Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 487
Filter
1.
Carbohydr Polym ; 340: 122311, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38858027

ABSTRACT

Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.


Subject(s)
Biocompatible Materials , Inulin , Neoplasms , Inulin/chemistry , Inulin/pharmacology , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Immunotherapy/methods
2.
Sci Rep ; 14(1): 11291, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760355

ABSTRACT

In the current study, we utilized molecular modeling and simulation approaches to define putative potential molecular targets for Burdock Inulin, including inflammatory proteins such as iNOS, COX-2, TNF-alpha, IL-6, and IL-1ß. Molecular docking results revealed potential interactions and good binding affinity for these targets; however, IL-1ß, COX-2, and iNOS were identified as the best targets for Inulin. Molecular simulation-based stability assessment demonstrated that inulin could primarily target iNOS and may also supplementarily target COX-2 and IL-1ß during DSS-induced colitis to reduce the role of these inflammatory mechanisms. Furthermore, residual flexibility, hydrogen bonding, and structural packing were reported with uniform trajectories, showing no significant perturbation throughout the simulation. The protein motions within the simulation trajectories were clustered using principal component analysis (PCA). The IL-1ß-Inulin complex, approximately 70% of the total motion was attributed to the first three eigenvectors, while the remaining motion was contributed by the remaining eigenvectors. In contrast, for the COX2-Inulin complex, 75% of the total motion was attributed to the eigenvectors. Furthermore, in the iNOS-Inulin complex, the first three eigenvectors contributed to 60% of the total motion. Furthermore, the iNOS-Inulin complex contributed 60% to the total motion through the first three eigenvectors. To explore thermodynamically favorable changes upon mutation, motion mode analysis was carried out. The Free Energy Landscape (FEL) results demonstrated that the IL-1ß-Inulin achieved a single conformation with the lowest energy, while COX2-Inulin and iNOS-Inulin exhibited two lowest-energy conformations each. IL-1ß-Inulin and COX2-Inulin displayed total binding free energies of - 27.76 kcal/mol and - 37.78 kcal/mol, respectively, while iNOS-Inulin demonstrated the best binding free energy results at - 45.89 kcal/mol. This indicates a stronger pharmacological potential of iNOS than the other two complexes. Thus, further experiments are needed to use inulin to target iNOS and reduce DSS-induced colitis and other autoimmune diseases.


Subject(s)
Cyclooxygenase 2 , Interleukin-1beta , Inulin , Molecular Docking Simulation , Nitric Oxide Synthase Type II , Inulin/chemistry , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/chemistry , Interleukin-1beta/metabolism , Animals , Molecular Dynamics Simulation , Colitis/chemically induced , Colitis/metabolism , Colitis/prevention & control , Protein Binding , Hydrogen Bonding , Mice , Models, Molecular , Tumor Necrosis Factor-alpha/metabolism
3.
J Microbiol Biotechnol ; 34(5): 1051-1058, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38803106

ABSTRACT

This study investigated the impact of inulin (INL) on viability of L. plantarum D-2 (LPD2) by encapsulation through spray drying (SD) and its commercialization potential to alternative of conventional wall material maltodextrin (MD). LPD2, derived from sea tangle (Saccharina japonica) kimchi, is probiotics exhibiting significant attributes like cholesterol reduction, antioxidant properties, and resilience to acidic and bile environments. To enhance storage viability and stability of LPD2, encapsulation was applied by SD technology. The optimum encapsulation condition with MD was 10% MD concentration (MD10) and inlet temperature (96°C). The optimum concentration ratio of MD and INL was 7:3 (INL3) for alternative of MD with similar encapsulation yield and viability of LPD2. Viability of LPD2 with INL3 exhibited almost 8% higher than that with MD10 after 50 days storage at 25°C. Physicochemical characteristics of the encapsulated LPD2 (ELPD2) with MD10 and INL3 had no significant different between flowability and morphology. But, ELPD2 with INL3 had lower water solubility and higher water absorption resulting in extension of viability of LPD2 compared to that with MD10. The comprehensive study results showed that there was no significant difference in the encapsulation yield and physicochemical properties between ELPD2 with MD10 and INL3, except of water solubility index (WSI) and water absorption index (WAI). INL have the potential to substitute of MD as a commercial wall material with prebiotic functionality to enhance the viability of LPD2 by encapsulation.


