Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.443
Filter
1.
Immunity ; 57(6): 1243-1259.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38744291

ABSTRACT

Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.


Subject(s)
Acetylcholine , Chlorides , Epithelial Cells , Intestinal Mucosa , Animals , Acetylcholine/metabolism , Mice , Chlorides/metabolism , Epithelial Cells/metabolism , Epithelial Cells/parasitology , Epithelial Cells/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Intestine, Small/immunology , Intestine, Small/parasitology , Intestine, Small/metabolism , Mice, Inbred C57BL , Mice, Knockout , Tuft Cells
2.
Immunol Cell Biol ; 102(5): 396-406, 2024.
Article in English | MEDLINE | ID: mdl-38648862

ABSTRACT

Increased permeability of the intestinal epithelial layer is linked to the pathogenesis and perpetuation of a wide range of intestinal and extra-intestinal diseases. Infecting humans with controlled doses of helminths, such as human hookworm (termed hookworm therapy), is proposed as a treatment for many of the same diseases. Helminths induce immunoregulatory changes in their host which could decrease epithelial permeability, which is highlighted as a potential mechanism through which helminths treat disease. Despite this, the influence of a chronic helminth infection on epithelial permeability remains unclear. This study uses the chronically infecting intestinal helminth Heligmosomoides polygyrus to reveal alterations in the expression of intestinal tight junction proteins and epithelial permeability during the infection course. In the acute infection phase (1 week postinfection), an increase in intestinal epithelial permeability is observed. Consistent with this finding, jejunal claudin-2 is upregulated and tricellulin is downregulated. By contrast, in the chronic infection phase (6 weeks postinfection), colonic claudin-1 is upregulated and epithelial permeability decreases. Importantly, this study also investigates changes in epithelial permeability in a small human cohort experimentally challenged with the human hookworm, Necator americanus. It demonstrates a trend toward small intestinal permeability increasing in the acute infection phase (8 weeks postinfection), and colonic and whole gut permeability decreasing in the chronic infection phase (24 weeks postinfection), suggesting a conserved epithelial response between humans and mice. In summary, our findings demonstrate dynamic changes in epithelial permeability during a chronic helminth infection and provide another plausible mechanism by which chronic helminth infections could be utilized to treat disease.


Subject(s)
Intestinal Mucosa , Permeability , Animals , Humans , Intestinal Mucosa/parasitology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Chronic Disease , Nematospiroides dubius/immunology , Mice , Necator americanus , Intestinal Diseases, Parasitic/immunology , Tight Junctions/metabolism , Tight Junction Proteins/metabolism , Intestine, Small/parasitology , Intestine, Small/immunology , Female , Mice, Inbred C57BL , Male , Helminthiasis/immunology , Helminthiasis/parasitology , Necatoriasis/immunology , MARVEL Domain Containing 2 Protein/metabolism
3.
Phytomedicine ; 128: 155363, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493715

ABSTRACT

BACKGROUND: Coccidiosis is a rapidly spreading and acute parasitic disease that seriously threatening the intestinal health of poultry. Matrine from leguminous plants has anthelmintic and anti-inflammatory properties. PURPOSE: This assay was conducted to explore the protective effects of Matrine and the AntiC (a Matrine compound) on Eimeria necatrix (EN)-infected chick small intestines and to provide a nutritional intervention strategy for EN injury. STUDY DESIGN: The in vivo (chick) experiment: A total of 392 one-day-old yellow-feathered broilers were randomly assigned to six groups in a 21-day study: control group, 350 mg/kg Matrine group, 500 mg/kg AntiC group, EN group, and EN + 350 mg/kg Matrine group, EN + 500 mg/kg AntiC group. The in vitro (chick intestinal organoids, IOs): The IOs were treated with PBS, Matrine, AntiC, 3 µM CHIR99021, EN (15,000 EN sporozoites), EN + Matrine, EN + AntiC, EN + Matrine + CHIR99021, EN + AntiC + CHIR99021. METHODS: The structural integrity of chicks jejunal crypt-villus axis was evaluated by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). And the activity of intestinal stem cells (ISCs) located in crypts was assessed by in vitro expansion advantages of a primary in IOs model. Then, the changes of Wnt/ß-catenin signaling in jejunal tissues and IOs were detected by Real-Time qPCR,Western blotting and immunohistochemistry. RESULTS: The results showed that dietary supplementation with Matrine or AntiC rescued the jejunal injury caused by EN, as indicated by increased villus height, reduced crypt hyperplasia, and enhanced expression of tight junction proteins. Moreover, there was less budding efficiency of the IOs expanded from jejunal crypts of chicks in the EN group than that in the Matrine and AntiC group, respectively. Further investigation showed that AntiC and Matrine inhibited EN-stimulated Wnt/ß-catenin signaling. The fact that Wnt/ß-catenin activation via CHIR99021 led to the failure of Matrine and AntiC to rescue damaged ISCs confirmed the dominance of this signaling. CONCLUSION: Our results suggest that Matrine and AntiC inhibit ISC proliferation and promote ISC differentiation into absorptive cells by preventing the hyperactivation of Wnt/ß-catenin signaling, thereby standardizing the function of ISC proliferation and differentiation, which provides new insights into mitigating EN injury by Matrine and AntiC.


