Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.166
Filter
1.
Sci Rep ; 14(1): 13047, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844538

ABSTRACT

Neonicotinoids, a relatively new widely used class of insecticide is used in agriculture to control insect populations. We examined the capacity of ancestral exposure to the neonicotinoid thiacloprid (thia) to induce transgenerational effects on thyroid tissue. Pregnant outbred Swiss female mice were exposed to thia at embryonic days E6.5 to E15.5 using 0, 0.6, and 6 mg/kg/day doses. Thyroid paraffin sections were prepared for morphology analysis. We apply ELISA method to measure T4 and TSH levels, RT-qPCR for gene expression analysis, ChIP-qPCR techniques for sperm histone H3K4me3 analysis, and immunofluorescence microscopy and western blots for protein detection. We observed an alteration in the morphology of thyroids in both males and females in the F3 generation. We observed an increase in T4 hormone in F1 females and a significant T4 level decrease in F3 males. T4 changes in F1 females were associated with a TSH increase. We found that the amount of Iodothyronine Deiodinase 1 (DIO1) (an enzyme converting T4 to T3) was decreased in both F1 and F3 generations in female thyroids. GNAS protein which is important for thyroid function has increased in female thyroids. Gene expression analysis showed that the expression of genes encoding thyroid gland development, chromatin, biosynthesis and transport factors were affected in the thyroid gland in both sexes in F1 and F3. The analysis of sperm histone H3K4me3 showed that H3K4me3 occupancy at the Dio1 locus has decreased while Thyroglobulin (Tg) and Matrix Metallopeptidase 2 (Mmp2) genes have increased H3K4me3 occupancy in the sperm of F3 mice. Besides, DNA methylation analysis of our previously published datasets showed that, in the sperm of F1 and F3 thia-derived mice, several genes related to thyroid function show consistent alterations. Our data suggest that ancestral exposure to thiacloprid affects thyroid function not only in exposed but also in indirectly exposed F3 generation.


Subject(s)
Neonicotinoids , Thyroid Gland , Animals , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Thyroid Gland/pathology , Female , Neonicotinoids/toxicity , Mice , Male , Thiazines/toxicity , Pregnancy , Histones/metabolism , Thyroxine/metabolism , Iodide Peroxidase/metabolism , Iodide Peroxidase/genetics , Spermatozoa/drug effects , Spermatozoa/metabolism , Insecticides/toxicity , Thyrotropin/blood , Thyrotropin/metabolism , Sex Factors
2.
J Hazard Mater ; 472: 134461, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38696959

ABSTRACT

Previous studies have indicated that tire wear particles (TWPs) leachate exposure induced serious eye injury in fish through inhibiting the thyroid peroxidase (TPO) enzyme activity. However, the main TPO inhibitors in the leachate were still unknown. In this study, we identified 2-Mercaptobenzothiazole (MBT) as the potential TPO inhibitor in the TWPs leachate through references search, model prediction based on Danish QSAR and ToxCast database, molecular docking, and in vivo assay. We further explored the toxic mechanism of MBT under environmentally relevant concentrations. The decreased eye size of zebrafish larvae was mainly caused by the decreased lens diameter and cell density in the inner nuclear layer (INL) and outer nuclear layer (ONL) of the retina. Transcriptomics analysis demonstrated that the eye phototransduction function was significantly suppressed by inhibiting the photoreceptor cell proliferation process after MBT exposure. The altered opsin gene expression and decreased opsin protein levels were induced by weakening thyroid hormone signaling after MBT treatment. These results were comparable to those obtained from a known TPO inhibitor, methimazole. This study has identified MBT as the primary TPO inhibitor responsible for inducing eye impairment in zebrafish larvae exposed to TWPs leachate. It is crucial for reducing the toxicity of TWPs leachate in fish.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Water Pollutants, Chemical/toxicity , Rubber , Eye Injuries/chemically induced , Eye Injuries/pathology , Benzothiazoles , Iodide Peroxidase/metabolism , Iodide Peroxidase/genetics , Molecular Docking Simulation , Retina/drug effects , Larva/drug effects
3.
Article in English | MEDLINE | ID: mdl-38663833

