo grade. CONCLUSIONS: Blood and intestinal tissue miR-34a expressions are correlated with disease severity in UC patients. Both blood and intestinal tissue miR-34a expressions may serve as potential diagnostic and prognostic makers for UC. Therapeutic methods targeting miR-34a may act as potential ways for UC treatment.


Subject(s)
Colitis, Ulcerative , Intestinal Mucosa , MicroRNAs , STAT3 Transcription Factor , Severity of Illness Index , Humans , MicroRNAs/blood , MicroRNAs/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/blood , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/metabolism , Female , Male , Intestinal Mucosa/metabolism , Adult , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Middle Aged , Case-Control Studies , ROC Curve , Biomarkers/blood , Interleukin-23/blood , Interleukin-23/genetics , RNA, Messenger/genetics , RNA, Messenger/blood , RNA, Messenger/metabolism
18.
Mol Biol Rep ; 51(1): 658, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748314

ABSTRACT

BACKGROUND: The formation of chronic wounds accounts for considerable costs in health care systems. Despite the several benefits of decellularized small intestinal submucosa (SIS) as an appropriate scaffold for different tissue regeneration, it has shortcomings such as lack of antibacterial features and inappropriate mechanical properties for skin tissue regeneration. We aimed to examine the efficacy and safety of decellularized SIS scaffold enhanced with cellulose acetate (CA) and silver (Ag) nanoparticles (NPs) for healing full-thickness wounds. METHODS AND RESULTS: The scaffolds were prepared by decellularizing bovine SIS and electrospinning CA/Ag nanoparticles and characterized using a transmission electron microscope (TEM), scanning electron microscope (SEM), tensile testing, and X-ray diffraction. In vivo evaluations were performed using full-thickness excisions covered with sterile gauze as the control group, SIS, SIS/CA, and SIS/CA/Ag scaffolds on the dorsum of twenty male Wistar rats divided into four groups randomly with 21-days follow-up. All in vivo specimens underwent Masson's trichrome (MT) staining for evaluation of collagen deposition, transforming growth factor-ß (TGF-ß) immunohistochemistry (IHC), and Haematoxylin Eosin (H&E) staining. The IHC and MT data were analyzed with the ImageJ tool by measuring the stained area. The TEM results revealed that Ag nanoparticles are successfully incorporated into CA nanofibers. Assessment of scaffolds hydrophilicity demonstrated that the contact angle of SIS/CA/Ag scaffold was the lowest. The in vivo results indicated that the SIS/CA/Ag scaffold had the most significant wound closure. H&E staining of the in vivo specimens showed the formation of epidermal layers in the SIS/CA/Ag group on day 21. The percentage of the stained area of MT and TGF-ß IHC staining's was highest in the SIS/CA/Ag group. CONCLUSION: The decellularized SIS/CA/Ag scaffolds provided the most significant wound closure compared to other groups and caused the formation of epidermal layers and skin appendages. Additionally, the collagen deposition and expression of TGF-ß increased significantly in SIS/CA/Ag group.


Subject(s)
Cellulose , Intestinal Mucosa , Intestine, Small , Metal Nanoparticles , Nanofibers , Rats, Wistar , Silver , Tissue Scaffolds , Wound Healing , Animals , Silver/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Wound Healing/drug effects , Metal Nanoparticles/chemistry , Rats , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Intestinal Mucosa/metabolism , Male , Intestine, Small/metabolism , Cattle , Transforming Growth Factor beta/metabolism , Tissue Engineering/methods , Collagen
19.
Front Cell Infect Microbiol ; 14: 1346087, 2024.
Article in English | MEDLINE | ID: mdl-38736751

ABSTRACT

Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.


Subject(s)
Homeostasis , Immunity, Innate , Intestinal Mucosa , Humans , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Animals , Respiratory Mucosa/microbiology , Respiratory Mucosa/immunology , Epithelial Cells/microbiology , Signal Transduction , Adaptive Immunity , Macrophages/immunology , Macrophages/microbiology , Host-Pathogen Interactions
20.
Nat Commun ; 15(1): 4051, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744839

ABSTRACT

Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health. We show that in this location double negative 2 B cells interact with dendritic cells co-expressing the lupus autoantigens DNASE1L3 and C1q and microbicides. We observe that in humans, but not in mice, dendritic cells expressing DNASE1L3 are associated with sampled bacteria but not DNA derived from apoptotic cells. We propose that fundamental features of autoimmune diseases are microbiota-associated, interacting components of normal intestinal immunity.


Subject(s)
B-Lymphocytes , Dendritic Cells , Endodeoxyribonucleases , Gastrointestinal Microbiome , Animals , Humans , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Gastrointestinal Microbiome/immunology , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Female , Mice, Inbred C57BL , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...