Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.052
Filter
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38812469

ABSTRACT

Study objectives were to characterize the effects of citrulline (CIT) on physiological and intestinal morphology metrics during heat stress (HS) and feed restriction. Forty crossbred gilts (30 ±â€…2 kg body weight [BW]) were assigned to one of five treatments: (1) thermoneutral (TN) fed ad libitum (AL) with control (CON) supplement (TNAL; n = 8), (2) TN pair-fed (PF) with CON (PF-CON; n = 8), (3) TN PF with CIT (PF-CIT; n = 8), (4) HS AL with CON (HS-CON; n = 8), and (5) HS AL with CIT (HS-CIT; n = 8). During the period (P) 1 (7 d), pigs were in TN conditions (23.6 °C) and fed AL their respective supplemental treatments. During P2 (2.5 d), HS-CON and HS-CIT pigs were fed AL and exposed to cyclical HS (33.6 to 38.3 °C), while TNAL, PF-CON, and PF-CIT remained in TN and were fed either AL or PF to their HS counterparts. Citrulline (0.13 g/kg BW) was orally administered twice daily during P1 and P2. HS increased rectal temperature (Tr), skin temperature (Ts), and respiration rate (RR) relative to TN pigs (0.8 °C, 4.7 °C, and 47 breaths/min, respectively; P < 0.01). However, HS-CIT had decreased RR (7 breaths/min, P = 0.04) and a tendency for decreased Tr (0.1 °C, P = 0.07) relative to HS-CON pigs. During P2, HS pigs had decreased feed intake (22%; P < 0.01) and a tendency for decreased average daily gain (P = 0.08) relative to TNAL pigs, and by experimental design, PF pigs followed this same pattern. Circulating lipopolysaccharide-binding protein tended to be decreased (29%; P = 0.08) in PF relative to TNAL pigs and was increased (41%; P = 0.03) in HS compared to PF pigs. Jejunum villus height was decreased in PF relative to TNAL pigs (15%; P = 0.03); however, CIT supplementation improved this metric during feed restriction (16%; P = 0.10). Jejunum mucosal surface area decreased in PF (16%; P = 0.02) and tended to decrease in HS (11%; P = 0.10) compared to TNAL pigs. Ileum villus height and mucosal surface area decreased in HS compared to TNAL pigs (10 and 14%, respectively; P ≤ 0.04), but both parameters were rescued by CIT supplementation (P ≤ 0.08). Intestinal myeloperoxidase and goblet cell area remained similar among treatments and intestinal segments (P > 0.24). In summary, CIT supplementation slightly improved RR and Tr during HS. Feed restriction and HS differentially affected jejunum and ileum morphology and while CIT ameliorated some of these effects, the benefit appeared dependent on intestinal section and stressor type.


Heat stress (HS) negatively affects animal health and production efficiency and is a significant economic burden to global animal agriculture. Although the mechanisms responsible for reduced animal productivity during HS are complex and multifaceted, increasing evidence points to decreased intestinal barrier function as an important mediator of this response. Furthermore, HS causes a voluntary reduction in feed intake, and feed restriction independently induces gastrointestinal hyperpermeability. Loss of intestinal barrier integrity facilitates bacteria translocation across the epithelium into local and systemic circulation, thus initiating an immune response. Dietary citrulline has been shown to support gut health by improving intestinal barrier integrity and modulating intestinal inflammation. Therefore, the current study investigated the effects of citrulline supplementation on physiological and intestinal morphology parameters in heat-stressed and feed-restricted growing pigs. Herein, citrulline supplementation reduced respiration rate and rectal temperature in pigs exposed to the thermal load. Heat stress and feed restriction compromised small intestinal morphology, and while supplementing citrulline improved some of these parameters, the effects depended on the intestinal region and stressor type. Additional research is needed to evaluate the potential effects of citrulline supplementation on gut health during HS or nutrient restriction.


Subject(s)
Animal Feed , Citrulline , Dietary Supplements , Animals , Citrulline/pharmacology , Citrulline/administration & dosage , Dietary Supplements/analysis , Female , Animal Feed/analysis , Swine/physiology , Diet/veterinary , Food Deprivation , Hot Temperature , Intestines/drug effects , Intestines/anatomy & histology , Intestines/physiology , Body Temperature/drug effects , Heat-Shock Response/drug effects
2.
Res Vet Sci ; 174: 105294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744020

ABSTRACT

This study aimed to evaluate the effects of a mixture of olive, laurel, and rosemary leaf powders, on the oxidative state, biochemical, immune, intestinal morphophysiological parameters, and egg quality of laying hens. One hundred Lohmann Brown hens (28 weeks old) were equally assigned to two groups (n. 50) corresponding to a basal control diet (CON) or the diet supplemented with 6 g/kg feed of leaf powder mixture (LPM) containing olive, laurel, and rosemary leaves (1:1:1), for 60 days. Oxidative status, biochemical indices, immune response, cecal short chain fatty acids (SCFAs), intestinal morphological characteristics, and some egg traits were evaluated at the end of the experiment. The results indicated that LPM improved (P < 0.05) the oxidative status (TOS, ROMs), the immune system (IL-6, IL-1ß, and TNF-α), the total protein and HDL cholesterol content, whereas it decreased (P < 0.05) total cholesterol and LDL cholesterol. Aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase were significantly (P < 0.05) lower in the LPM than in the CON group. A significant increase (P < 0.05) in SCFA content in the caecum, as well as in villi height and crypt depth in both duodenum and ileum of LPM-treated hens, was observed. Egg quality parameters were not influenced (P > 0.05) by LPM. These findings indicate that LPM can be considered a candidate as an antioxidant ingredient for functional food in laying hens.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Olea , Plant Leaves , Rosmarinus , Animals , Chickens/immunology , Chickens/physiology , Animal Feed/analysis , Female , Dietary Supplements/analysis , Diet/veterinary , Plant Leaves/chemistry , Rosmarinus/chemistry , Olea/chemistry , Intestines/drug effects , Intestines/anatomy & histology , Animal Nutritional Physiological Phenomena/drug effects , Oxidative Stress/drug effects , Ovum/drug effects , Eggs/analysis , Eggs/standards
3.
Anat Histol Embryol ; 53(3): e13046, 2024 May.
Article in English | MEDLINE | ID: mdl-38712731