ABSTRACT

Disruption of the thyroid hormone system by synthetic chemicals is gaining attention owing to its potential negative effects on organisms. In this study, the effects of the dio-inhibitor iopanoic acid (IOP) on the levels of thyroid hormone and related gene expression, swim bladder inflation, and swimming performance were investigated in Japanese medaka. Iopanoic acid exposure suppressed thyroid-stimulating hormone ß (tshß), tshß-like, iodotyronin deiodinase 1 (dio1), and dio2 expression, and increased T4 and T3 levels. In addition, IOP exposure inhibited swim bladder inflation, reducing swimming performance. Although adverse outcome pathways of thyroid hormone disruption have been developed using zebrafish, no adverse outcome pathways have been developed using Japanese medaka. This study confirmed that IOP inhibits dio expression (a molecular initiating event), affects T3 and T4 levels (a key event), and reduces swim bladder inflation (a key event) and swimming performance (an adverse outcome) in Japanese medaka.


Subject(s)
Air Sacs , Iopanoic Acid , Oryzias , Swimming , Thyroid Hormones , Animals , Oryzias/physiology , Air Sacs/drug effects , Air Sacs/metabolism , Thyroid Hormones/metabolism , Thyroid Hormones/blood , Iopanoic Acid/toxicity , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Thyroxine/blood , Triiodothyronine/blood , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism
4.
Regul Toxicol Pharmacol ; 149: 105619, 2024 May.
Article in English | MEDLINE | ID: mdl-38614220

ABSTRACT

The Xenopus Eleutheroembryonic Thyroid Assay (XETA) was recently published as an OECD Test Guideline for detecting chemicals acting on the thyroid axis. However, the OECD validation did not cover all mechanisms that can potentially be detected by the XETA. This study was therefore initiated to investigate and consolidate the applicability domain of the XETA regarding the following mechanisms: thyroid hormone receptor (THR) agonism, sodium-iodide symporter (NIS) inhibition, thyroperoxidase (TPO) inhibition, deiodinase (DIO) inhibition, glucocorticoid receptor (GR) agonism, and uridine 5'-diphospho-glucuronosyltransferase (UDPGT) induction. In total, 22 chemicals identified as thyroid-active or -inactive in Amphibian Metamorphosis Assays (AMAs) were tested using the XETA OECD Test Guideline. The comparison showed that both assays are highly concordant in identifying chemicals with mechanisms of action related to THR agonism, DIO inhibition, and GR agonism. They also consistently identified the UDPGT inducers as thyroid inactive. NIS inhibition, investigated using sodium perchlorate, was not detected in the XETA. TPO inhibition requires further mechanistic investigations as the reference chemicals tested resulted in opposing response directions in the XETA and AMA. This study contributes refining the applicability domain of the XETA, thereby helping to clarify the conditions where it can be used as an ethical alternative to the AMA.


Subject(s)
Biological Assay , Endocrine Disruptors , Metamorphosis, Biological , Symporters , Thyroid Gland , Animals , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Metamorphosis, Biological/drug effects , Biological Assay/methods , Endocrine Disruptors/toxicity , Xenopus laevis , Receptors, Thyroid Hormone/metabolism , Receptors, Thyroid Hormone/agonists , Iodide Peroxidase/metabolism
5.
eNeuro ; 11(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38548332