Subject(s)
Inulin , Lactobacillus plantarum , Microbial Viability , Polysaccharides , Prebiotics , Spray Drying , Inulin/chemistry , Inulin/pharmacology , Polysaccharides/chemistry , Microbial Viability/drug effects , Lactobacillus plantarum/growth & development , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/chemistry , Probiotics , Temperature , Desiccation/methods , Solubility
4.
Food Chem ; 453: 139597, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788653

ABSTRACT

Fructansucrases produce fructans by polymerizing the fructose moiety released from sucrose. Here, we describe the recombinant expression and characterization of a unique fructansucrase from Lactiplantibacillus plantarum DKL3 that showed low sequence similarity with previously characterized fructansucrases. The optimum pH and temperature of fructansucrase were found to be 4.0 and 35 °C, respectively. Enzyme activity increased in presence of Ca2+ and distinctly in presence of Mn2+. The enzyme was characterized as an inulosucrase (LpInu), based on the production of an inulin-type fructan as assessed byNMR spectroscopy and methylation analysis. In addition to ß-2,1-linkages, the inulin contained a few ß-2,1,6-linked branchpoints. High-performance size exclusion chromatography with refractive index detection (HPSEC-RI) revealed the production of inulin with a lower molecular weight compared to other characterized bacterial inulin. LpInu and its inulin product represent novel candidates to be explored for possible food and biomedical applications.


Subject(s)
Bacterial Proteins , Hexosyltransferases , Inulin , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Hexosyltransferases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Inulin/chemistry , Inulin/metabolism , Hydrogen-Ion Concentration , Temperature , Enzyme Stability , Molecular Weight , Lactobacillaceae/enzymology , Lactobacillaceae/genetics , Lactobacillaceae/metabolism , Lactobacillaceae/chemistry
5.
Int J Biol Macromol ; 270(Pt 2): 132232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734349

ABSTRACT

High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.


Subject(s)
Anti-Obesity Agents , Gastrointestinal Microbiome , Inulin , Obesity , Solubility , Tannins , Inulin/chemistry , Inulin/pharmacology , Tannins/chemistry , Tannins/pharmacology , Animals , Mice , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/chemistry , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Polymerization , Diospyros/chemistry , Male , Diet, High-Fat/adverse effects , Polyphenols/chemistry , Polyphenols/pharmacology
6.
Food Res Int ; 187: 114432, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763680

ABSTRACT

Probiotics are subjected to various edible coatings, especially proteins and polysaccharides, which serve as the predominant wall materials, with ultrasound, a sustainable green technology. Herein, sodium caseinate, inulin, and soy protein isolate composites were produced using multi-frequency ultrasound and utilized to encapsulateLactiplantibacillus plantarumto enhance its storage, thermal, and gastrointestinal viability. The physicochemical analyses revealed that the composites with 5 % soy protein isolate treated with ultrasound at 50 kHz exhibited enough repulsion forces to maintain stability, pH resistance, and the ability to encapsulate larger particles and possessed the highest encapsulation efficiency (95.95 %). The structural analyses showed changes in the composite structure at CC, CH, CO, and amino acid residual levels. Rheology, texture, and water-holding capacity demonstrated the production of soft hydrogels with mild chewing and gummy properties, carried the microcapsules without coagulation or sedimentation. Moreover, the viability attributes ofL. plantarumevinced superior encapsulation, protecting them for at least eight weeks and against heat (63 °C), reactive oxidative species (H2O2), and GI conditions.


Subject(s)
Carboxymethylcellulose Sodium , Caseins , Hydrogels , Inulin , Probiotics , Soybean Proteins , Soybean Proteins/chemistry , Hydrogels/chemistry , Caseins/chemistry , Carboxymethylcellulose Sodium/chemistry , Inulin/chemistry , Inulin/pharmacology , Lactobacillus plantarum/metabolism , Rheology , Hydrogen-Ion Concentration , Microbial Viability , Capsules
7.
Ultrason Sonochem ; 105: 106864, 2024 May.
Article in English | MEDLINE | ID: mdl-38581796