ABSTRACT

The present study aims to evaluate the morphometric and histopathological properties of Modified Elnady's plastinated tissue after a period compared to non-plastinated tissue. The plastination technique is utilized in research and teaching due to the potential health risks associated with prolonged exposure to formalin. The tissues and organs are permanently dried during plastination and can be used for further anatomical, histopathological and surgical educational purposes. This method involves drying tissue and allowing synthetic materials like glycerin to permeate it. The study compared non-plastinated and plastinated tissue post-plastination to determine if structural alterations differed from those linked to plastination. The study examined the histopathological examination of dogs' skin, muscles, liver, lung, and intestine using formalin-fixed organs for paraffin embedding and previously plastinated organs for a plastinated group. The study examined non-plastinated and plastinated tissues, their histological composition and biometric parameters revealing typical structures in the non-plastinated group. Plasmodiumted tissues exhibited a compacted appearance, volume changes, nuclear clarity, and cytoplasmic hypereosinophilia, with statistical differences between the two groups. The study reveals that plastinated tissues, after 5 years of plastination, maintain their histological architecture well, with some exceptions. Plastinated tissues can be utilized in future microscopic and immunological studies and will be beneficial for teaching and research.


Subject(s)
Liver , Lung , Plastination , Animals , Dogs , Plastination/methods , Lung/pathology , Liver/pathology , Skin/pathology , Skin/anatomy & histology , Intestines/anatomy & histology , Intestines/pathology , Paraffin Embedding/veterinary , Formaldehyde , Anatomy, Veterinary/education
4.
Poult Sci ; 103(5): 103597, 2024 May.
Article in English | MEDLINE | ID: mdl-38471225

ABSTRACT

Laying hens, selectively bred for high egg production, often suffer from bone fragility and fractures, impacting their welfare and causing economic losses. Additionally, gut health and muscle quality are crucial for overall health and productivity. This study aimed to evaluate the effects of ß-Hydroxy-ß-methylbutyrate (HMB) supplementation on performance, bone metabolism, intestinal morphology, and muscle quality in laying hens. Forty-eight Bovans Brown hens were divided into a control group and an HMB-supplemented group (0.02% HMB in diet). The study spanned from the 31st to the 60th wk of age. Assessments included bone mechanical testing, serum hormonal analysis, histological analysis of bone and intestine, and muscle quality analysis. The HMB supplementation led to decreased feed intake without affecting body weight or laying rate in laying hens. It caused an increase in both mean daily and total egg weight, indicating improved feed utilization, without influencing the feed intake to egg weight ratio. Enhanced bone formation markers and altered intestinal morphometric parameters were observed, along with improved trabecular bone structure. However, no changes in measured other bone quality indices, including geometric, densitometric, or mechanical properties were observed. Muscle analysis revealed no significant changes in overall meat quality, except for a decrease in cholesterol content and alterations in the fatty acid profile, notably a reduction in total n-3 polyunsaturated and total polyunsaturated fatty acids (PUFA). In conclusion, although not all effects of HMB supplementation were unequivocally beneficial, the positive changes in performance data and trabecular bone microarchitecture support further research into various doses and durations of supplementation. Such studies are necessary to fully understand and optimize the benefits of HMB for enhancing the health and productivity of laying hens.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Intestines , Valerates , Animals , Chickens/physiology , Valerates/administration & dosage , Valerates/pharmacology , Dietary Supplements/analysis , Female , Animal Feed/analysis , Diet/veterinary , Intestines/drug effects , Intestines/physiology , Intestines/anatomy & histology , Bone and Bones/drug effects , Bone and Bones/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Random Allocation , Animal Nutritional Physiological Phenomena/drug effects
5.
Poult Sci ; 103(5): 103600, 2024 May.
Article in English | MEDLINE | ID: mdl-38471230

ABSTRACT

The aim of this study was to evaluate the effect of microencapsulated essential oils (MEO) on the laying performance, egg quality, immunity, intestinal morphology, and oxidative status of laying hens. A total of 640 Hy-line Brown laying hens, 41 wk of age, were randomly divided into 4 groups, each with 8 replicates containing 20 birds per replicate. The dietary conditions tested included a basal diet (Control) or the basal diet supplemented with various levels of MEO at 100 mg/kg (MEO100), 300 mg/kg (MEO300), and 500 mg/kg (MEO500). The three treatment groups were intermittently fed MEO, following an alternating schedule of 1 wk on and 1 wk off for a total of 56 d. Results showed that feeding MEO at levels of 300 and 500 mg/kg improved both egg production and feed conversion ratios compared to the control group. Hens consumed MEO-supplemented diets exhibited a significant decrease in the breaking egg ratio (P < 0.05) compared to those fed the control diet. Shell thickness and Haugh unit values significantly increased in the groups receiving 300 and 500 mg/kg of MEO (P < 0.05). Both the MEO300 and MEO500 treatments led to improvements in immunoglobulin (IgA, IgM, and IgG) and cytokine (IL-2 and IFN-γ) levels in serum. Hens in the MEO300 and MEO500 groups exhibited higher values for parameters related to intestinal morphometry compared to the control group. Furthermore, supplementation with 300 and 500 mg/kg of MEO enhanced the antioxidant capacity of plasma, as evidenced by increased activities of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT) (P < 0.05). In summary, the intermittent feeding of MEO improved egg production, enhanced antioxidative processes, immune functions, and intestinal morphology, leading to an amelioration in the egg quality of laying hens. Our data demonstrate that supplementation of 300 mg/kg of MEO in feed can significantly improve animal health and egg quality. Implementation of these feeding practices could have a positive economic impact on poultry and egg industry.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Intestines , Oils, Volatile , Animals , Chickens/physiology , Chickens/immunology , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Female , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Intestines/drug effects , Intestines/physiology , Intestines/anatomy & histology , Random Allocation , Ovum/physiology , Ovum/drug effects , Dose-Response Relationship, Drug , Reproduction/drug effects
6.
Poult Sci ; 103(5): 103605, 2024 May.
Article in English | MEDLINE | ID: mdl-38471233

