Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.553
Filter
1.
Stem Cell Res Ther ; 15(1): 155, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816841

ABSTRACT

In the past decade, intestinal organoid technology has paved the way for reproducing tissue or organ morphogenesis during intestinal physiological processes in vitro and studying the pathogenesis of various intestinal diseases. Intestinal organoids are favored in drug screening due to their ability for high-throughput in vitro cultivation and their closer resemblance to patient genetic characteristics. Furthermore, as disease models, intestinal organoids find wide applications in screening diagnostic markers, identifying therapeutic targets, and exploring epigenetic mechanisms of diseases. Additionally, as a transplantable cellular system, organoids have played a significant role in the reconstruction of damaged epithelium in conditions such as ulcerative colitis and short bowel syndrome, as well as in intestinal material exchange and metabolic function restoration. The rise of interdisciplinary approaches, including organoid-on-chip technology, genome editing techniques, and microfluidics, has greatly accelerated the development of organoids. In this review, VOSviewer software is used to visualize hot co-cited journal and keywords trends of intestinal organoid firstly. Subsequently, we have summarized the current applications of intestinal organoid technology in disease modeling, drug screening, and regenerative medicine. This will deepen our understanding of intestinal organoids and further explore the physiological mechanisms of the intestine and drug development for intestinal diseases.


Subject(s)
Organoids , Organoids/metabolism , Organoids/cytology , Humans , Intestines/cytology , Animals , Regenerative Medicine/methods , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology
2.
Curr Protoc ; 4(5): e1062, 2024 May.
Article in English | MEDLINE | ID: mdl-38775005

ABSTRACT

The architecture and morphology of the intestinal tissue from mice or other small animals are difficult to preserve for histological and molecular analysis due to the fragile nature of this tissue. The intestinal mucosa consists of villi and crypts lined with epithelial cells. In between the epithelial folds extends the lamina propria, a loose connective tissue that contains blood and lymph vessels, fibroblasts, and immune cells. Underneath the mucosa are two layers of contractile smooth muscle and nerves. The tissue experiences significant changes during fixation, which can impair the reliability of histologic analysis. Poor-quality histologic sections are not suitable for quantitative image-based tissue analysis. This article offers a new fixative composed of neutral buffered formalin (NBF) and acetic acid, called FA. This fixative significantly improved the histology of mouse intestinal tissue compared to traditional NBF and enabled precise, reproducible histologic molecular analyses using QuPath software. Algorithmic training of QuPath allows for automated segmentation of intestinal compartments, which can be further interrogated for cellular composition and disease-related changes. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Improved preservation of mouse intestinal tissue using a formalin/acetic acid fixative Support Protocol: Quantitative tissue analysis using QuPath.


Subject(s)
Acetic Acid , Fixatives , Formaldehyde , Tissue Fixation , Animals , Mice , Tissue Fixation/methods , Intestinal Mucosa/cytology , Intestines/cytology , Intestines/pathology , Software
3.
Cell Stem Cell ; 31(5): 591-592, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701755

ABSTRACT

Recently in Cell Metabolism, Wei et al.1 unveiled a brain-to-gut pathway that conveys psychological stress to intestinal epithelial cells, leading to their dysfunction. This gut-brain axis involves a microbial metabolite, indole-3-acetate (IAA), as a niche signal that hampers mitochondrial respiration to skew intestinal stem cell (ISC) fate.


Subject(s)
Stem Cells , Stem Cells/metabolism , Stem Cells/cytology , Animals , Humans , Intestines/cytology , Intestines/microbiology , Stress, Physiological , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Cell Differentiation , Mitochondria/metabolism
4.
Sci Rep ; 14(1): 9631, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671036

