Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Infect Dis ; 32(6): 531-537, 2019 12.
Article in English | MEDLINE | ID: mdl-31567735

ABSTRACT

PURPOSE OF REVIEW: Invasive fungal infections (IFIs) most often occur secondary to acquired immunodeficiency states such as transplantation, AIDS or immune-modulatory treatment for neoplastic and autoimmune disorders. Apart from these acquired conditions, several primary immunodeficiency disorders (PIDs) can present with IFIs in the absence of iatrogenic immunosuppression. This review highlights recent advances in our understanding of PIDs that cause IFIs, which may help clinicians in the diagnosis and management of such infections. RECENT FINDINGS: A growing number of PIDs that cause varying combinations of invasive infections by commensal Candida, inhaled molds (primarily Aspergillus), Cryptococcus, Pneumocystis, endemic dimorphic fungi, dermatophytes, and/or agents of phaeohyphomycosis has uncovered the organ- and fungus-specific requirements for effective antifungal host defense in humans. Employing certain diagnostic algorithms tailored to the infecting fungus can facilitate the genetic diagnosis of the underlying PID, which has implications for the optimal management of affected patients. SUMMARY: Heightened clinical suspicion is required for the diagnosis of underlying genetic defects in patients who develop IFIs in the absence of acquired immunodeficiency. Early initiation of antifungal therapy followed by long-term secondary prophylaxis is typically needed to achieve remission, but hematopoietic stem-cell transplantation may sometimes be necessary to promote immune restoration and infection control.


Subject(s)
Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/etiology , Primary Immunodeficiency Diseases/complications , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Clinical Decision-Making , Combined Modality Therapy , Disease Management , Disease Susceptibility/immunology , Humans , Immunocompromised Host , Invasive Fungal Infections/therapy , Invasive Fungal Infections/transmission , Microbiological Techniques , Primary Immunodeficiency Diseases/therapy , Prognosis , Risk Factors , Treatment Outcome
2.
Article in English | MEDLINE | ID: mdl-31161035

ABSTRACT

Background: Invasive aspergillosis (IA) is an opportunistic fungal infection that mostly occurs in immunocompromised patients, such as those having hematologic malignancy or receiving hematopoietic stem cell transplantation. Inhalation of Aspergillus spores is the main transmission route of IA in immunocompromised patients. Construction work in hospitals is a risk factor for environmental fungal contamination. We measured airborne fungal contamination and the incidence of IA among immunocompromised patients, and evaluated their correlation with different types of construction works. Methods: Our tertiary hospital in Seoul, Korea underwent facility construction from September 2017 to February 2018. We divided the entire construction period into period 1 (heavier works: demolition and excavation) and period 2 (lighter works: framing, interior designing, plumbing, and finishing). We conducted monthly air sampling for environmental spore surveillance in three hematologic wards. We evaluated the incidence of IA among all immunocompromised patients hospitalized in the three hematologic wards (2 adult wards and 1 pediatric ward) during this period. IA was categorized into proven, probable, and possible aspergillosis based on the revised European Organization for Research and Treatment of Cancer/Mycosis Study Group (EORTC/MSG) criteria. Results: A total of 15 patients was diagnosed with proven (1 case), probable (8 cases), or possible (6 cases) hospital-acquired IA during period 1. In period 2, 14 patients were diagnosed with either proven (1 case), probable (10 cases), or possible (3 cases) hospital-acquired IA. Total mold and Aspergillus spp. spore levels in the air tended to be higher in period 1 (p = 0.06 and 0.48, respectively). The incidence rate of all IA by the EORTC/MSG criteria was significantly higher in period 1 than in period 2 (1.891 vs. 0.930 per 1000 person-days, p = 0.05). Conclusions: Airborne fungal spore levels tended to be higher during the period with heavier construction works involving demolition and excavation, during which the incidence of IA was significantly higher as well. We recommend monitoring airborne fungal spore levels during construction periods in hospitals with immunocompromised patients. Subsequently, the effect of airborne fungal spore level monitoring in reducing hospital-acquired IA should be evaluated.


Subject(s)
Air Microbiology , Aspergillus/isolation & purification , Hospital Design and Construction , Invasive Fungal Infections/transmission , Spores, Fungal/isolation & purification , Adolescent , Adult , Environmental Monitoring , Female , Hematology , Hospital Units/statistics & numerical data , Humans , Invasive Fungal Infections/epidemiology , Male , Middle Aged , Prospective Studies , Republic of Korea/epidemiology , Risk Factors , Tertiary Care Centers/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...