ABSTRACT

We examined the effect of the Persian Gulf algae derivates, phycocyanin (PC) and fucoidan (FUC), on production performance, egg quality, intestinal histomorphology, ileal microflora, and egg yolk biochemistry of laying Japanese quail. A total of 250 six-wk-old Japanese quails with an average body weight of 215 ± 10 g were allocated to 5 treatments, 5 replicates and 10 birds in each replicate in a completely randomized design. The treatment groups received PC (from Spirulina platensis) and FUC (from brown seaweed) in their drinking water while control groups did not. Treatment groups received PC and FUC at 20 or 40 mg/L levels (denoted as PC20, PC40, FUC20, and FUC40, respectively). All birds were fed the same diet. All treatments significantly improved the percentage of hen day egg production (HDEP) (P = 0.002), egg mass (P = 0.002), and feed conversion ratio (FCR) (P = 0.022) but no difference was noted in egg weight (EW) and feed intake (FI). Different levels of PC and FUC significantly increased the thickness of eggshells (P = 0.022); however, the weight of the digestive tract (liver, spleen, proventriculus, gizzard, and pancreas) and oviduct was not affected. Algal derivates improved the villus height (P = 0.007) and crypt depth (P = 0.007) of the duodenum, as well as, the villus height (P = 0.005) and crypt depth (P = 0.026) of the jejunum. Both algal derivates positively affected the intestinal microflora (populations of Lactobacillus (P = 0.017), Coliform (P = 0.005), and Clostridium (P = 0.000)) whereas aerobic bacteria were unaffected. Yolk cholesterol P = 0.012) and yolk malondialdehyde P = 0.050) content were significantly reduced in experimental treatments compared to the control group. In conclusion, our results showed that the treatment of laying Japanese quails with algal derivates positively affects quail performance, intestinal morphology, intestinal microflora, and yolk cholesterol and malondialdehyde. Additional studies exploring optimal dosages and mechanisms of action is warranted to fully understand the scope of the algae derivates in poultry production.


Subject(s)
Animal Feed , Coturnix , Diet , Egg Yolk , Gastrointestinal Microbiome , Polysaccharides , Animals , Coturnix/physiology , Coturnix/anatomy & histology , Diet/veterinary , Animal Feed/analysis , Gastrointestinal Microbiome/drug effects , Female , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , Polysaccharides/chemistry , Egg Yolk/chemistry , Phycocyanin/pharmacology , Phycocyanin/administration & dosage , Dietary Supplements/analysis , Random Allocation , Spirulina/chemistry , Intestines/drug effects , Intestines/anatomy & histology , Intestines/physiology , Ileum/drug effects , Ileum/physiology , Ileum/anatomy & histology
7.
Poult Sci ; 103(5): 103655, 2024 May.
Article in English | MEDLINE | ID: mdl-38537402

ABSTRACT

To develop effective antibiotics alternatives is getting more and more important to poultry healthy production. The study investigated the effects of a microencapsulated essential oils and organic acids preparation (EOA) on growth performance, slaughter performance, nutrient digestibility and intestinal microenvironment of broilers. A total of 624 1-day-old male Arbor Acres broilers were randomly divided into 6 groups including the control group (T1) fed with basal diet, the antibiotic group (T2) supplemented with basal diet with 45 mg/kg bacitracin methylene disalicylate (BMD), and 4 inclusion levels of EOA-treated groups (T3, T4, T5, T6 groups) chickens given basal diet with 200, 400, 600, and 800 mg EOA/kg of diet, respectively. Results showed that compared with the control, the 200 mg/kg EOA group increased average daily gain (ADG) and average body weight (ABW) during the early stage (P < 0.05). EOA addition decreased crypt depth of the ileum (P < 0.05), but villus height to crypt depth ratio was increased by EOA addition at 200 and 400 mg/kg at d 21 (P < 0.05). Compared with the control, dietary addition EOA at 200, 400 and 600 mg/kg increased the lipase activity in the duodenum at d 21 (P < 0.05). Increased lactic acid bacteria population was found in cecal digesta of the 400 mg/kg EOA group at d 21 (P < 0.05), and higher concentration of butyric acid level was observed in cecal digesta at d 21 and d 42 in the 200 mg/kg EOA group compared with the control (P < 0.05). RT-PCR analysis found that dietary EOA addition decreased the gene expression of IL-1ß, COX-2 and TGF-ß4 in the ileum at d 21 (P < 0.05), while only the 200 mg/kg EOA increased the gene expression of IL-10, TGF-ß4, Claudin-1, ZO-1, CATH-1, CATH-3, AvBD-1, AvBD-9 and AvBD-12 in the ileum at d 42 (P < 0.05) compared with the control. In summary, adding 200 mg/kg and 400 mg/kg of the EOA to the diet could improve the growth performance and intestinal microenvironment through improving intestinal morphology, increasing digestive enzymes activity and cecal lactic acid bacteria abundance and butyric acid content, improving intestinal barrier function as well as maintaining intestinal immune homeostasis. The improving effect induced by EOA addition in the early growth stage was better than that in the later growth stage. Overall, the EOA product might be an effective antibiotic alternative for broiler industry.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Digestion , Oils, Volatile , Animals , Chickens/growth & development , Chickens/physiology , Animal Feed/analysis , Male , Diet/veterinary , Oils, Volatile/administration & dosage , Oils, Volatile/pharmacology , Digestion/drug effects , Animal Nutritional Physiological Phenomena/drug effects , Dietary Supplements/analysis , Intestines/drug effects , Intestines/anatomy & histology , Random Allocation , Dose-Response Relationship, Drug , Drug Compounding/veterinary , Nutrients/metabolism
8.
Poult Sci ; 103(5): 103420, 2024 May.
Article in English | MEDLINE | ID: mdl-38518669