ABSTRACT

Long-term programmed rheostatic changes in physiology are essential for animal fitness. Hypothalamic nuclei and the pituitary gland govern key developmental and seasonal transitions in reproduction. The aim of this study was to identify the molecular substrates that are common and unique to developmental and seasonal timing. Adult and juvenile quail were collected from reproductively mature and immature states, and key molecular targets were examined in the mediobasal hypothalamus (MBH) and pituitary gland. qRT-PCR assays established deiodinase type 2 (DIO2) and type 3 (DIO3) expression in adults changed with photoperiod manipulations. However, DIO2 and DIO3 remain constitutively expressed in juveniles. Pituitary gland transcriptome analyses established that 340 transcripts were differentially expressed across seasonal photoperiod programs and 1,189 transcripts displayed age-dependent variation in expression. Prolactin (PRL) and follicle-stimulating hormone subunit beta (FSHß) are molecular markers of seasonal programs and are significantly upregulated in long photoperiod conditions. Growth hormone expression was significantly upregulated in juvenile quail, regardless of photoperiodic condition. These findings indicate that a level of cell autonomy in the pituitary gland governs seasonal and developmental programs in physiology. Overall, this paper yields novel insights into the molecular mechanisms that govern developmental programs and adult brain plasticity.


Subject(s)
Hypothalamus , Iodide Peroxidase , Animals , Seasons , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Hypothalamus/metabolism , Circadian Rhythm , Photoperiod , Birds/metabolism
6.
Thyroid ; 34(5): 659-667, 2024 May.
Article in English | MEDLINE | ID: mdl-38482822

ABSTRACT

Background: Congenital hypothyroidism (CH) is caused by mutations in cysteine residues, including Cys655 and Cys825 that form disulfide bonds in thyroid peroxidase (TPO). It is highly likely that these disulfide bonds could play an important role in TPO activity. However, to date, no study has comprehensively analyzed cysteine mutations that form disulfide bonds in TPO. In this study, we induced mutations in cysteine residues involved in disulfide bonds formation and analyzed their effect on subcellular localization, degradation, and enzyme activities to evaluate the importance of disulfide bonds in TPO activity. Methods: Vector plasmid TPO mutants, C655F and C825R, known to occur in CH, were transfected into HEK293 cells. TPO activity and protein expression levels were measured by the Amplex red assay and Western blotting. The same procedure was performed in the presence of MG132 proteasome inhibitor. Subcellular localization was determined using immunocytochemistry and flow cytometry. The locations of all disulfide bonds within TPO were predicted using in silico analysis. All TPO mutations associated with disulfide bonds were induced. TPO activity and protein expression levels were also measured in all TPO mutants associated with disulfide bonds using the Amplex red assay and Western blotting. Results: C655F and C825R showed significantly decreased activity and protein expression compared with the wild type (WT) (p < 0.05). In the presence of the MG132 proteasome inhibitor, the protein expression level of TPO increased to a level comparable with that of the WT without increases in its activity. The degree of subcellular distribution of TPO to the cell surface in the mutants was lower compared with the WT TPO. Twenty-four cysteine residues were involved in the formation of 12 disulfide bonds in TPO. All TPO mutants harboring an amino acid substitution in each cysteine showed significantly reduced TPO activity and protein expression levels. Furthermore, the differences in TPO activity depended on the position of the disulfide bond. Conclusions: All 12 disulfide bonds play an important role in the activity of TPO. Furthermore, the mutations lead to misfolding, degradation, and membrane insertion.


Subject(s)
Disulfides , Iodide Peroxidase , Proteasome Endopeptidase Complex , Humans , Iodide Peroxidase/metabolism , Iodide Peroxidase/genetics , Iodide Peroxidase/chemistry , HEK293 Cells , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Disulfides/metabolism , Disulfides/chemistry , Mutation , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/metabolism , Cysteine/metabolism , Proteolysis , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Autoantigens
7.
BMC Mol Cell Biol ; 25(1): 11, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553695