ABSTRACT

Intestinal stem cells (ISCs) of the fruit fly, Drosophila melanogaster, offer an excellent genetic model to explore homeostatic roles of ISCs in animal physiology. Among available genetic tools, the escargot (esg)-GAL4 driver, expressing the yeast transcription factor gene, GAL4, under control of the esg gene promoter, has contributed significantly to ISC studies. This driver facilitates activation of genes of interest in proximity to a GAL4-binding element, Upstream Activating Sequence, in ISCs and progenitor enteroblasts (EBs). While esg-GAL4 has been considered an ISC/EB-specific driver, recent studies have shown that esg-GAL4 is also active in other tissues, such as neurons and ovaries. Therefore, the ISC/EB specificity of esg-GAL4 is questionable. In this study, we reveal esg-GAL4 expression in the corpus allatum (CA), responsible for juvenile hormone (JH) production. When driving the oncogenic gene, RasV12, esg-GAL4 induces overgrowth in ISCs/EBs as reported, but also increases CA cell number and size. Consistent with this observation, animals alter expression of JH-response genes. Our data show that esg-GAL4-driven gene manipulation can systemically influence JH-mediated animal physiology, arguing for cautious use of esg-GAL4 as a "specific" ISC/EB driver to examine ISC/EB-mediated animal physiology.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Juvenile Hormones , Stem Cells , Transcription Factors , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Juvenile Hormones/metabolism , Intestines/cytology , Gene Expression Regulation , Animals, Genetically Modified
5.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673840

ABSTRACT

Sea cucumbers are widely known for their powerful regenerative abilities, which allow them to regenerate a complete digestive tract within a relatively short time following injury or autotomy. Recently, even though the histological changes and cellular events in the processes of intestinal regeneration have been extensively studied, the molecular machinery behind this faculty remains unclear. In this study, tandem mass tag (TMT)-based quantitation was utilized to investigate protein abundance changes during the process of intestine regeneration. Approximately 538, 445, 397, 1012, and 966 differential proteins (DEPs) were detected (p < 0.05) between the normal and 2, 7, 12, 20, and 28 dpe stages, respectively. These DEPs also mainly focus on pathways of cell proliferation and apoptosis, which were further validated by 5-Ethynyl-2'-deoxyuridine (EdU) or Tunel-based flow cytometry assay. These findings provide a reference for a comprehensive understanding of the regulatory mechanisms of various stages of intestinal regeneration and provide a foundation for subsequent research on changes in cell fate in echinoderms.


Subject(s)
Apoptosis , Cell Proliferation , Intestines , Proteomics , Regeneration , Animals , Proteomics/methods , Intestines/physiology , Intestines/cytology , Stichopus/metabolism , Stichopus/physiology , Tandem Mass Spectrometry , Proteome/metabolism
6.
Biomacromolecules ; 25(5): 2863-2874, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38564884

ABSTRACT

With the rapid increase of the number of patients with gastrointestinal diseases in modern society, the need for the development of physiologically relevant in vitro intestinal models is key to improve the understanding of intestinal dysfunctions. This involves the development of a scaffold material exhibiting physiological stiffness and anatomical mimicry of the intestinal architecture. The current work focuses on evaluating the scaffold micromorphology of gelatin-methacryloyl-aminoethyl-methacrylate-based nonporous and porous intestinal 3D, intestine-like constructs, fabricated via digital light processing, on the cellular response. To this end, Caco-2 intestinal cells were utilized in combination with the constructs. Both porous and nonporous constructs promoted cell growth and differentiation toward enterocyte-like cells (VIL1, ALPI, SI, and OCLD expression showed via qPCR, ZO-1 via immunostaining). The porous constructs outperformed the nonporous ones regarding cell seeding efficiency and growth rate, confirmed by MTS assay, live/dead staining, and TEER measurements, due to the presence of surface roughness.


Subject(s)
Hydrogels , Tissue Scaffolds , Humans , Porosity , Hydrogels/chemistry , Caco-2 Cells , Tissue Scaffolds/chemistry , Cell Proliferation , Gelatin/chemistry , Intestines/cytology , Methacrylates/chemistry , Tissue Engineering/methods , Cell Differentiation
7.
BMC Mol Cell Biol ; 25(1): 14, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689222

ABSTRACT

BACKGROUND: Emerging evidence underscores the responsiveness of the mammalian intestine to dietary cues, notably through the involvement of LGR5 + intestinal stem cells in orchestrating responses to diet-driven signals. However, the effects of high-fat diet (HFD) on these cellular dynamics and their impact on gut integrity remain insufficiently understood. Our study aims to assess the multifaceted interactions between palmitic acid (PA), cell proliferation, and the intestinal epithelial barrier using a canine colonoid model. Canine models, due to their relevance in simulating human intestinal diseases, offer a unique platform to explore the molecular mechanisms underlying HFD derived intestinal dysfunction. RESULTS: Canine colonoids were subjected to PA exposure, a surrogate for the effects of HFD. This intervention revealed a remarkable augmentation of cell proliferative activity. Furthermore, we observed a parallel reduction in transepithelial electrical resistance (TEER), indicating altered epithelium barrier integrity. While E-cadherin exhibited consistency, ZO-1 displayed a noteworthy reduction in fluorescence intensity within the PA-exposed group. CONCLUSIONS: By employing canine intestinal organoid systems, we provide compelling insights into the impact of PA on intestinal physiology. These findings underscore the importance of considering both cell proliferative activity and epithelial integrity in comprehending the repercussions of HFDs on intestinal health. Our study contributes to a deeper understanding of the consequences of HFD on intestinal homeostasis, utilizing valuable translational in vitro models derived from dogs.