ABSTRACT

The aim of this study was to investigate the effects of puerarin (Pue), a phytoestrogen, on the production performance, egg quality, endocrine hormones, antioxidant capacity, and intestinal morphology in aged laying hens. A total of 180 Hy-Line Brown hens aged 480 d were randomly divided into 4 groups (n = 45 per group) and fed 0, 200, 400, and 800 mg/kg of Pue (Con, L-Pue, M-Pue, and H-Pue, respectively) during a 42-d experiment. Compared with the Con treatment, supplementation with H-Pue improved laying performance and egg quality by significantly increasing egg production, average egg weight, albumen height, yolk weight, and Haugh unit (P < 0.05) while decreasing the feed conversion ratio (P < 0.05). A diet supplemented with H-Pue significantly decreasing serum total triglycerides, total cholesterol, and low-density lipoprotein cholesterol, alanine aminotransferase (P < 0.05), and significantly increasing serum levels of follicle-stimulating hormone, luteinizing hormone and progesterone (P < 0.05). Antioxidant activity was improved by significantly increasing the activity of total antioxidant capacity, glutathione peroxidase and catalase but decreasing malondialdehyde levels in serum, jejunum, and ileum (P < 0.05), and superoxide dismutase activity exhibited a significantly increase in the jejunum and ileum (P < 0.05). Villus height and the ratio of villus height to crypt depth (P < 0.05) were significantly increased in the jejunum and ileum. In the jejunal and ileal mucosa, the three treatment groups increased the mRNA expression levels of Claudin-1 and Claudin-2 compared with Con (P < 0.05), and no significant effect was observed on the expression of Occludin and ZO-1. The results showed that dietary supplementation with Pue could improve the laying performance, egg quality, antioxidant capacity, hormonal profile, and intestinal morphology of aged laying hens.


Subject(s)
Animal Feed , Antioxidants , Chickens , Diet , Dietary Supplements , Isoflavones , Random Allocation , Animals , Chickens/physiology , Isoflavones/pharmacology , Isoflavones/administration & dosage , Female , Animal Feed/analysis , Dietary Supplements/analysis , Antioxidants/metabolism , Diet/veterinary , Intestines/drug effects , Intestines/anatomy & histology , Intestines/physiology , Ovum/drug effects , Ovum/physiology , Dose-Response Relationship, Drug , Reproduction/drug effects
9.
Poult Sci ; 103(5): 103628, 2024 May.
Article in English | MEDLINE | ID: mdl-38518667

ABSTRACT

This study sought to determine the relationship among broiler performance, organ development, and indicators of microbiota colonization. A total of 1,200 two-day-old male Ross 308 broiler chicks, divided among 3 cohorts of equal size, were housed in battery cages, and allotted based on body weight. On study d 11, birds were weighed, and birds with BW gain within the 10th and 90th percentiles were assigned to the Slow and Fast groups, respectively. Birds (n = 30 for each group) selected on d 11 were provided water and a corn-soybean meal-based diet ad libitum while maintained individually through study d 25 (i.e., a 14-d growth period). Parameters regarding growth performance, organ and intestine weights and lengths, and intestinal volatile fatty acid concentrations were measured. All data were analyzed by one-way ANOVA using the Mixed procedure of SAS. Fast birds exhibited greater (P < 0.001) BW gain and feed intake than slow birds, but feed conversion ratio (FCR) did not differ (P = 0.19). Additionally, Slow birds had higher (P < 0.05) relative weights (% of BW) for nearly all organs on d 11 and 25, most notably the gizzard, proventriculus, pancreas, and liver. Conversely, intestinal sections were longer (P < 0.05) in the Fast birds. Measurement of gut histomorphology did not show any notable differences between growth rate groups in terms of villi height, crypt depth, or their ratio for either time-point (P > 0.05). In terms of volatile fatty acid concentrations of luminal contents, acetate concentrations were 10.2% higher (P < 0.001) in the ileum of the Slow birds compared with Fast birds on d 25. Overall, the findings suggest that total BW gain is influenced by the development of metabolically active organs, as supported by lower weight gain in Slow birds with relatively larger organ weights and shorter intestinal lengths than their Fast counterparts. The general lack of differences in fermentation end-product concentrations in luminal contents does not rule out influence of the microbiota on growth rate of broilers, which warrants further investigation.