Subject(s)
Alkaloids , Chickens , Coccidiosis , Eimeria , Matrines , Poultry Diseases , Quinolizines , Wnt Signaling Pathway , Animals , Quinolizines/pharmacology , Alkaloids/pharmacology , Wnt Signaling Pathway/drug effects , Eimeria/drug effects , Coccidiosis/drug therapy , Poultry Diseases/drug therapy , Poultry Diseases/parasitology , Stem Cells/drug effects , Intestine, Small/drug effects , Intestine, Small/parasitology
4.
Vet Parasitol ; 328: 110169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520755

ABSTRACT

The concentration of immunoglobulin (Ig) E is the lowest among serum Igs, but it can induces type I hypersensitivity and plays an important role in anti-parasitic infection. The present study aimed to explore the residence characteristics of IgE+ cells in the sheep small intestine and the impact of Moniezia benedeni infection on them. The recombinant plasmids pET-28a-IgE were constructed and induced and expressed in Escherichia coli. BL21 (DE3). The rabbit anti-sheep IgE polyclonal antibody was prepared using the obtained recombinant protein as antigen. Finally, the levels of IgE+ cells in the small intestine of healthy (Control group) and naturally M. benedeni-infected (Infected group) sheep were detected analyzed. The results showed that the rabbit anti-sheep IgE polyclonal antibody with good immunogenicity (titer = 1: 128000) could specifically bind to the heavy chain of natural sheep IgE. In the Control group, the IgE+ cells were mainly distributed in lamina propria of the small intestine, and the densities were significantly decreased from duodenum to ileum (P<0.05), with respective values of (4.28 cells / 104 µm2, 1.80 cells / 104 µm2, and 1.44 cells / 104 µm2 in duodenum, jejunum, and ileum. In the Infected group, IgE+ cells density were 6.26 cells / 104 µm2, 3.01 cells / 104 µm2, and 2.09 cells / 104 µm2 in duodenum, jejunum and ileum respectively, which were significantly higher in all segments compared to the Control group (P<0.05), increasing by 46.26%, 67.22% and 45.14%, respectively. In addition, compared with the Control group, the IgE protein levels were significantly increased in all intestinal segments of the Infected group (P<0.01), however, there was no significant differences among the different intestinal segments within the same group (P>0.05). The results demonstrated that M. benedeni infection could significantly increase the content of IgE and the distribution density of its secreting cells in sheep small intestine. The intestinal mucosal immune system of sheep presented obvious specificity against M. benedeni infection. This lays a good foundation for further exploring molecular mechanisms of the intestinal mucosal immune system monitoring and responding to M. benedeni infection.


Subject(s)
Immunoglobulin E , Intestine, Small , Sheep Diseases , Animals , Immunoglobulin E/blood , Sheep , Sheep Diseases/immunology , Sheep Diseases/parasitology , Intestine, Small/immunology , Intestine, Small/parasitology , Ciliophora Infections/veterinary , Ciliophora Infections/immunology , Ciliophora Infections/parasitology
5.
Acta Parasitol ; 69(1): 747-758, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38413556

ABSTRACT

PURPOSE: Using molecular techniques, we have previously shown that carnivorous mammals of the family Mustelidae might be common definitive hosts for various protozoan Sarcocystis species. In the present study we aimed to unravel whether Sarcocystis species using ungulates as intermediate hosts and canids or felids as definitive hosts can be found in intestine of mustelids. METHODS: Small intestine samples of 93 individual mustelids of five different species from Lithuania were examined. Sarcocystis species were identified based on species-specific PCR and subsequent cox1 sequencing. RESULTS: Six Sarcocystis species (S. arieticanis, S. bertrami, S. capracanis, S. capreolicanis, S. linearis and S. morae) defined by ungulate-canid life cycle were detected for the first time in small intestines of mustelids. By contrast, the prevalence of Sarcocystis characterised by ungulate-felid life cycle was low (3.2%). Overall, 76% of the examined animals were positive for at least one of the studied Sarcocystis species. Four species, S. arieticanis, S. bertrami, S. capracanis and S. morae were most commonly found, with the detection rate of about 40%. CONCLUSIONS: The current finding, in addition to our previous studies, suggests that mustelids play an important role in the spread of various Sarcocystis species.