Subject(s)
Cell Proliferation , Diet, High-Fat , Intestinal Mucosa , Organoids , Palmitic Acid , Permeability , Animals , Dogs , Diet, High-Fat/adverse effects , Organoids/metabolism , Organoids/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Intestines/cytology , Intestines/physiology , Intestinal Barrier Function
8.
J Agric Food Chem ; 72(18): 10366-10375, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38651967

ABSTRACT

Intestinal stem cells (ISCs) sustain epithelial renewal by dynamically altering behaviors of proliferation and differentiation in response to various nutrition and stress inputs. However, how ISCs integrate bioactive substance morin cues to protect against heat-stable enterotoxin b (STb) produced by Escherichia coli remains an uncertain question with implications for treating bacterial diarrhea. Our recent work showed that oral mulberry leaf-derived morin improved the growth performance in STb-challenged mice. Furthermore, morin supplementation reinstated the impaired small-intestinal epithelial structure and barrier function by stimulating ISC proliferation and differentiation as well as supporting intestinal organoid expansion ex vivo. Importantly, the Wnt/ß-catenin pathway, an ISC fate commitment signal, was reactivated by morin to restore the jejunal crypt-villus architecture in response to STb stimulation. Mechanically, the extracellular morin-initiated ß-catenin axis is dependent or partially dependent on the Wnt membrane receptor Frizzled7 (FZD7). Our data reveal an unexpected role of leaf-derived morin, which represents molecular signaling targeting the FZD7 platform instrumental for controlling ISC regeneration upon STb injury.


Subject(s)
Enterotoxins , Flavonoids , Frizzled Receptors , Morus , Plant Leaves , Stem Cells , beta Catenin , Animals , Morus/chemistry , Flavonoids/pharmacology , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , beta Catenin/metabolism , beta Catenin/genetics , Mice , Plant Leaves/chemistry , Plant Leaves/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Humans , Enterotoxins/metabolism , Cell Proliferation/drug effects , Wnt Signaling Pathway/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestines/drug effects , Intestines/cytology , Flavones
9.
Arch Biochem Biophys ; 756: 109978, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636693

ABSTRACT

A 2D-intestinal epithelial Caco-2/RAW 264.7 macrophage co-culture model was developed to demonstrate the relative efficacy of different phenolic acids to mitigate changes in Caco-2 epithelial cell redox state initiated both directly by autoxidation products, H2O2, and indirectly through cell communication events originating from cytokine stimulated macrophage. An inducer cocktail (lipopolysaccharide + interferon gamma) was used to activate RAW 264.7 cells in the 2D- Caco-2/RAW co-culture and intracellular changes in Caco-2 cell redox signaling occurred in response to positive changes (p < 0.05) in inflammatory biomarkers derived in macrophage that included IL-6, TNF-α, nitric oxide and peroxynitrite, respectively. Phenolic acids varied in relative capacity to reduce NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in cocktail inflamed induced macrophage. This response in addition to the relative predisposition of gallic acid (GA) to undergo autoxidation to generate H2O2 activity (p < 0.05), culminated in downstream cell signaling in Caco-2 nuclear factor erythroid 2-related factor (Nrf2) activity (increase 26.9 %), altered monolayer integrity (increase 33.7 %), and release of interleukin 8 (IL-8) (decrease 80.5 %) (p < 0.05). It can be concluded that the co-culture model described herein was useful to assess the importance of communication between cytokine stimulated macrophage and intestinal cells. Moreover, the relative unique efficacy of GA, compared to other phenolic acids tested to protect against activated macrophage induced changes related to intestinal dysfunction were particularly relevant to epithelial redox signaling, intestinal permeability and regulation of tight junction proteins. This study concludes that phenolic acids are not equal in the capacity to protect against intestinal cell dysfunction despite some indication of biological activity.