Subject(s)
Chickens , Fermentation , Animals , Chickens/growth & development , Chickens/physiology , Male , Gastrointestinal Microbiome/physiology , Organ Size , Diet/veterinary , Fatty Acids, Volatile/metabolism , Intestines/growth & development , Intestines/anatomy & histology , Animal Feed/analysis , Random Allocation
10.
Poult Sci ; 103(6): 103645, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547675

ABSTRACT

This study was to determine the effects of the mixture of glycerol monolaurate and cinnamaldehyde (GCM) supplementation on the intestinal morphology, immunity, antioxidant status and cecal microbiota of laying hens. A total of 1,120 healthy laying hens (Jingfen-1 strain) at the age of 14 wk were randomly divided into 4 groups with 10 replicates of 28 layers in each and layers were fed diets containing 0 (control group), or 250, 500, and 1,000 mg/kg GCM for 12 wk. The results showed that dietary supplementation with GCM significantly increased intestinal villus height and villus height/crypt depth, duodenal villus area, total superoxide disumutase activities in the liver and jejunum, jejunal glutathione peroxidase activities while decreased duodenal and jejunal crypt depth, hydrogen peroxide content in the liver and jejunal malondialdehyde content of laying hens aging 28 wk (P < 0.05). Meanwhile, GCM addition significantly increased serum immunoglobulin A and immunoglobulin M concentration of layers at the age of 20, 24, and 28 wk (P < 0.05). Moreover, it was observed in the 16S rRNA sequencing that the addition of GCM elevated the abundance and diversity of gut microbiota in laying hens. The predominant bacteria from each group were Bacteroidota and Firmicutes at the phylum level and Bacteroides and Lactobacillus were the dominant genera. The composition and structure of cecal microflora were changed by the addition of GCM to the diet of laying hens. In conclusion, the addition of GCM (500-1,000 mg/kg diet) can improve intestinal morphology, immune function, intestinal and liver antioxidant status and intestinal flora of laying hens, thereby improving intestinal digestion and absorption capacity. These findings provide a new way to further explore the mechanism of GCM improving intestinal health.


Subject(s)
Acrolein , Animal Feed , Antioxidants , Cecum , Chickens , Diet , Dietary Supplements , Gastrointestinal Microbiome , Intestines , Laurates , Animals , Chickens/physiology , Chickens/growth & development , Chickens/immunology , Gastrointestinal Microbiome/drug effects , Female , Antioxidants/metabolism , Diet/veterinary , Dietary Supplements/analysis , Animal Feed/analysis , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/administration & dosage , Intestines/drug effects , Intestines/anatomy & histology , Intestines/microbiology , Cecum/microbiology , Cecum/drug effects , Laurates/pharmacology , Laurates/administration & dosage , Random Allocation , Dose-Response Relationship, Drug , Monoglycerides
11.
Poult Sci ; 103(5): 103601, 2024 May.
Article in English | MEDLINE | ID: mdl-38503136

ABSTRACT

This experiment investigated the influence of different synbiotic processing methods on the intestinal bacterial count, morphology and histological status of developed male Mandarah chicks. Two hundred and ten male Mandarah line chicks aged 1 d were randomized to receive one of 7 chicks. The method and dose for 1-time synbiotics administration to the day-old chicks were as follows: G1: chicks on basal diet received no treatment (control); G2: 0.25 mL synbiotics sprayed; G3: 0.50 mL synbiotics sprayed; G4: 0.25 mL of synbiotics are added to drinking water; G5: 0.50 mL of synbiotics are added to drinking water; G6: 0.25 mL of synbiotics dripped into the mouth; and G7: 0.50 mL of synbiotics dripped into mouth drops. Lactic acid bacteria(LAB) were significantly increased (P<0.0001) compared to the control group and other treated groups and had the maximum values after the use of synbiotics via drinking water (0.25 or 0.50 mL). Furthermore, when comparing the treated birds (G4, G5) with the control birds, the Escherichia coli concentration in the drinking water containing synbiotics was significantly lower. In addition, treated chickens at (G7) showed a higher duodenum, ileum villus height (VH), and VH. - Ileum crypt depth (CD) ratio compared to other groups. In addition, birds treated with 0.50 mL of synbiotics in drinking water (G5) performed better in duodenum, ileum, CD and VH. - CD ratio than the other groups. Meanwhile, intestinal tract length and visceral pH did not differ significantly between groups. It can be concluded that the use of 0.25 mL of synbiotics in drinking water can improve the overall health of birds.


Subject(s)
Chickens , Diet , Intestines , Synbiotics , Animals , Chickens/physiology , Male , Synbiotics/administration & dosage , Diet/veterinary , Intestines/anatomy & histology , Intestines/microbiology , Random Allocation , Animal Feed/analysis , Bacterial Load , Gastrointestinal Microbiome , Drinking Water/microbiology
12.
Poult Sci ; 103(5): 103644, 2024 May.
Article in English | MEDLINE | ID: mdl-38507830

ABSTRACT

The objective of this study was to evaluate the effects of different levels of glycerol monolaurate (GML) on laying performance, egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens. A total of 480 Hy-Line Variety Brown hens (age 54 wk) were randomly assigned to 5 treatments: the control group (basal diet) and 4 GML groups (basal diet supplemented with 100, 200, 300, and 400 mg/kg GML). Each treatment consisted of 8 replicates with 12 hens each and the trial lasted for 8 wk. The results showed that dietary inclusion of GML increased the ADFI in the entire experimental period and the average egg weight in wk 5 to 8 and wk 1 to 8 of the experiment (linear, P < 0.05). Dietary GML addition linearly increased albumen height, Haugh unit and yolk color, and quadratically increased eggshell thickness (P < 0.05). The serum SOD activity, T-AOC and IgG concentrations in the 200 mg/kg GML group, and GSH-Px activity in 200 and 300 mg/kg GML groups were increased, while the MDA concentration in 200 and 300 mg/kg GML groups was decreased than those in the control group (P < 0.05). The jejunal villus height and villus height: crypt depth in 300 mg/kg GML group were higher than that in the control group (P < 0.05). The mRNA expression of TLR4, IL-1ß and TNF-α in spleen and jejunum decreased with the increase of dietary GML concentration (linear, P < 0.05). In conclusion, dietary GML supplementation could improve egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens, and dietary 300 mg/kg GML inclusion is suggested.