Subject(s)
Intestine, Small , Mustelidae , Sarcocystis , Sarcocystosis , Animals , Sarcocystosis/veterinary , Sarcocystosis/parasitology , Sarcocystis/genetics , Sarcocystis/classification , Sarcocystis/isolation & purification , Intestine, Small/parasitology , Mustelidae/parasitology , Lithuania , Life Cycle Stages , Polymerase Chain Reaction , Phylogeny
6.
Rev. esp. enferm. dig ; 115(12): 679-681, Dic. 2023.
Article in English, Spanish | IBECS | ID: ibc-228701

ABSTRACT

El sobrecrecimiento bacteriano intestinal (SIBO, por sus siglas en inglés) es una entidad descrita desde hace varias décadas, pero que en los últimos años ha cobrado un especial interés por parte de los profesionales médicos y por la población general, probablemente por el aumento de la disponibilidad de pruebas diagnósticas y por la extensa difusión que se le ha dado a esta enfermedad a través de los medios de comunicación y redes sociales. En vista de la gran cantidad de información disponible en la actualidad y en ocasiones discrepante, entre la Sociedad Española de Patología Digestiva (SEPD) y la Asociación Española de Neurogastroenterología y Motilidad (ASENEM) hemos realizado un documento de posicionamiento para establecer líneas de diagnóstico y tratamiento del SIBO con la información científica actualizada.(AU)


Subject(s)
Humans , Male , Female , Digestive System Diseases/diagnosis , Intestine, Small/parasitology , Bacteria , Gastrointestinal Diseases/complications , Drug Therapy , Diagnostic Imaging
7.
J Exp Med ; 219(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34779829

ABSTRACT

Helminth parasites are adept manipulators of the immune system, using multiple strategies to evade the host type 2 response. In the intestinal niche, the epithelium is crucial for initiating type 2 immunity via tuft cells, which together with goblet cells expand dramatically in response to the type 2 cytokines IL-4 and IL-13. However, it is not known whether helminths modulate these epithelial cell populations. In vitro, using small intestinal organoids, we found that excretory/secretory products (HpES) from Heligmosomoides polygyrus blocked the effects of IL-4/13, inhibiting tuft and goblet cell gene expression and expansion, and inducing spheroid growth characteristic of fetal epithelium and homeostatic repair. Similar outcomes were seen in organoids exposed to parasite larvae. In vivo, H. polygyrus infection inhibited tuft cell responses to heterologous Nippostrongylus brasiliensis infection or succinate, and HpES also reduced succinate-stimulated tuft cell expansion. Our results demonstrate that helminth parasites reshape their intestinal environment in a novel strategy for undermining the host protective response.


Subject(s)
Epithelial Cells/metabolism , Goblet Cells/metabolism , Intestine, Small/cytology , Organoids/metabolism , Strongylida Infections/metabolism , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , Epithelial Cells/parasitology , Female , Gene Expression Regulation/drug effects , Goblet Cells/parasitology , Helminth Proteins/metabolism , Helminth Proteins/pharmacology , Host-Parasite Interactions , Interleukin-13/pharmacology , Interleukin-4/pharmacology , Intestine, Small/parasitology , Mice, Inbred C57BL , Nematospiroides dubius/metabolism , Nematospiroides dubius/physiology , Nippostrongylus/metabolism , Nippostrongylus/physiology , Organoids/cytology , Organoids/parasitology , Strongylida Infections/parasitology , Succinic Acid/pharmacology , Transcriptome/drug effects
8.
Exp Parasitol ; 231: 108172, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34774533

ABSTRACT

The nematophagous fungus Duddingtonia flagrans is used in integrated management of gastrointestinal nematodes in ruminants. The chlamydospores of the fungus, orally administered, pass through the segments of the ruminant digestive tract and, in the feces, capture the nematodes preventing their migration to grasslands. The drastic conditions of the gastrointestinal segments can negatively affect the fungus' biocontrol activity. The aim of this study was to assess the effect of in vitro conditions of the sheep's main gastrointestinal segments on the concentration, viability and nematode predatory ability of D. flagrans chlamydospores. The segments evaluated separately in vitro were the oral cavity, rumen, abomasum, and small intestine. The results showed that chlamydospores concentration was not affected by exposure to the different segments. The viability of the chlamydospores after exposure to the oral cavity (2.53 × 106 CFU/mL) and small intestine (1.24 × 105 CFU/mL) was significantly lower than its control treatment, with values of 6.67 × 106 CFU/mL and 2.31 × 105 CFU/mL respectively. Nematode predatory ability after rumen exposure was reduced by 7% compared to the control treatment, by 25% after abomasum exposure and by 17% after small intestine. This study revealed the individual in vitro effect of each segment of ovine gastrointestinal tract on the integrity of this strain of the fungus D. flagrans affecting its viability and nematode predatory ability under the evaluated conditions. Delivery systems could be designed to protect chlamydospores considering the impact of each gastrointestinal segment.