ABSTRACT

The effects of ultrasound and different inulin (INU) concentrations (0, 10, 20, 30, and 40 mg/mL) on the structural and functional properties of soybean isolate protein (SPI)-INU complexes were hereby investigated. Fourier transform infrared spectroscopy showed that SPI was bound to INU via hydrogen bonding. All samples showed a decreasing and then increasing trend of α-helix content with increasing INU concentration. SPI-INU complexes by ultrasound with an INU concentration of 20 mg/mL (U-2) had the lowest content of α-helix, the highest content of random coils and the greatest flexibility, indicating the proteins were most tightly bound to INU in U-2. Both UV spectroscopy and intrinsic fluorescence spectroscopy indicated that it was hydrophobic interactions between INU and SPI. The addition of INU prevented the exposure of tryptophan and tyrosine residues to form a more compact tertiary structure compared to SPI alone, and ultrasound caused further unfolding of the structure of SPI. This indicated that the combined effect of ultrasound and INU concentration significantly altered the tertiary structure of SPI. SDS-PAGE and Native-PAGE displayed the formation of complexes through non-covalent interactions between SPI and INU. The ζ-potential and particle size of U-2 were minimized to as low as -34.94 mV and 110 nm, respectively. Additionally, the flexibility, free sulfhydryl groups, solubility, emulsifying and foaming properties of the samples were improved, with the best results for U-2, respectively 0.25, 3.51 µmoL/g, 55.51 %, 269.91 %, 25.90 %, 137.66 % and 136.33 %. Overall, this work provides a theoretical basis for improving the functional properties of plant proteins.


Subject(s)
Inulin , Soybean Proteins , Inulin/chemistry , Soybean Proteins/chemistry , Ultrasonic Waves , Glycine max/chemistry , Sonication
8.
J Ethnopharmacol ; 329: 118149, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38580188

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Calcium oxalate crystals play a key role in the development and recurrence of kidney stones (also known as urolithiasis); thus, inhibiting the formation of these crystals is a central focus of urolithiasis prevention and treatment. Previously, we reported the noteworthy in vitro inhibitory effects of Aspidopterys obcordata fructo oligosaccharide (AOFOS), an active polysaccharide of the traditional Dai medicine Aspidopterys obcordata Hemsl. (commonly known as Hei Gai Guan), on the growth of calcium oxalate crystals. AIM OF THE STUDY: To investigated the effectiveness and mechanism of AOFOS in treating kidney stones. MATERIALS AND METHODS: A kidney stones rats model was developed, followed by examining AOFOS transport dynamics and effectiveness in live rats. Additionally, a correlation between the polysaccharide and calcium oxalate crystals was studied by combining crystallization experiments with density functional theory calculations. RESULTS: The results showed that the polysaccharide was transported to the urinary system. Furthermore, their accumulation was inhibited by controlling their crystallization and modulating calcium ion and oxalate properties in the urine. Consequently, this approach helped effectively prevent kidney stone formation in the rats. CONCLUSIONS: The present study emphasized the role of the polysaccharide AOFOS in modulating crystal properties and controlling crystal growth, providing valuable insights into their potential therapeutic use in managing kidney stone formation.


Subject(s)
Calcium Oxalate , Crystallization , Kidney Calculi , Animals , Calcium Oxalate/chemistry , Calcium Oxalate/metabolism , Male , Rats , Kidney Calculi/prevention & control , Kidney Calculi/drug therapy , Rats, Sprague-Dawley , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Urolithiasis/drug therapy , Urolithiasis/prevention & control , Disease Models, Animal , Inulin/chemistry , Inulin/pharmacology
9.
Int J Biol Macromol ; 267(Pt 2): 131656, 2024 May.
Article in English | MEDLINE | ID: mdl-38636749

ABSTRACT

The gut microbiota plays a significant role in the pathogenesis and remission of inflammatory bowel disease. However, conventional antibiotic therapies may alter microbial ecology and lead to dysbiosis of the gut microbiome, which greatly limits therapeutic efficacy. To address this challenge, novel nanomicelles that couple inulin with levofloxacin via disulfide bonds for the treatment of salmonellosis were developed in this study. Owing to their H2S-responsiveness, the nanomicelles can target the inflamed colon and rapidly release levofloxacin to selectively fight against enteric pathogens. Moreover, the embedded inulin can serve as prebiotic fiber to increase the amount of Bifidobacteria and Lactobacilli in mice with salmonellosis, thus maintaining the intestinal mechanical barrier and regulating the balance of the intestinal flora. Therefore, multifunctional nanomicelles had a better curative effect than pure levofloxacin on ameliorating inflammation in vivo. The pathogen-targeted glycovesicle represents a promising drug delivery platform to maximize the efficacy of antibacterial drugs for the treatment of inflammatory bowel disease.