Subject(s)
Animal Feed , Antioxidants , Chickens , Diet , Dietary Supplements , Intestines , Laurates , Monoglycerides , Ovum , Animals , Chickens/physiology , Chickens/immunology , Chickens/growth & development , Dietary Supplements/analysis , Diet/veterinary , Female , Antioxidants/metabolism , Animal Feed/analysis , Laurates/administration & dosage , Laurates/pharmacology , Monoglycerides/administration & dosage , Monoglycerides/pharmacology , Intestines/drug effects , Intestines/anatomy & histology , Intestines/physiology , Ovum/drug effects , Ovum/physiology , Random Allocation , Dose-Response Relationship, Drug , Reproduction/drug effects
13.
Br Poult Sci ; 65(2): 179-190, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372614

ABSTRACT

1. A study used gene synthesis to obtain the functional domains of chicken epidermal growth factor (cEGF) and examined their impact on broiler growth performance, small intestinal morphology, digestive enzyme activities in the intestinal contents and the structure of duodenal microflora.2. The pET-32a-cEGF recombinant expression vector was constructed. The specific band at 26 KDa was shown by SDS-PAGE analysis and WB results. The purified protein content was shown to be 1687 µg/ml by assay.3. A total of 180 healthy, one-day-old Arbor Acres male, white-feathered broilers were randomly divided into three dietary treatment groups (six replicate pens, 10 birds per replicate): A control diet (ND); cEGF diet (cEGF), control supplemented with 250 mg/kg cEGF and the control diet (CD) supplemented with 250 mg/kg chlortetracycline.4. The results showed that feeding the cEGF and CD diet reduced FCR of broilers aged 1-21 d, average daily feed intake (ADFI) at 22-42 d, and the FCR in the whole period (1-42 d; p < 0.05). Compared with the ND group, the cEGF diet increased duodenal α-amylase and alkaline phosphatase activities in the 1-21 d, duodenal lipase, alkaline phosphatase, and ileal alkaline phosphatase activities in the post-period and increased villus height in the duodenum and ileum (p < 0.05). In addition, the ACE and Chao1 index for the birds fed cEGF were higher than the ND group (p < 0.05). At the phyla level, Firmicutes and Proteobacteria were dominant in all groups. At the genus level, the dominant genus was Lactobacillus. The LEfSe analysis showed that the cEGF group was enriched by 11 species including Brevibacillus, Eisenbergiella, Cloacibacterium, Butyricoccus spp.5. The addition of 250 mg/kg cEGF to the diet can increase growth performance by improving intestinal development and digestive enzyme activity, which may be related to the duodenal intestinal microflora. Therefore, cEGF is an effective alternative to antibiotics in broiler farming.


Subject(s)
Chickens , Intestines , Animals , Male , Intestines/anatomy & histology , Chickens/physiology , Escherichia coli/genetics , Epidermal Growth Factor , Alkaline Phosphatase , Dietary Supplements/analysis , Diet/veterinary , Duodenum , Morphogenesis , Animal Feed/analysis
14.
Poult Sci ; 102(12): 103124, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922857

ABSTRACT

This experiment was conducted to explore the interactions between enzyme preparations and trace element sources on growth performance and intestinal health of broilers chicks. A total of 480 one-day-old healthy male yellow-feather broilers with similar weight were randomly arranged in a 2  ×  2 factorial design with 2 kinds of compound trace element sources (inorganic [I] and organic [O] trace element supplemented with 80, 8, 60, 40, 0.15 mg/kg of Fe, Cu, Mn, Zn, and Se, respectively) and 2 levels of enzyme preparations (0 and 200 mg/kg). The 4 groups named I, O, IE, and OE with 6 replicates and 20 birds per replicate. The trail lasted for 28 days. Results showed that the average weight (ABW), average daily gain (ADG) of broilers in IE and OE groups significantly increased while the F/G significantly decreased as compared with group I and O (P < 0.05). Enzyme preparation supplementation, regardless of the trace element sources, significantly increased the duodenal and jejunal endogenous enzyme (e.g., Try and AACT) activity, and improved the morphology and jejunal barrier function evidenced by the increased villus height and MUC-2 mRNA expression (P < 0.05). Sequencing data manifested that enzyme preparations favorably modulated the cecal microflora by increasing bacterial diversity and abundance of short-chain fatty acid (SCFA)-producing bacteria (e.g., Anaerostipes, Anaerofusis, and Pygmaioactor), while decreasing the abundance of harmful bacteria (e.g., Desulfovibrio). Factorial analysis indicated that there were no interactions between enzyme preparation and trace element sources on growth performance and intestinal health of broiler chicks. In conclusion, dietary supplementation with enzyme preparations, regardless of the trace element sources, could enhance endogenous enzyme activity, improve intestinal morphology and barrier functions, and favorably modulate the cecal microflora, thereby improving the intestinal health and growth performance of broiler chicks.