Subject(s)
Ascomycota/physiology , Gastrointestinal Diseases/prevention & control , Gastrointestinal Tract/microbiology , Nematode Infections/prevention & control , Abomasum/microbiology , Abomasum/parasitology , Analysis of Variance , Animals , Ascomycota/growth & development , Feces/parasitology , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/parasitology , Gastrointestinal Tract/parasitology , Intestine, Small/microbiology , Intestine, Small/parasitology , Mouth/microbiology , Mouth/parasitology , Nematode Infections/microbiology , Pest Control, Biological/methods , Rumen/microbiology , Rumen/parasitology , Sheep , Spores, Fungal/growth & development
9.
Elife ; 102021 10 11.
Article in English | MEDLINE | ID: mdl-34633285

ABSTRACT

Paneth cells constitutively produce antimicrobial peptides and growth factors that allow for intestinal homeostasis, host protection, and intestinal stem cell replication. Paneth cells rely heavily on the glycolytic metabolic program, which is in part controlled by the kinase complex Mechanistic target of rapamycin (mTORC1). Yet, little is known about mTOR importance in Paneth cell integrity under steady-state and inflammatory conditions. Our results demonstrate that IFN-γ, a crucial mediator of the intestinal inflammation, acts directly on murine Paneth cells to alter their mitochondrial integrity and membrane potential, resulting in an TORC1-dependent cell death mechanism distinct from canonical cell death pathways including apoptosis, necroptosis, and pyroptosis. These results were established with the purified cytokine and a physiologically relevant common Th1-inducing human parasite Toxoplasma gondii. Given the crucial role for IFN-γ, which is a cytokine frequently associated with the development of inflammatory bowel disease and compromised Paneth cell functions, the identified mechanisms underlying mTORC1-dependent Paneth cell death downstream of IFN-γ may provide promising novel approaches for treating intestinal inflammation.


Subject(s)
Cell Death , Interferon-gamma/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Paneth Cells/pathology , Animals , Female , Interferon-gamma/genetics , Intestine, Small/parasitology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Toxoplasma , Toxoplasmosis/pathology
10.
Front Immunol ; 12: 711907, 2021.
Article in English | MEDLINE | ID: mdl-34484215

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are early effectors of mucosal type 2 immunity, producing cytokines such as interleukin (IL)-13 to mediate responses to helminth infection and allergen-induced inflammation. ILC2s are also present in lymph nodes (LNs) and can express molecules required for antigen presentation, but to date there are limited data on their dynamic behaviour. We used a CD2/IL-13 dual fluorescent reporter mouse for in vivo imaging of ILC2s and Th2 T cells in real time following a type 2 priming helminth infection or egg injection. After helminth challenge, we found that ILC2s were the main source of IL-13 in lymphoid organs (Peyer's patches and peripheral LNs), and were located in T cell areas. Intravital imaging demonstrated an increase in IL-13+ ILC2 size and movement following helminth infection, but reduced duration of interactions with T cells compared with those in homeostasis. In contrast, in the intestinal mucosa, we observed an increase in ILC2-T cell interactions post-infection, including some of prolonged duration, as well as increased IL-13+ ILC2 movement. These data suggest that ILC2 activation enhances cell motility, with the potential to increase the area of distribution of cytokines to optimise the early generation of type 2 responses. The prolonged ILC2 interactions with T cells within the intestinal mucosa are consistent with the conclusion that contact-based T cell activation may occur within inflamed tissues rather than lymphoid organs. Our findings have important implications for our understanding of the in vivo biology of ILC2s and the way in which these cells facilitate adaptive immune responses.


Subject(s)
Intestinal Diseases, Parasitic/immunology , Lymphocyte Subsets/immunology , Nippostrongylus , Schistosomiasis mansoni/immunology , Strongylida Infections/immunology , Th2 Cells/immunology , Animals , Genes, Reporter , Interleukin-13/analysis , Intestinal Mucosa/immunology , Intestine, Small/immunology , Intestine, Small/parasitology , Intravital Microscopy , Lymphocyte Count , Lymphocyte Subsets/chemistry , Mice , Organ Specificity , Specific Pathogen-Free Organisms , Th2 Cells/chemistry
11.
J Parasitol ; 107(5): 703-709, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34516638