ABSTRACT

Disruption of circadian rhythms is associated with neurological, endocrine and metabolic pathologies. We have recently shown that mice lacking functional type 3 deiodinase (DIO3), the enzyme that clears thyroid hormones, exhibit a phase shift in locomotor activity, suggesting altered circadian rhythm. To better understand the physiological and molecular basis of this phenotype, we used Dio3+/+ and Dio3-/- mice of both sexes at different zeitgeber times (ZTs) and analyzed corticosterone and thyroxine (T4) levels, hypothalamic, hepatic, and adipose tissue expression of clock genes, as well as genes involved in the thyroid hormone action or physiology of liver and adipose tissues. Wild type mice exhibited sexually dimorphic circadian patterns of genes controlling thyroid hormone action, including Dio3. Dio3-/- mice exhibited altered hypothalamic expression of several clock genes at ZT12, but did not disrupt the overall circadian profile. Expression of clock genes in peripheral tissues was not disrupted by Dio3 deficiency. However, Dio3 loss in liver and adipose tissues disrupted circadian profiles of genes that determine tissue thyroid hormone action and physiology. We also observed circadian-specific changes in serum T4 and corticosterone as a result of DIO3 deficiency. The circadian alterations manifested sexual dimorphism. Most notable, the time curve of serum corticosterone was flattened in Dio3-/- females. We conclude that Dio3 exhibits circadian variations, influencing the circadian rhythmicity of thyroid hormone action and physiology in liver and adipose tissues in a sex-specific manner. Circadian disruptions in tissue physiology may then contribute to the metabolic phenotypes of DIO3-deficient mice.


Subject(s)
Corticosterone , Iodide Peroxidase , Male , Female , Mice , Animals , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Thyroid Hormones/metabolism , Circadian Rhythm/genetics , Gene Expression
8.
Pestic Biochem Physiol ; 199: 105801, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458692

ABSTRACT

Atrazine is a widely applied herbicide to improve crop yield and maintain general health. It has been reported to impair thyroid function and architecture in experimental animals. Alterations in thyroid hormones disrupt normal body function and metabolism. Silymarin, a hepatoprotective flavonolignan, was found to improve thyroid function and body metabolism. Additionally, garlic displays several protective effects on body organs. Therefore, this study explored the prophylactic impact of natural compounds comprising silymarin and garlic extract on disrupted thyroid function, hepatic iodothyronine deiodinase type 1, and metabolic parameters in atrazine-intoxicated male rats. We found that daily pre- and co-treatment of atrazine-intoxicated male rats with silymarin (100 mg/kg, p.o) and/or garlic extract (10 mg/kg, p.o) significantly improved thyroid activation and hepatic functionality as evidenced by the re-establishment of T3, T3/T4, and TSH values as well as ALT and AST activities. Interestingly, individual or concurrent supplementation of the atrazine group with silymarin and garlic extract prevented the down-regulation in hepatic iodothyronine deiodinase type 1. These effects were coupled with the repletion of serum and hepatic antioxidants and the amelioration of lipid peroxidation. In addition, current natural products markedly alleviated weight gain, dyslipidemia, hyperglycemia, glucose intolerance, and insulin resistance. Notably, a cocktail of silymarin and garlic extract exerted superior protection against atrazine-triggered deterioration of thyroid, hepatic, and metabolic functioning to individual treatments. Present findings pinpoint the prophylactic and synergistic influence of silymarin and garlic extract combinatorial regimen on thyroid activation and body metabolism via enhancing antioxidant potential, maintaining hepatic function, and iodothyronine deiodinase type 1.


Subject(s)
Atrazine , Garlic , Silymarin , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Garlic/metabolism , Atrazine/toxicity , Silymarin/pharmacology , Thyroid Hormones/metabolism , Thyroid Hormones/pharmacology , Iodide Peroxidase/metabolism , Iodide Peroxidase/pharmacology , Liver
9.
Horm Behav ; 161: 105517, 2024 May.
Article in English | MEDLINE | ID: mdl-38422864