Subject(s)
Coculture Techniques , Gallic Acid , Tight Junction Proteins , Caco-2 Cells , Gallic Acid/pharmacology , Humans , Mice , Animals , RAW 264.7 Cells , Tight Junction Proteins/metabolism , Inflammation/metabolism , Oxidation-Reduction/drug effects , Hydrogen Peroxide/metabolism , Macrophages/metabolism , Macrophages/drug effects , Intestines/cytology , Intestines/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
10.
Dev Cell ; 59(9): 1159-1174.e5, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38537630

ABSTRACT

Inside the finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic capillary, the lacteal, sending fats into the systemic blood circulation for energy production. Despite this vital function, mechanisms of formation, assembly alongside lacteals, and maintenance of villus smooth muscle are unknown. By combining single-cell RNA sequencing and quantitative lineage tracing of the mouse intestine, we identified a local hierarchy of subepithelial fibroblast progenitors that differentiate into mature smooth muscle fibers via intermediate contractile myofibroblasts. This continuum persists as the major mechanism for villus musculature renewal throughout adult life. The NOTCH3-DLL4 signaling axis governs the assembly of smooth muscle fibers alongside their adjacent lacteals and is required for fat absorption. Our studies identify the ontogeny and maintenance of a poorly defined class of intestinal smooth muscle, with implications for accelerated repair and recovery of digestive function following injury.


Subject(s)
Cell Differentiation , Myofibroblasts , Animals , Myofibroblasts/metabolism , Myofibroblasts/cytology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Signal Transduction , Lymphatic Vessels/metabolism , Lymphatic Vessels/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Intestines/cytology , Muscle, Smooth/metabolism , Muscle, Smooth/cytology , Stem Cells/cytology , Stem Cells/metabolism , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Mice, Inbred C57BL
11.
Cell Prolif ; 57(6): e13602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38386338

ABSTRACT

Intestinal stem cells (ISCs) are known for their remarkable proliferative capacity, making them one of the most active cell populations in the body. However, a high turnover rate of intestinal epithelium raises the likelihood of dysregulated homeostasis, which is known to cause various diseases, including cancer. Maintaining precise control over the homeostasis of ISCs is crucial to preserve the intestinal epithelium's integrity during homeostasis or stressed conditions. Recent research has indicated that nutrients and metabolic pathways can extensively modulate the fate of ISCs. This review will explore recent findings concerning the influence of various nutrients, including lipids, carbohydrates, and vitamin D, on the delicate balance between ISC proliferation and differentiation.


Subject(s)
Homeostasis , Intestinal Mucosa , Nutrients , Stem Cells , Humans , Stem Cells/metabolism , Stem Cells/cytology , Animals , Nutrients/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Cell Proliferation , Cell Differentiation , Intestines/cytology , Vitamin D/metabolism
12.
Cell ; 187(4): 914-930.e20, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38280375

ABSTRACT

The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/ß-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.


Subject(s)
Intestines , Liver , Animals , Mice , Cell Proliferation , Liver/metabolism , PPAR alpha/metabolism , Proteomics , Stem Cells/metabolism , Wnt Signaling Pathway , Intestines/cytology , Intestines/metabolism
13.
J Virol ; 97(12): e0137623, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37991368

ABSTRACT

IMPORTANCE: Rotavirus (RV) is an important zoonosis virus, which can cause severe diarrhea and extra-intestinal infection. To date, some proteins or carbohydrates have been shown to participate in the attachment or internalization of RV, including HGBAs, Hsc70, and integrins. This study attempted to indicate whether there were other proteins that would participate in the entry of RV; thus, the RV VP4-interacting proteins were identified by proximity labeling. After analysis and verification, it was found that VIM and ACTR2 could significantly promote the proliferation of RV in intestinal cells. Through further viral binding assays after knockdown, antibody blocking, and recombinant protein overexpression, it was revealed that both VIM and ACTR2 could promote RV replication.