ABSTRACT

Allintoshius Chitwood, 1937 is the only genus of the family Ornithostrongylidae (Travassos, 1937) Durette-Desset and Chabaud, 1981 that parasitizes bats. Currently, there are 10 valid species in the genus, of which 3 were described from Brazil. This study describes a new species of Allintoshius and records the first occurrence of a nematode of this genus parasitizing Artibeus lituratus (Olfers). Allintoshius gomesae n. sp. is characterized by having anterior region coiled, cephalic vesicle with cuticular dilation striated transversely, and claviform esophagus. Synlophe in females consists of 16 cuticular ridges at the mid-body. Males have large caudal bursa, and conic and small spicules, and the gubernaculum is absent. Females have uterus didelphic, amphidelphic, tail tip tapered, and ovijector divided into 2 divergent branches, subequal in length. The new species differs from its congeners especially by the shape of the tail tip, vulvar opening, and size of spicules. Allintoshius gomesae is the fourth species of Allintoshius from Brazil and the first report in Ar. lituratus, increasing the number of species recognized of the genus.


Subject(s)
Chiroptera/parasitology , Heligmosomatoidea/classification , Strongylida Infections/veterinary , Animals , Brazil , Chiroptera/classification , Female , Heligmosomatoidea/anatomy & histology , Heligmosomatoidea/isolation & purification , Intestine, Small/parasitology , Male , Strongylida Infections/parasitology
12.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34290141

ABSTRACT

"Taste-like" tuft cells in the intestine trigger type 2 immunity in response to worm infection. The secretion of interleukin-13 (IL-13) from type 2 innate lymphoid cells (ILC2) represents a key step in the tuft cell-ILC2 cell-intestinal epithelial cell circuit that drives the clearance of worms from the gut via type 2 immune responses. Hallmark features of type 2 responses include tissue remodeling, such as tuft and goblet cell expansion, and villus atrophy, yet it remains unclear if additional molecular changes in the gut epithelium facilitate the clearance of worms from the gut. Using gut organoids, we demonstrated that IL-4 and IL-13, two type 2 cytokines with similar functions, not only induced the classical type 2 responses (e.g., tuft cell expansion) but also drastically up-regulated the expression of gasdermin C genes (Gsdmcs). Using an in vivo worm-induced type 2 immunity model, we confirmed the up-regulation of Gsdmcs in Nippostrongylus brasiliensis-infected wild-type C57BL/6 mice. Consistent with gasdermin family members being principal effectors of pyroptosis, overexpression of Gsdmc2 in human embryonic kidney 293 (HEK293) cells triggered pyroptosis and lytic cell death. Moreover, in intestinal organoids treated with IL-4 or IL-13, or in wild-type mice infected with N. brasiliensis, lytic cell death increased, which may account for villus atrophy observed in worm-infected mice. Thus, we propose that the up-regulated Gsdmc family may be major effectors for type 2 responses in the gut and that Gsdmc-mediated pyroptosis may provide a conduit for the release of antiparasitic factors from enterocytes to facilitate the clearance of worms.


Subject(s)
Cell Death , DNA-Binding Proteins/metabolism , Enterocytes/pathology , Immunity, Innate/immunology , Intestine, Small/pathology , Strongylida Infections/complications , Th2 Cells/immunology , Animals , Cell Proliferation , DNA-Binding Proteins/genetics , Enterocytes/immunology , Enterocytes/metabolism , Enterocytes/parasitology , Female , Interleukin-13/metabolism , Interleukin-4/metabolism , Intestine, Small/immunology , Intestine, Small/metabolism , Intestine, Small/parasitology , Male , Mice , Mice, Inbred C57BL , Nippostrongylus/physiology , Signal Transduction , Strongylida Infections/immunology , Strongylida Infections/metabolism , Strongylida Infections/parasitology
13.
Naunyn Schmiedebergs Arch Pharmacol ; 394(9): 1869-1878, 2021 09.
Article in English | MEDLINE | ID: mdl-34324017

ABSTRACT

Giardia duodenalis is a common cause of infection in children and travelers. The most frequent symptom is diarrhea in these patients. G. duodenalis trophozoites use a highly specialized adhesive disc to attach the host intestinal epithelium to induce intestinal damages. Pathological features of the small intestine following giardiasis include villous atrophy; infiltration of granulocytes, lymphocytes, and plasma cells into the lamina propria; and nodular lymphoid hyperplasia. The disturbed intestinal microbiota has been observed in patients with giardiasis. Therefore, a growing body of evidence has emphasized restoring the gut microbiome by probiotics in giardiasis. This study aimed to review the literature to find the pathologic features of giardiasis and its relationship with imbalanced microbiota. Then, benefits of probiotics in giardiasis and their potential molecular mechanisms were discussed. It has been illustrated that using probiotics (e.g., Lactobacillus and Saccharomyces) can reduce the time of gastrointestinal symptoms and repair the damages, particularly in giardiasis. Probiotics' capability in restoring the composition of commensal microbiota may lead to therapeutic outcomes. According to preclinical and clinical studies, probiotics can protect against parasite-induced mucosal damages via increasing the antioxidant capacity, suppressing oxidative products, and regulating the systemic and mucosal immune responses. In addition, they can reduce the proportion of G. duodenalis load by directly targeting the parasite. They can destroy the cellular architecture of parasites and suppress the proliferation and growth of trophozoites via the production of some factors with anti-giardial features. Further researches are required to find suitable probiotics for the prevention and treatment of giardiasis.