ABSTRACT

We asked if environmental temperature alters thyroid hormone metabolism within the hypothalamus, thereby providing a neuroendocrine mechanism by which temperature could be integrated with photoperiod to regulate seasonal rhythms. We used immunohistochemistry to assess the effects of low-temperature winter dormancy at 4 °C or 12 °C on thyroid-stimulating hormone (TSH) within the infundibulum of the pituitary as well as deiodinase 2 (Dio2) and 3 (Dio3) within the hypothalamus of red-sided garter snakes (Thamnophis sirtalis). Both the duration and, in males, magnitude of low-temperature dormancy altered deiodinase immunoreactivity within the hypothalamus, increasing the area of Dio2-immunoreactivity in males and females and decreasing the number of Dio3-immunoreactive cells in males after 8-16 weeks. Reciprocal changes in Dio2/3 favor the accumulation of triiodothyronine within the hypothalamus. Whether TSH mediates these effects requires further study, as significant changes in TSH-immunoreactive cell number were not observed. Temporal changes in deiodinase immunoreactivity coincided with an increase in the proportion of males exhibiting courtship behavior as well as changes in the temporal pattern of courtship behavior after emergence. Our findings mirror those of previous studies, in which males require low-temperature exposure for at least 8 weeks before significant changes in gonadotropin-releasing hormone immunoreactivity and sex steroid hormones are observed. Collectively, these data provide evidence that the neuroendocrine pathway regulating the reproductive axis via thyroid hormone metabolism is capable of transducing temperature information. Because all vertebrates can potentially use temperature as a supplementary cue, these results are broadly applicable to understanding how environment-organism interactions mediate seasonally adaptive responses.


Subject(s)
Iodide Peroxidase , Seasons , Thyroid Hormones , Animals , Male , Female , Iodide Peroxidase/metabolism , Thyroid Hormones/metabolism , Hypothalamus/metabolism , Thyrotropin/metabolism , Thyrotropin/blood , Reproduction/physiology , Iodothyronine Deiodinase Type II , Temperature , Photoperiod , Neurosecretory Systems/metabolism , Neurosecretory Systems/physiology , Sexual Behavior, Animal/physiology
10.
JCO Clin Cancer Inform ; 8: e2300140, 2024 01.
Article in English | MEDLINE | ID: mdl-38295322

ABSTRACT

PURPOSE: Thyroid peroxidase (TPO) is essential for the synthesis of thyroid hormones. However, specific mutations render TPO antigenic and prone to autoimmune attacks leading to thyroid cancer, TPO deficiency, and congenital hypothyroidism (CH). Despite technological advancement, most experimental procedures cannot quickly identify the genetic causes of CH nor detect thyroid cancer in the early stages. METHODS: We performed saturated computational mutagenesis to calculate the folding energy changes (∆∆G) caused by missense mutations and analyzed the mutations involved in post-translational modifications (PTMs). RESULTS: Our results showed that the functional important missense mutations occurred in the heme peroxidase domain. Through computational saturation mutagenesis, we identified the TPO mutations in G393 and G348 affecting protein stability and PTMs. Our folding energy calculations revealed that seven of nine somatic thyroid cancer mutations destabilized TPO. CONCLUSION: These findings highlight the impact of these specific mutations on TPO stability, linking them to thyroid cancer and other genetic thyroid-related disorders. Our results show that computational mutagenesis of proteins provides a quick insight into rare mutations causing Mendelian disorders and cancers in humans.


Subject(s)
Congenital Hypothyroidism , Thyroid Neoplasms , Humans , Congenital Hypothyroidism/genetics , Mutation , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Thyroid Neoplasms/genetics , Mass Screening
11.
J Nutr ; 154(1): 49-59, 2024 01.
Article in English | MEDLINE | ID: mdl-37984740