Subject(s)
Actin-Related Protein 2 , Capsid Proteins , Protein Interaction Maps , Rotavirus , Vimentin , Animals , Humans , Actin-Related Protein 2/genetics , Actin-Related Protein 2/metabolism , Capsid Proteins/metabolism , Intestines/cytology , Rotavirus/chemistry , Rotavirus/metabolism , Vimentin/genetics , Vimentin/metabolism , Virus Internalization , Virus Replication , Protein Binding
14.
Nature ; 623(7985): 122-131, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37722602

ABSTRACT

A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the aetiology of chronic disorders such as inflammatory bowel diseases and cancer1. We used the Drosophila midgut2 to investigate this and discovered that during regeneration a subpopulation of cholinergic3 neurons triggers Ca2+ currents among intestinal epithelial cells, the enterocytes, to promote return to homeostasis. We found that downregulation of the conserved cholinergic enzyme acetylcholinesterase4 in the gut epithelium enables acetylcholine from specific Egr5 (TNF in mammals)-sensing cholinergic neurons to activate nicotinic receptors in innervated enterocytes. This activation triggers high Ca2+, which spreads in the epithelium through Innexin2-Innexin7 gap junctions6, promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki (YAP in humans) activation7, cell death and increase of inflammatory cytokines reminiscent of inflammatory bowel diseases8. Altogether, the conserved cholinergic pathway facilitates epithelial Ca2+ currents that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric9-dependent intestinal regeneration and advance our current understanding of how a tissue returns to homeostasis after injury.


Subject(s)
Calcium Signaling , Calcium , Cholinergic Neurons , Drosophila melanogaster , Enterocytes , Intestines , Animals , Humans , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Calcium/metabolism , Cholinergic Neurons/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/metabolism , Enterocytes/metabolism , Homeostasis , Inflammation/enzymology , Inflammation/metabolism , Inflammatory Bowel Diseases/metabolism , Intestines/cytology , Intestines/metabolism , Receptors, Nicotinic/metabolism , Disease Models, Animal
15.
BMC Biol ; 21(1): 169, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553612

ABSTRACT

BACKGROUND: The nutrient-absorbing villi of small intestines are renewed and repaired by intestinal stem cells (ISCs), which reside in a well-organized crypt structure. Genetic studies have shown that Wnt molecules secreted by telocytes, Gli1+ stromal cells, and epithelial cells are required for ISC proliferation and villus homeostasis. Intestinal stromal cells are heterogeneous and single-cell profiling has divided them into telocytes/subepithelial myofibroblasts, myocytes, pericytes, trophocytes, and Pdgfralow stromal cells. Yet, the niche function of these stromal populations remains incompletely understood. RESULTS: We show here that a Twist2 stromal lineage, which constitutes the Pdgfralow stromal cell and trophocyte subpopulations, maintains the crypt structure to provide an inflammation-restricting niche for regenerating ISCs. Ablating Twist2 lineage cells or deletion of one Wntless allele in these cells disturbs the crypt structure and impairs villus homeostasis. Upon radiation, Wntless haplo-deficiency caused decreased production of anti-microbial peptides and increased inflammation, leading to defective ISC proliferation and crypt regeneration, which were partially rescued by eradication of commensal bacteria. In addition, we show that Wnts secreted by Acta2+ subpopulations also play a role in crypt regeneration but not homeostasis. CONCLUSIONS: These findings suggest that ISCs may require different niches for villus homeostasis and regeneration and that the Twist2 lineage cells may help to maintain a microbe-restricted environment to allow ISC-mediated crypt regeneration.


Subject(s)
Cell Lineage , Homeostasis , Intestines , Stem Cell Niche , Stem Cells , Stem Cells/cytology , Stem Cells/metabolism , Intestines/cytology , Intestines/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Animals , Mice
16.
Nature ; 619(7970): 572-584, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468586

ABSTRACT

The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.


Subject(s)
Intestines , Single-Cell Analysis , Humans , Cell Differentiation/genetics , Chromatin/genetics , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression Regulation , Intestinal Mucosa/cytology , Intestines/cytology , Intestines/immunology , Single-Cell Gene Expression Analysis
18.
Vet Res Commun ; 47(3): 1177-1184, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37436554