Subject(s)
Giardia lamblia/isolation & purification , Giardiasis/therapy , Probiotics/administration & dosage , Animals , Child , Diarrhea/parasitology , Diarrhea/therapy , Gastrointestinal Microbiome , Giardiasis/physiopathology , Humans , Intestine, Small/parasitology , Lactobacillus , Saccharomyces
14.
Nat Commun ; 12(1): 3371, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099671

ABSTRACT

The role of p53 in tumor suppression has been extensively studied and well-established. However, the role of p53 in parasitic infections and the intestinal type 2 immunity is unclear. Here, we report that p53 is crucial for intestinal type 2 immunity in response to the infection of parasites, such as Tritrichomonas muris and Nippostrongylus brasiliensis. Mechanistically, p53 plays a critical role in the activation of the tuft cell-IL-25-type 2 innate lymphoid cell circuit, partly via transcriptional regulation of Lrmp in tuft cells. Lrmp modulates Ca2+ influx and IL-25 release, which are critical triggers of type 2 innate lymphoid cell response. Our results thus reveal a previously unrecognized function of p53 in regulating intestinal type 2 immunity to protect against parasitic infections, highlighting the role of p53 as a guardian of immune integrity.


Subject(s)
Immunity, Innate/immunology , Intestines/immunology , Nippostrongylus/immunology , Parasitic Diseases/immunology , Tritrichomonas/immunology , Tumor Suppressor Protein p53/immunology , Animals , Cell Line, Tumor , Eosinophils/immunology , Eosinophils/parasitology , Gene Expression Regulation , Goblet Cells/immunology , Goblet Cells/parasitology , Host-Parasite Interactions/immunology , Humans , Intestine, Small/immunology , Intestine, Small/metabolism , Intestine, Small/parasitology , Intestines/parasitology , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Nippostrongylus/physiology , Parasitic Diseases/metabolism , Parasitic Diseases/parasitology , Tritrichomonas/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
15.
J Parasitol ; 107(3): 381-387, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33971011

ABSTRACT

Co-infections of mammalian hosts with intestinal helminths and bacterial pathogens are common, especially in areas with inadequate sanitation. Interactions between co-infecting species and host microbiota can cause significant changes in host immunity, disease severity, and pathogen transmission, requiring unique treatment for each case. A greater understanding of the influences of parasite-bacteria co-infections will improve diagnosis and therapeutic approaches to control infectious diseases. To study the influence of the trematode parasite Echinostoma caproni on commensal and pathogenic bacteria in the mouse gut, we examined the abundance of intestinal lactic acid bacteria and Salmonella enterica serovar Typhimurium in control mice not exposed to E. caproni (P-) or S. Typhimurium (S-), E. caproni-infected (P+S-), S. Typhimurium-infected (P-S+), and E. caproni-S. Typhimurium co-infected (P+S+) mice, and determined bacterial burdens in the livers and spleens of the P-S+ and P+S+ mice. We also examined a subset of P+S- and P+S+ mice for survival and the relative location of E. caproni in the small intestine. The numbers of presumptive lactic acid bacteria were significantly higher in the P+S+ and P-S+ mice compared to the uninfected mice, and S. Typhimurium colonization in the liver and spleen was significantly reduced in the P+S+ mice compared to the P-S+ mice. Echinostoma caproni were located anteriorly in the intestine of P+S- mice, while in the P+S+ mice, the parasites were distributed more posteriorly. Survival of E. caproni was unaffected in either group. The results of our study suggest that E. caproni facilitates a higher abundance of presumptive lactic acid bacteria in the mouse intestine and reduces colonization of S. Typhimurium in the liver and spleen of the co-infected host.