Subject(s)
Anti-Bacterial Agents , Gastrointestinal Microbiome , Inulin , Salmonella Infections , Animals , Inulin/pharmacology , Inulin/chemistry , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salmonella Infections/drug therapy , Salmonella Infections/microbiology , Gastrointestinal Microbiome/drug effects , Drug Delivery Systems , Levofloxacin/pharmacology , Micelles , Drug Carriers/chemistry , Nanoparticles/chemistry
10.
Food Res Int ; 180: 114048, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395565

ABSTRACT

This study compares the physicochemical and prebiotic properties of inulin isolated from five botanical sources. The average degree of polymerization (DP) for inulin ranged from 5.00 to 13.33. Notably, inulin from Dahlia tubers (DP = 13) and Platycodonis Radix (DP = 8) demonstrated granular, clustered morphology under SEM, semi-crystalline structures via X-ray diffraction, and exhibited shear-thinning behaviors from shear rate 1 s-1 to 500 s-1. In contrast, inulin from Jerusalem artichoke (DP = 5), chicory root (DP = 7), and Asparagi Radix (DP = 5) showcased rough flake morphologies under SEM, amorphous structures in X-ray patterns, and similar shear-thinning behaviors. All inulin types showed acid stability at pH levels below 2.0, with a reducing sugar conversion ratio (RRS) under 1 %. Furthermore, the isolated inulin from the different sources presented prebiotic capacity when added as a sole carbon source in the culture media of the probiotics Lactobacillus paracasei and Bifidobacterium longum. This study provides the properties of inulin from various sources, thereby offering a reference for the selection of appropriate inulin in industrial applications based on the desired characteristics of the final product.


Subject(s)
Bifidobacterium longum , Helianthus , Probiotics , Inulin/chemistry , Prebiotics
11.
Int J Biol Macromol ; 263(Pt 1): 130139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354927

ABSTRACT

In this study, phosphorylated derivatives of long-chain inulin with different substitution degrees were prepared. The synthesized samples were named PFXL-1, PFXL-2, PFXL-3, and PFXL-4 according to their degree of substitution (from low to high). The structures of FXL and PFXL were characterized by infrared spectroscopy and nuclear magnetic resonance spectroscopy, and the results indicated the successful introduction of phosphate groups. FXL and PFXL were composed of two types of sugar, fructose and glucose, with a molar ratio of 0.977:0.023. The SEM results showed that phosphorylation changed the morphology of FXL from an irregular mass to small spherical aggregates. The XRD pattern showed that the crystallinity was reduced by the introduction of phosphate groups. The Mw of FXL was 2649 g/mol, and the Mw of PFXL-4 increased the most (2965 g/mol). Additionally, PFXL was more stable and uniform, and the absolute value of the PFXL potential reached 7.83 mV. Phosphorylation decreased the weight loss rate of FXL and improved the viscoelastic properties and antioxidant activity of FXL. This study presents a method for the modification of FXL, demonstrating that phosphorylation can enhance its physicochemical properties and physiological activity and suggesting its potential as a functional food and quality modifier.


Subject(s)
Antioxidants , Inulin , Antioxidants/pharmacology , Antioxidants/chemistry , Inulin/chemistry , Spectrophotometry, Infrared , Magnetic Resonance Spectroscopy , Phosphates
12.
Int J Biol Macromol ; 259(Pt 1): 129131, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181920

ABSTRACT

In recent years, inulin has gained much attention as a promising multifunctional natural biopolymer with numerous applications in drug delivery, prebiotics, and therapeutics. It reveals a multifaceted biopolymer with transformative implications by elucidating the intricate interplay between inulin and the host, microbiome, and therapeutic agents. Their flexible structure, exceptional targetability, biocompatibility, inherent ability to control release behavior, tunable degradation kinetics, and protective ability make them outstanding carriers in healthcare and biomedicine. USFDA has approved Inulin as a nutritional dietary supplement for infants. The possible applications of inulin in biomedicine research inspired by nature are presented. The therapeutic potential of inulin goes beyond its role in prebiotics and drug delivery. Recently, significant research efforts have been made towards inulin's anti-inflammatory, antioxidant, and immunomodulatory properties for their potential applications in treating various chronic diseases. Moreover, its ability to reduce inflammation and modulate immune responses opens new avenues for treating conditions such as autoimmune disorders and gastrointestinal ailments. This review will attempt to illustrate the inulin's numerous and interconnected roles, shedding light on its critical contributions to the advancement of healthcare and biomedicine and its recent advancement in therapeutics, and conclude by taking valuable insights into the prospects and opportunities of inulin.