ABSTRACT

BACKGROUND: Developing neurons have high thyroid hormone and iron requirements to support their metabolically demanding growth. Early-life iron and thyroid-hormone deficiencies are prevalent and often coexist, and each independently increases risk of permanently impaired neurobehavioral function in children. Early-life dietary iron deficiency reduces thyroid-hormone concentrations and impairs thyroid hormone-responsive gene expression in the neonatal rat brain, but it is unclear whether the effect is cell-intrinsic. OBJECTIVES: This study determined whether neuronal-specific iron deficiency alters thyroid hormone-regulated gene expression in developing neurons. METHODS: Iron deficiency was induced in primary mouse embryonic hippocampal neuron cultures with the iron chelator deferoxamine (DFO) beginning at 3 d in vitro (DIV). At 11DIV and 18DIV, thyroid hormone-regulated gene messenger ribonucleic acid (mRNA)concentrations indexing thyroid hormone homeostasis (Hairless, mu-crystallin, Type II deiodinase, solute carrier family member 1c1, and solute carrier family member 16a2) and neurodevelopment (neurogranin, Parvalbumin, and Krüppel-like factor 9) were quantified. To assess the effect of iron repletion, DFO was removed at 14DIV from a subset of DFO-treated cultures, and gene expression and adenosine 5'-triphosphate (ATP) concentrations were quantified at 21DIV. RESULTS: At 11DIV and 18DIV, neuronal iron deficiency decreased neurogranin, Parvalbumin, and mu-crystallin, and by 18DIV, solute carrier family member 16a2, solute carrier family member 1c1, Type II deiodinase, and Hairless were increased, suggesting cellular sensing of a functionally abnormal thyroid hormone state. Dimensionality reduction with Principal component analysis reveals that thyroid hormone homeostatic genes strongly correlate with and predict iron status. Iron repletion from 14-21DIV did not restore ATP concentration, and Principal component analysis suggests that, after iron repletion, cultures maintain a gene expression signature indicative of previous iron deficiency. CONCLUSIONS: These novel findings suggest there is an intracellular mechanism coordinating cellular iron/thyroid hormone activities. We speculate this is a part of the homeostatic response to acutely match neuronal energy production and growth signaling. However, the adaptation to iron deficiency may cause permanent deficits in thyroid hormone-dependent neurodevelopmental processes even after recovery from iron deficiency.


Subject(s)
Iron Deficiencies , Neurogranin , Humans , Rats , Child , Animals , Mice , Neurogranin/metabolism , Parvalbumins/metabolism , Parvalbumins/pharmacology , mu-Crystallins , Neurons/metabolism , Thyroid Hormones , Hippocampus/metabolism , Iron/metabolism , Adenosine Triphosphate/metabolism , Gene Expression , Iodide Peroxidase/metabolism , Iodide Peroxidase/pharmacology
12.
Environ Pollut ; 343: 123242, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38154778

ABSTRACT

Spirotetramat (SPT), a tetronic acid-derived insecticide, is implicated in reproductive and lipid metabolism disorders, as well as developmental toxicity in fish. While these effects are documented, the precise mechanisms underlying its developmental toxicity are not fully elucidated. In this study, zebrafish embryos (2 h post-fertilization, hpf) were exposed to four concentrations of SPT (0, 60, 120, and 240 µg/L) until 21 dpf (days post-fertilization). We delved into the mechanisms by examining its potential disruption of the thyroid endocrine system, employing in vivo, in vitro, and in silico assays. The findings showed notable developmental disturbances, including reduced hatching rates, shortened body lengths, and decelerated heart rates. Additionally, there was an increase in malformations and a decline in locomotor activity. Detailed analyses revealed that SPT exposure led to elevated thyroid hormone levels, perturbed the hypothalamic-pituitary-thyroid (HPT) axis transcript levels, amplified deiodinase type I (Dio1) and deiodinase type II (Dio2) activities, and both transcriptionally and proteomically upregulated thyroid receptor beta (TRß) in larvae. Techniques like molecular docking and surface plasmon resonance (SPR) confirmed SPT's affinity for TRß, consistent with in vitro findings suggesting its antagonistic effect on the T3-TR complex. These insights emphasize the need for caution in using tetronic acid-derived insecticides.