Subject(s)
Echinostoma/physiology , Intestine, Small/microbiology , Intestine, Small/parasitology , Lactobacillales/growth & development , Salmonella typhimurium/growth & development , Animals , Biomphalaria/parasitology , Echinostoma/isolation & purification , Feces/microbiology , Feces/parasitology , Female , Lactobacillales/isolation & purification , Liver/microbiology , Liver/parasitology , Metacercariae/isolation & purification , Metacercariae/physiology , Mice , Mice, Inbred ICR , Monte Carlo Method , Salmonella typhimurium/isolation & purification , Spleen/microbiology , Spleen/parasitology
16.
Parasit Vectors ; 14(1): 153, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33712075

ABSTRACT

BACKGROUND: Toxoplasma gondii is a parasite that primarily infects through the oral route. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) play crucial roles in the immune responses generated during parasitic infection and also drive the inflammatory response against invading parasites. However, little is known about the regulation of NLRs and inflammasome activation in T. gondii-infected human small intestinal epithelial (FHs 74 Int) cells. METHODS: FHs 74 Int cells infected with T. gondii were subsequently evaluated for morphological changes, cytotoxicity, expression profiles of NLRs, inflammasome components, caspase-cleaved interleukins (ILs), and the mechanisms of NLRP3 and NLRP6 inflammasome activation. Immunocytochemistry, lactate dehydrogenase assay, reverse transcription polymerase chain reaction (RT-PCR), real-time quantitative RT-PCR, and western blotting techniques were utilized for analysis. RESULTS: Under normal and T. gondii-infected conditions, members of the NLRs, inflammasome components and caspase-cleaved ILs were expressed in the FHs Int 74 cells, except for NLRC3, NLRP5, and NLRP9. Among the NLRs, mRNA expression of NOD2, NLRP3, NLRP6, and NAIP1 was significantly increased in T. gondii-infected cells, whereas that of NLRP2, NLRP7, and CIITA mRNAs decreased significantly in a time-dependent manner. In addition, T. gondii infection induced NLRP3, NLRP6 and NLRC4 inflammasome activation and production of IL-1ß, IL-18, and IL-33 in FHs 74 Int cells. T. gondii-induced NLRP3 inflammasome activation was strongly associated with the phosphorylation of p38 MAPK; however, JNK1/2 had a weak effect. NLRP6 inflammasome activation was not related to the MAPK pathway in FHs 74 Int cells. CONCLUSIONS: This study highlighted the expression profiles of NLRs and unraveled the underlying mechanisms of NLRP3 inflammasome activation in T. gondii-infected FHs 74 Int cells. These findings may contribute to understanding of the mucosal and innate immune responses induced by the NLRs and inflammasomes during T. gondii infection in FHs 74 Int cells.


Subject(s)
Epithelial Cells/parasitology , Gene Expression Regulation/immunology , Immunity, Innate , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Proteins/genetics , Cell Line , Humans , Inflammasomes/immunology , Intestine, Small/cytology , Intestine, Small/parasitology , NLR Proteins/classification , NLR Proteins/immunology , RNA, Messenger
17.
J Parasitol ; 107(2): 267-274, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33784742

ABSTRACT

The hawksbill turtle Eretmochelys imbricata is a critically endangered species with a worldwide distribution. Limited information is available about the naturally occurring intestinal parasites of this species and what impact these parasites may have on the health of the hawksbill turtle. Diaschistorchis pandus was identified postmortem in 5 hawksbill turtles from Grenada, West Indies, using morphologic characterization. Sanger sequencing was performed for conserved ribosomal regions (5.8S, ITS2, 28S) and the mitochondrial cytochrome c oxidase subunit 1 gene (COI). Phylogenetic analysis of the 28S rRNA gene sequence data shows D. pandus clustering with other trematodes in the family Pronocephalidae, corroborating morphological classification. No genetic sequences have been previously reported for this trematode species, which has limited the collection of objective epidemiological data about this parasite of marine turtles.


Subject(s)
Trematoda/classification , Trematode Infections/veterinary , Turtles/parasitology , Animals , Autopsy/veterinary , DNA, Helminth/chemistry , DNA, Helminth/genetics , Endangered Species , Grenada , Intestine, Small/parasitology , Intestine, Small/pathology , Male , Phylogeny , RNA, Ribosomal, 28S/genetics , Trematoda/anatomy & histology , Trematoda/genetics , Trematoda/isolation & purification , Trematode Infections/parasitology
18.
J Parasitol ; 107(1): 98-107, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33567092

ABSTRACT

Falcaustra vietnamensis n. sp. is described from the small intestine of Physignathus cocincinus from north-central Vietnam. The new species is characterized by the large male worms (20.2-28.8 mm in length and 557-724 µm in width) relative to known members of the genus, 2 sharply pointed alate spicules of equal length (1,128-1,256 µm in length), gubernaculum including 2 separate pieces, 1 ventral with a pointed distal end and 1 dorsal with a blunt distal end (164-192 µm and 155-172 µm in length, respectively), and 12 pairs of caudal papillae. Female worms are larger than male worms (24.2-34.1 mm in length and 532-735 µm in width), with the vulva situated in the posterior half of body, and elliptical eggs, 60-70 µm long by 42-47 µm wide. Falcaustra vietnamensis n. sp. represents the 38th species assigned to the genus and the third species recorded from a lizard host in the Oriental biogeographical region. Partial sequences of the 18S ribosomal RNA gene (rDNA), internal transcribed spacer regions (ITS), and cytochrome c oxidase subunit 1 (COI) are provided for the new species. The molecular phylogenetic position of the genus Falcaustra is briefly discussed.