Subject(s)
Inulin , Prebiotics , Infant , Humans , Inulin/chemistry , Dietary Supplements , Gastrointestinal Tract , Drug Delivery Systems
13.
Int J Biol Macromol ; 259(Pt 1): 129216, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185294

ABSTRACT

Cancer stands as the second leading cause of death in the United States (US). Most chemotherapeutic agents exhibit severe adverse effects that are attributed to exposure of drugs to off-target tissues, posing a significant challenge in cancer therapy management. In recent years, inulin, a naturally occurring prebiotic fiber has gained substantial attention for its potential in cancer treatment owing to its multitudinous health values. Its distinctive structure, stability, and nutritional properties position it as an effective adjuvant and carrier for drug delivery in cancer therapy. To address some of the above unmet clinical issues, this review summarizes the recent efforts towards the development of inulin-based nanomaterials and nanocomposites for healthcare applications with special emphasis on the multifunctional role of inulin in cancer therapy as a synergist, signaling molecule, immunomodulatory and anticarcinogenic molecule. Furthermore, the review provides a concise overview of ongoing clinical trials and observational studies associated with inulin-based therapy. In conclusion, the current review offers insights on the significant role of inulin interventions in exploring its potential as a therapeutic agent to treat cancer.


Subject(s)
Inulin , Neoplasms , Humans , Inulin/therapeutic use , Inulin/chemistry , Prebiotics , Pharmaceutical Preparations , Neoplasms/drug therapy , Drug Delivery Systems
14.
Int J Biol Macromol ; 256(Pt 1): 128030, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981289

ABSTRACT

Polygonatum sibiricum is an edible plant species in China known for its abundant polysaccharides. However, correlations between its analytical methods and fine structure have not been established. This is usually due to incomplete cleavage of the glycosidic linkages and instability of hydrolysis. In this study, a new optimal acid hydrolysis method for monosaccharide composition (2 M H2SO4 for 1 h) and methylation analysis (2 mol TFA hydrolysis at 100 °C for 1 h) was developed for characterization of inulin-type fructans, resulting in significantly improved monosaccharide recovery and providing more reliable methylation data. The effectiveness of this method was demonstrated through its application to the study of polysaccharide from P. sibiricum (IPS-70S). The results showed that IPS-70S with a molecular weight of 3.6 kDa is an inulin-type fructans consisting of fructose and glucose in a molar ratio of 27:1. Methylation and NMR analysis indicated that IPS-70S contains →2)-Fruf-(6 â†’ or →2)-Fruf-(1 â†’ with branching →1,6)-Fruf-(2 â†’ and terminates in Glcp-(1 â†’ or Fruf-(2→. In conclusion, optimal acid hydrolysis applicable to the specific polysaccharides contribute to its structurally characterized. The newly optimized acid hydrolysis method for monosaccharide composition and methylation analysis offers a reliable and effective approach to the structural characterization of inulin-type fructans from P. sibiricum. Providing reliable basis for the overall work of NMR analysis and structural analysis, which have potential significance in the field of polysaccharides structural characterization.


Subject(s)
Fructans , Polygonatum , Fructans/chemistry , Inulin/chemistry , Polygonatum/chemistry , Hydrolysis , Polysaccharides/chemistry , Glucose , Acids
15.
Food Chem ; 434: 137325, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37696152

ABSTRACT

Encapsulation of quercetin (Q) with inulin (In) by spray-drying was performed applying a Box-Behnken design where the effect of the inlet air temperature, percentage of inulin crystallite dispersion and Q content were studied on the crystallinity index (CI). Three microparticle systems with CI between 2 % and 20 % (Q-In-2 %, Q-In-12 % and Q-In-20 %) were selected to study the CI effect on Q release during an in vitro digestion. The higher the CI of microparticles, the higher the encapsulation efficiency (76.4 %, Q-In-20 %). Surface quercetin was steadily released during the oral, gastric, and intestinal phases of the digestion. The CI of the microparticles did not influence the Q bioaccessibility values (23.1-29.7 %). The highest Q delivery occurred during the simulated colonic phase (44.4-66.4 %) due to the action of the inulinase. The controlled crystallization in spray-dried microparticles is a promising strategy for the designing of polyphenol-based microparticles with specific delivery properties.