Subject(s)
Trace Elements , Animals , Male , Trace Elements/metabolism , Chickens , Dietary Supplements/analysis , Intestines/anatomy & histology , Intestinal Mucosa/metabolism , Diet/veterinary , Animal Feed/analysis
15.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1419-1428, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37409520

ABSTRACT

Intestinal morphology and regulation of nutrient transportation genes during the embryonic and early life of chicks influence their body weight and feed conversion ratio through the growing period. The intestine development can be monitored by measuring villus morphology and enzymatic activity and determining the expression of nutrient transporters genes. With the increasing importance of gut development and health in broiler production, considerable research has been directed towards factors affecting intestine development. Thus, this article reviews (1) intestinal development during embryogenesis, and (2) maternal factors, in ovo administration, and incubation conditions that influence intestinal development during embryogenesis. Conclusively, (1) chicks from heavier eggs may have a better-developed intestine than chicks from younger ones, (2) in ovo supplementation with amino acids, minerals, vitamins or a combination of several probiotics and prebiotics stimulates intestine development and increases the expression of intestine mucosal-related genes and (3) the long storage period, improper incubation temperature and imbalanced ventilation can negatively influence intestinal morphology and nutrient transporters gene expression. Finally, understanding the intestine development during embryonic life will enable us to enhance the productivity of broilers.


Subject(s)
Chickens , Ovum , Animals , Chickens/physiology , Gastrointestinal Tract , Intestines/anatomy & histology , Nutrients
16.
Int J Mol Sci ; 24(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37047242

ABSTRACT

The vertebrate intestinal system consists of separate segments that remarkably differ in morphology and function. However, the origin of intestinal segmentation remains unclear. In this study, we investigated the segmentation of the intestine in a tunicate ascidian species, Ciona savignyi, by performing RNA sequencing. The gene expression profiles showed that the whole intestine was separated into three segments. Digestion, ion transport and signal transduction, and immune-related pathway genes were enriched in the proximal, middle, and distal parts of the intestine, respectively, implying that digestion, absorption, and immune function appear to be regional specializations in the ascidian intestine. We further performed a multi-species comparison analysis and found that the Ciona intestine showed a similar gene expression pattern to vertebrates, indicating tunicates and vertebrates might share the conserved intestinal functions. Intriguingly, vertebrate pancreatic homologous genes were expressed in the digestive segment of the Ciona intestine, suggesting that the proximal intestine might play the part of pancreatic functions in C. savignyi. Our results demonstrate that the tunicate intestine can be functionally separated into three distinct segments, which are comparable to the corresponding regions of the vertebrate intestinal system, offering insights into the functional evolution of the digestive system in chordates.


Subject(s)
Intestines , Urochordata , Intestines/anatomy & histology , Intestines/metabolism , Intestines/physiology , Urochordata/anatomy & histology , Urochordata/genetics , Urochordata/physiology , Animals , Gene Expression Profiling , Biological Evolution
17.
Nat Commun ; 14(1): 2307, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085516

ABSTRACT

The intestinal lamina propria contains a diverse network of fibroblasts that provide key support functions to cells within their local environment. Despite this, our understanding of the diversity, location and ontogeny of fibroblasts within and along the length of the intestine remains incomplete. Here we show that the small and large intestinal lamina propria contain similar fibroblast subsets that locate in specific anatomical niches. Nevertheless, we find that the transcriptional profile of similar fibroblast subsets differs markedly between the small intestine and colon suggesting region specific functions. We perform in vivo transplantation and lineage-tracing experiments to demonstrate that adult intestinal fibroblast subsets, smooth muscle cells and pericytes derive from Gli1-expressing precursors present in embryonic day 12.5 intestine. Trajectory analysis of single cell RNA-seq datasets of E12.5 and adult mesenchymal cells suggest that adult smooth muscle cells and fibroblasts derive from distinct embryonic intermediates and that adult fibroblast subsets develop in a linear trajectory from CD81+ fibroblasts. Finally, we provide evidence that colonic subepithelial PDGFRαhi fibroblasts comprise several functionally distinct populations that originate from an Fgfr2-expressing fibroblast intermediate. Our results provide insights into intestinal stromal cell diversity, location, function, and ontogeny, with implications for intestinal development and homeostasis.


Subject(s)
Intestine, Large , Mesenchymal Stem Cells , Colon , Fibroblasts/metabolism , Intestine, Large/anatomy & histology , Intestine, Large/cytology , Intestine, Small , Intestines/anatomy & histology , Intestines/cytology , Zinc Finger Protein GLI1/genetics , Mesenchymal Stem Cells/metabolism
18.
Braz. j. biol ; 83: 1-12, 2023. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1468966

ABSTRACT

The current study aimed to determine the effects of different levels of Zingiber officinale as a herbal feed additive on growth performance, carcass characteristic, serum biochemistry, total bacterial count (TBC), gut morphology, and immunological parameters of broilers. A total of 1500, day-old broiler chicks (Hubbard) were equally accredited to five treatment groups, each with six replicates (50 birds/replicate). Five experimental diets were prepared using basal diet i.e. with antibiotics positive control (PC), 3 g/kg ginger (group A), 6 g/kg ginger (group B), 9 g/kg ginger (group C) and without antibiotics negative control (NC). Group A and C showed significantly (p<0.05) higher feed intake (FI) as compared to other groups. Group C showed significantly (p<0.05) lower Total bacterial count (TBC) followed by group B as compared to NC. Carcass characteristics showed non-significant effects among different treatments. Mean villi length and width were significantly (p <0.05) higher in all ginger supplemented groups as compared to the control groups. Blood serum parameters including cholesterol, triglycerides, and low density lipoproteins (LDL) were significantly (p<0.05) lower in groups B and C in comparison with the control groups. Whereas high-density lipoproteins (HDL) was significantly higher in group B as compared to the others. In conclusion, ginger supplementation @0.6% in the basal diet significantly improved growth performance and gut morphometry of broilers. It also showed a positive impact on cholesterol, triglycerides and gut microbes. Therefore, ginger could be a better substitute for antibiotic growth promoters.