ABSTRACT

Intestinal infection with C. perfringens is responsible for outbreaks of diarrhea in piglets. Janus kinase / signal transducer and activator of transcription (JAK/STAT) is a vital signaling pathway that regulates cellular activity and inflammatory response, closely correlated with multiple diseases development and advances. Currently, the potential effect of JAK/STAT on C. perfringens beta2 (CPB2) treatment on porcine intestinal epithelial (IPEC-J2) cells has not been explored. The expression of JAK/STAT genes or proteins in IPEC-J2 cells induced by CPB2 were observed by qRT-PCR and Western blot, and further used WP1066 to explore the effect of JAK2/STAT3 on mechanism employed by CPB2 on apoptosis, cytotoxicity, oxidative stress and inflammatory cytokines of IPEC-J2 cells. JAK2, JAK3, STAT1, STAT3, STAT5A and STAT6 were highly expressed in CPB2-induced IPEC-J2 cells, among which STAT3 had the highest expression. Moreover, apoptosis, cytotoxicity and oxidative stress were attenuated via blocking the activation of JAK2/STAT3 by using WP1066 in CPB2-treated IPEC-J2 cells. Furthermore, WP1066 significantly suppressed the secretion of interleukin (IL)-6, IL-1ß and TNF-α induced by CPB2 in IPEC-J2 cells.Our findings provide some insights into the functional roles of JAK2/STAT3 in piglets against to C. perfringens infection.


Subject(s)
Clostridium Infections , Clostridium perfringens , Signal Transduction , Swine Diseases , Clostridium perfringens/physiology , Janus Kinases/metabolism , Signal Transduction/drug effects , Cell Line , Intestines/cytology , Intestines/metabolism , Animals , Swine , Gene Expression Profiling , Pyridines/pharmacology , Tyrphostins/pharmacology , Bacterial Toxins/toxicity , Real-Time Polymerase Chain Reaction , Blotting, Western , Clostridium Infections/metabolism , Clostridium Infections/pathology , Clostridium Infections/veterinary , Swine Diseases/metabolism , Swine Diseases/pathology
19.
Biol Res ; 56(1): 41, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37438828

ABSTRACT

BACKGROUND: Hyperbaric oxygen treatment (HBOT) has been reported to modulate the proliferation of neural and mesenchymal stem cell populations, but the molecular mechanisms underlying these effects are not completely understood. In this study, we aimed to assess HBOT somatic stem cell modulation by evaluating the role of the mTOR complex 1 (mTORC1), a key regulator of cell metabolism whose activity is modified depending on oxygen levels, as a potential mediator of HBOT in murine intestinal stem cells (ISCs). RESULTS: We discovered that acute HBOT synchronously increases the proliferation of ISCs without affecting the animal's oxidative metabolism through activation of the mTORC1/S6K1 axis. mTORC1 inhibition by rapamycin administration for 20 days also increases ISCs proliferation, generating a paradoxical response in mice intestines, and has been proposed to mimic a partial starvation state. Interestingly, the combination of HBOT and rapamycin does not have a synergic effect, possibly due to their differential impact on the mTORC1/S6K1 axis. CONCLUSIONS: HBOT can induce an increase in ISCs proliferation along with other cell populations within the crypt through mTORC1/S6K1 modulation without altering the oxidative metabolism of the animal's small intestine. These results shed light on the molecular mechanisms underlying HBOT therapeutic action, laying the groundwork for future studies.


Subject(s)
Hyperbaric Oxygenation , Signal Transduction , Stem Cells , Animals , Mice , Cell Proliferation , Intestines/cytology , Mechanistic Target of Rapamycin Complex 1 , Oxygen , Sirolimus/pharmacology , Stem Cells/drug effects
20.
Sci Adv ; 9(21): eadc9660, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37224252

ABSTRACT

Adult stem cells are essential for tissue maintenance and repair. Although genetic pathways for controlling adult stem cells are extensively investigated in various tissues, much less is known about how mechanosensing could regulate adult stem cells and tissue growth. Here, we demonstrate that shear stress sensing regulates intestine stem cell proliferation and epithelial cell number in adult Drosophila. Ca2+ imaging in ex vivo midguts shows that shear stress, but not other mechanical forces, specifically activates enteroendocrine cells among all epithelial cell types. This activation is mediated by transient receptor potential A1 (TrpA1), a Ca2+-permeable channel expressed in enteroendocrine cells. Furthermore, specific disruption of shear stress, but not chemical, sensitivity of TrpA1 markedly reduces proliferation of intestinal stem cells and midgut cell number. Therefore, we propose that shear stress may act as a natural mechanical stimulation to activate TrpA1 in enteroendocrine cells, which, in turn, regulates intestine stem cell behavior.


Subject(s)
Adult Stem Cells , Drosophila Proteins , Drosophila , Ion Channels , Animals , Cell Proliferation , Intestines/cytology , Stress, Mechanical , Ion Channels/metabolism , Drosophila Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...