Subject(s)
Inulin , Quercetin , Inulin/chemistry , Polyphenols , Temperature , Digestion
16.
Extremophiles ; 27(3): 29, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37847305

ABSTRACT

The studies have revealed alkaline exoinulinase produced by haloalkaliphilic phototrophic bacteria Ectothiorhodospirea mobilis Al-2 for the first time. A new method for the isolation of a homogeneous exoinulinase from the culture broth was developed and the properties of this enzyme have been investigated. It was shown that specified exoinulinase in contrast to the studied exoinulinases produced by microorganisms exhibits catalytic activity at the wide range of pH (7.0-10) and a temperature (20-60 °C) with a maximum of the inulolitic activity at pH 9.0 and 50 °C. The studied exoinulinase possessing also invertase activity (I/S1.4) is a monomeric protein with molecular mass 57Kda, as well as Km and Vmax for inulin 3.8 mM/ml and 10 µmol/ml/min-1, respectively. The studies of the influence of different metal ions on enzyme activity have shown that Mn+2, Cu+2, Co+2, Mg+2, NaCl 5-7% promote relatively higher catalytic activity while Zn+2, Cu+2 and Fe+2 partially suppress the enzyme activity and Hg2+completely inactivates the enzyme.The formation of only fructose and glucose at the enzymatic hydrolysis of inulin confirms that the studied exoinulinase belongs to the exo-type of enzymes. The obtained results supplement our fundamental knowledge in biochemistry-enzymology, as well as the biodiversity of microorganisms expressing exoinulinase. The studied exoinulinase exhibits activity at salinity of the medium and can potentially be used in the biotechnology of inulin bioconversion into bioproducts under alkaline conditions.


Subject(s)
Glycoside Hydrolases , Inulin , Inulin/chemistry , Inulin/metabolism , Glycoside Hydrolases/chemistry , Temperature , Bacteria/metabolism
17.
J Food Sci ; 88(8): 3445-3459, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37458284

ABSTRACT

Natural chlorophylls mostly found in vegetables such as spinach (Spinacia oleracea) could be employed as a possible substitute for synthetic colorants because of their intense green properties. However, the stability of natural chlorophyll is a major challenge to its utilization in the food industry. In this study, spray drying as an encapsulation technique was used to improve the stability of natural chlorophyll. Box-Behnken design was utilized to optimize the spray drying conditions for chlorophyll. Optimum conditions were given as inlet temperature, 132°C; inulin-to-whey protein isolate ratio, 61%:39%; pump rate, 25%, resulting in 92.3% encapsulation efficiency, 69.4% solubility, and -13.5 mV zeta potential at a desirability level of 0.901. The particle size, Carr index, bulk and tapped density, polydispersity index, and color showed satisfactory results. Crystallinity, endothermic peak melting temperature, and the enthalpy of chlorophyll-loaded microcapsules increased when compared to the blank microcapsules suggesting decreased hygroscopicity and enhanced thermal stability. In addition, the suitability of fabricated microcapsules using yogurt as a food model was assessed. Yogurt incorporated with chlorophyll-loaded microcapsules showed no significant pH modification with better apparent viscosity than control and sodium copper chlorophyllin (SCC) yogurt after 9 days of refrigerated storage. Based on the studied responses, the spray drying process could be optimized to achieve optimal output and product quality. PRACTICAL APPLICATION: Spray drying is a cheap and convenient approach for microencapsulating bioactive compounds such as chlorophyll. However, the physico-chemical and functional properties of the spray-dried microcapsules are influenced by operating conditions, such as inlet temperature, type and concentration of wall materials, and feed flow rate. Therefore, to maximize and obtain a superior quality of the final product, there is a need to optimize the spray drying process. The Box-Behnken design employed in this study could be utilized as an appropriate technique to design, enhance, and develop process parameters for the fabrication and better retention of the physico-chemical properties of spray-dried chlorophyll microcapsules.