O presente estudo teve como objetivo determinar os efeitos de diferentes níveis de Zingiber officinale como aditivo à base de plantas medicinais sobre o desempenho de crescimento, características da carcaça, bioquímica sérica, contagem bacteriana total (CBT), morfologia intestinal e parâmetros imunológicos de frangos de corte. Um total de 1.500 pintos de corte de um dia de idade (Hubbard) foram igualmente credenciados em cinco grupos de tratamento, cada um com seis repetições (50 aves/repetição). Cinco dietas experimentais foram preparadas usando dieta basal, ou seja, com controle positivo de antibióticos (PC), 3 g/kg de gengibre (grupo A), 6 g/kg de gengibre (grupo B), 9 g/kg de gengibre (grupo C) e sem controle negativo de antibióticos (NC). Os grupos A e C apresentaram consumo de ração (FI) significativamente (p < 0,05) maior do que os outros grupos. O grupo C apresentou contagem bacteriana total (CBT) significativamente menor (p < 0,05) seguido pelo grupo B em comparação com o NC. As características da carcaça apresentaram efeitos não significativos entre os diferentes tratamentos. O comprimento e largura médios das vilosidades foram significativamente (p < 0,05) maiores em todos os grupos suplementados com gengibre em comparação com os grupos de controle. Os parâmetros séricos do sangue, incluindo colesterol, triglicerídeos e lipoproteínas de baixa densidade (LDL), foram significativamente (p < 0,05) menores nos grupos B e C em comparação com os grupos controle. Enquanto as lipoproteínas de alta densidade (HDL) foram significativamente maiores no grupo B em comparação com os outros. Em conclusão, a suplementação de gengibre a 0,6% na dieta basal melhorou significativamente o desempenho de crescimento e a morfometria intestinal de frangos de corte. Ele também mostrou um impacto positivo sobre o colesterol, triglicerídeos e micróbios intestinais. Portanto, o gengibre pode ser um substituto melhor para os promotores de crescimento com antibióticos.


Subject(s)
Animals , Bacterial Load/veterinary , Chickens/growth & development , Chickens/immunology , Zingiber officinale , Intestines/anatomy & histology
19.
Nutrients ; 14(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364770

ABSTRACT

The early life period is considered an essential period for gut microbial colonization. Manipulating gut microbiota interventions during early life periods has been proven to be a promising method to boost healthy growth. Therefore, the aim of the present study was to investigate the effects of dietary fucoidan (Fuc) on the growth, digestive tract maturation, and gut microbiota of large yellow croaker (Larimichthys crocea) larvae. Four diets were formulated with different levels of Fuc (0.00%, 0.50%, 1.00%, and 2.00%). Results showed that dietary Fuc significantly improved the growth performance of larvae. Meanwhile, dietary Fuc promoted digestive tract maturation. Dietary 1.00% Fuc significantly improved intestinal morphology. Dietary Fuc upregulated the expression of intestinal cell proliferation and differentiation related-genes and intestinal barrier related-genes. Dietary 2.00% Fuc significantly increased the activities of brush border membranes enzymes and lipase while inhibiting α-amylase. Furthermore, dietary Fuc maintained healthy intestinal micro-ecology. In detail, dietary 1.00% and 2.00% Fuc altered the overall structure of the gut microbiota and increased the relative abundance of Bacteroidetes while decreasing the relative abundance of opportunistic pathogens and facultative anaerobe. In conclusion, appropriate dietary Fuc (1.00-2.00%) could improve the growth of large yellow croaker larvae by promoting digestive tract maturation and maintaining an ideal intestinal micro-ecology.


Subject(s)
Gastrointestinal Microbiome , Perciformes , Animals , Larva , Perciformes/metabolism , Intestines/anatomy & histology
20.
Fish Shellfish Immunol ; 121: 437-445, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35065276

ABSTRACT

In recent years, the shrimp farming industry encountered significant economic losses induced by Vibrio alginolyticus. In this study, the influence of Vibrio alginolyticus on intestinal histomorphology and microbiome composition in Litopenaeus vannamei were studied. The results showed that the intestinal mucosal epithelial cells of Vibrio group (VA group) injected only with Vibrio alginolyticus showed large area exfoliation at 12 h, and the tissue morphology of intestine recovered at 48 h. Compared with the control group (CK group), the abundance of Proteobacteria was significantly higher (P < 0.05), while the abundance of Actinobacteria was significantly lower after infection with Vibrio alginolyticus. The abundance of Shewanella in intestinal microbiome of Litopenaeus vannamei was significantly higher at 12 h (P < 0.05), but the abundance of Candidatus_Bacilloplasma was significantly lower at 48 h after infection (P < 0.05). In VA group, the diversity of intestinal microbiome was significantly lower at 12 h, which could be caused by the proliferation of Candidatus_Bacilloplasma and Shewanella. All above findings suggested that the stability of the dynamic balance of microbiome in the intestine helped Litopenaeus vannamei to resist pathogen colonization.


Subject(s)
Gastrointestinal Microbiome , Intestines , Penaeidae , Vibrio Infections/veterinary , Vibrio alginolyticus , Animals , Immunity, Innate , Intestines/anatomy & histology , Intestines/microbiology , Penaeidae/anatomy & histology , Penaeidae/microbiology , Vibrio Infections/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...