Subject(s)
Lizards/parasitology , Spirurida Infections/veterinary , Spirurina/classification , Spirurina/genetics , Animals , Bayes Theorem , DNA, Helminth/chemistry , DNA, Helminth/isolation & purification , Female , Intestine, Small/parasitology , Male , Microscopy, Electron, Scanning/veterinary , Phylogeny , Polymerase Chain Reaction/veterinary , Spirurida Infections/parasitology , Spirurina/ultrastructure , Vietnam
19.
Parasitol Res ; 120(4): 1303-1310, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33634412

ABSTRACT

Raillietina echinobothrida (R. echinobothrida) is one of the most pathogenic and prevalent tapeworms threat to the commercial chickens in China. However, there is a lack of research on their molecular identification and morphological characteristics. This study explored the molecular identification markers for R. echinobothrida in North China based on 18s ribosomal RNA (18s rRNA) gene and the ribosomal DNA second internal transcribed spacer (ITS-2) gene. The BLAST results of 18s rRNA (1643 bp) and ITS-2 (564 bp) gene sequences showed that the isolated intestinal tapeworms were R. echinobothrida. Phylogenetic trees obtained by maximum likelihood (ML) or neighbor-joining (NJ) method revealed that the R. echinobothrida in North China had the closest evolutionary relationship with the species found on the Qinghai-Tibet plateau, China. Morphological observations by hematoxylin staining and scanning electron microscope showed four round suckers and a retractable rostellum on the spherical scolex of R. echinobothrida. Two rows of alternately arranged hooks distributed around the rostellum. There were 30-40 testes in each mature segment. A well-developed cirrus pouch lied outside the excretory duct of mature segment. The gravid segment contained 200-400 eggs and there was a well-developed oncosphere in each egg. In addition, abundant ultrastructural features in mature proglottid of R. echinobothrida in North China were identified by transmission electron microscopy. In conclusion, the present study established ways of molecular phylogenetic identification for R. echinobothrida based on 18s rRNA and ITS-2 gene, and identified the morphological and ultrastructural characteristics of R. echinobothrida in North China.


Subject(s)
Cestoda/anatomy & histology , Cestoda/genetics , Cestode Infections/veterinary , Chickens/parasitology , Poultry Diseases/parasitology , Animals , Cestoda/classification , Cestoda/isolation & purification , Cestode Infections/parasitology , Cestode Infections/pathology , China , DNA, Helminth/genetics , DNA, Ribosomal Spacer/genetics , Genes, Helminth , Genes, rRNA , Intestine, Small/parasitology , Phylogeny , Poultry Diseases/pathology , RNA, Ribosomal, 18S/genetics
20.
Trop Anim Health Prod ; 53(1): 58, 2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33389223

ABSTRACT

The aim of this research was to determine the effect of gut health parameters on the flock's final weight of broilers and to calculate an accurate equation to estimate this weight with information available at 7, 14, and 21 days, in field conditions. Gut health parameters (gizzard erosion, coccidiosis, feed passage, and redness, gut tone, consistency of content, and presence of mucus for each part of the small intestine [duodenum, jejunum, and ileum], and color, consistency, and presence of gas for caeca content) were evaluated at 7 and 14 days. Other parameters evaluated for impact on flock final weight were body weight and mortality, both at 7, 14, and 21 days; stocking density; litter reuse; and downtime period. Structural equation model evaluation of the data showed that stocking density and litter reuse did not affect (P > 0.05) flock final weight, while downtime period, body weight (14 and 21 days), and mortality (14 and 21 days) directly affected (P ≤ 0.05) the flock final weight. Gut health parameters did not directly affect the flock's final weight; however, they affected body weight and mortality at 14 days, thus showing an indirect effect on the flock's final weight. It was also possible to determine two accurate equations to estimate the flock's final weight using information available at both 14 (R2 = 0.56) and 21 (R2 = 0.77) days.


Subject(s)
Body Weight , Chickens , Latent Class Analysis , Animals , Brazil/epidemiology , Coccidiosis/epidemiology , Coccidiosis/veterinary , Female , Intestinal Diseases, Parasitic/epidemiology , Intestine, Small/parasitology , Poultry Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...