Subject(s)
Functional Food , Inulin , Whey Proteins/chemistry , Inulin/chemistry , Chlorophyll , Capsules/chemistry , Excipients
18.
Carbohydr Res ; 530: 108850, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37285636

ABSTRACT

Inulin is a polymer of d-fructose, characterized by the presence of a terminal glucose, and are a major component of Stevia rebaudiana roots. This type of polymer has nutritional properties and technological applications, such as fat substitutes in low-calorie foods and as the coating of pharmaceuticals. The aim of this study was to evaluate an alternative method for inulin extraction, in terms of extraction time and yield, since the traditional method of extraction under reflux is both time and energy consuming. Using the response surface methodology (RSM) with Box-Behnken design it was observed that the alternative extraction method using autoclave presented similar yields to the reflux-based method, but with a shorter extraction time, 121 °C by 17.41 min 1H Nuclear Magnetic Resonance and Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF-MS) analysis showed that inulin crude extract from S. rebaudiana roots obtained by autoclave extraction had a higher degree of polymerization when compared to those obtained by the traditional method. Thus, it is concluded that the proposed method using an autoclave is a faster alternative for the extraction of inulin.


Subject(s)
Inulin , Stevia , Inulin/chemistry , Stevia/chemistry , Magnetic Resonance Spectroscopy , Plant Roots/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
J Sci Food Agric ; 103(11): 5288-5299, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37005347

ABSTRACT

BACKGROUND: The aim of the work was to investigate the influence of supplementing pangasius mince-based emulsion sausages with blue agave-derived inulin at 1% (T1), 2% (T2), 3% (T3), 4% (T4), and 5% (T5) on its technological quality attributes and acceptability. RESULTS: The cooking yield of T-2, T-3, and T-4 sausages (96-97%) exhibited no significant difference (P > 0.05), which was higher than the other lots. The T-2 batter exhibited a significant difference with all other treatments, showing the lowest total expressible fluid (12.20%) value, indicating the highest emulsion stability of the batter. There was a significant effect on the diameter reduction of the cooked sausages as the level of inulin increased. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the proteolysis of raw mince without inulin and new bands in cooked sausage samples were observed. Increasing inulin content increased the hardness of the sausages from 2510.81 ± 114.31 g to 3415.54 ± 75.88. The differential scanning calorimetry melting temperatures of peak 2 of the T-1, T-2, T-3, and T-4 increased as the inulin content increased from 1 to 4%. The scanning electron microscope images exhibited a smooth appearance on the surface as the inulin level increased. CONCLUSION: The sausages incorporated with the 2% and 3% blue agave plant-derived inulin (T-2 and T-3) showed better sensory overall acceptability scores than the control. The results suggested that the blue agave plant-derived inulin could be efficiently utilized at the 2% and 3% levels to enhance the quality of emulsion-type pangasius sausage. © 2023 Society of Chemical Industry.


Subject(s)
Agave , Catfishes , Animals , Inulin/chemistry , Taste , Emulsions/chemistry , Dietary Fiber
20.
Food Res Int ; 166: 112608, 2023 04.
Article in English | MEDLINE | ID: mdl-36914352

ABSTRACT

Liposomes have been received much attention during the past decades as bioactive compounds carriers in food field. However, the application of liposomes is extremely limited by the structural instability during processing such as freeze-drying. In addition, the protection mechanism of lyoprotectant for liposomes during freeze-drying remains controversial. In this study, lactose, fructooligosaccharide, inulin and sucrose were used as lyoprotectants for liposomes and the physicochemical properties, structural stability and freeze-drying protection mechanism were explored. The addition of oligosaccharides could significantly suppress the changes in size and zeta potential, and the amorphous state of liposomes was negligible changed from XRD. The Tg of the four oligosaccharides, especially for sucrose (69.50 °C) and lactose (95.67 °C), revealed the freeze-dried liposomes had formed vitrification matrix, which could prevent liposomes from fusion via increasing the viscosity and reducing membrane mobility. The decrease in Tm of sucrose (147.67 °C) and lactose (181.67 °C), and the changes in functional group of phospholipid and hygroscopic capacity of lyophilized liposomes indicated oligosaccharides replaced water molecules to interact with phospholipids by hydrogen bonds. It can be concluded that the protection mechanism of sucrose and lactose as lyoprotectant was attributed to the combination of vitrification theory and water replacement hypothesis, while the water replacement hypothesis was dominated by fructooligosaccharide and inulin.


Subject(s)
Inulin , Liposomes , Liposomes/chemistry , Inulin/chemistry , Lactose , Phospholipids/chemistry , Oligosaccharides , Sucrose/chemistry , Water , Freeze Drying
SELECTION OF CITATIONS
SEARCH DETAIL
...