Subject(s)
Aza Compounds , Spiro Compounds , Thyroid Gland , Water Pollutants, Chemical , Animals , Zebrafish/metabolism , Larva , Molecular Docking Simulation , Iodide Peroxidase/metabolism , Water Pollutants, Chemical/metabolism
13.
Toxicology ; 501: 153713, 2024 01.
Article in English | MEDLINE | ID: mdl-38135142

ABSTRACT

Bis (2-ethylhexyl) tetrabromophthalate (TBPH) is a new type of brominated flame retardant. Some studies suggest that TBPH exposure may be associated with thyroid damage. However, there is a paucity of research on the authentic exposure-related effects and molecular mechanisms in animals or cells. In this study, we used male Sprague-Dawley (SD) rats and the Nthy ori3-1 cell line (the human thyroid follicular epithelial cell) to explore the potential effects of TBPH (5, 50, 500 mg/kg and 1, 10, 100 nM) on the thyroid. The genes and their proteins of cytokines and thyroid-specific proteins, thyroglobulin (TG), thyroid peroxidase (TPO), and sodium iodide cotransporter (NIS) were examined to investigate the possible mechanisms. At the end of the experiment, it was found that 50 and 500 mg/kg TBPH could increase the levels of total thyroxine (TT4) and free thyroxine (FT4) significantly. The messenger RNAs (mRNAs) of Tg, Tpo, Interleukin-6 (Il6), and Interleukin-10 (Il10) in the thyroid tissues from the rats treated with 500 mg/kg were enhanced clearly. Meanwhile, the mRNAs of TG, TPO, IL6, and IL10 were elevated in Nthy ori3-1 cells treated with 100 nM TBPH as well. The mRNAs of TG and TPO were elevated after the knockdown of IL6. To our surprise, after the knockdown of IL10 or the treatment of anti-IL-10-receptor (anti-IL-10-R) antibody, the mRNAs of TG and TPO were significantly reduced, and the effects of TBPH were diminished. In conclusion, our results suggested that the IL-10-IL-10R-TG/TPO-T4 axis is one important target of TBPH in the thyroid.


Subject(s)
Thyroglobulin , Thyroid Gland , Male , Humans , Rats , Animals , Thyroglobulin/genetics , Thyroglobulin/metabolism , Thyroglobulin/pharmacology , Interleukin-10/genetics , Thyroxine , Interleukin-6/metabolism , Rats, Sprague-Dawley , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , RNA, Messenger/metabolism
14.
J Endocrinol Invest ; 47(6): 1513-1530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38146045

ABSTRACT

PURPOSE: Papillary thyroid carcinoma (PTC) is characterized by lymph-node metastasis (LNM), which affects recurrence and prognosis. This study analyzed PTC LNM by single-cell RNA sequencing (scRNA-seq) data and bulk RNA sequencing (RNA-seq) to find diagnostic markers and therapeutic targets. METHODS: ScRNA-seq data were clustered and malignant cells were identified. Differentially expressed genes (DEGs) were identified in malignant cells of scRNA-seq and bulk RNA-seq, respectively. PTC LNM diagnostic model was constructed based on intersecting DEGs using glmnet package. Next, PTC samples from 66 patients were used to validate the two most significant genes in the diagnostic model, S100A2 and type 2 deiodinase (DIO2) by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and immunohistochemical (IHC). Further, the inhibitory effect of DIO2 on PTC cells was verified by cell biology behavior, western blot, cell cycle analysis, 5-ethynyl-2'-deoxyuridine (EdU) assay, and xenograft tumors. RESULTS: Heterogeneity of PTC LNM was demonstrated by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. A total of 19 differential genes were used to construct the diagnostic model. S100A2 and DIO2 differ significantly at the RNA (p < 0.01) and protein level in LNM patient tissues (p < 0.001). And differed in PTC tissues with different pathologic typing (p < 0.001). Further, EdU (p < 0.001) and cell biology behavior revealed that PTC cells overexpressed DIO2 had reduced proliferative capacity. Cell cycle proteins were reduced and cells are more likely to be stuck in G2/M phase (p < 0.001). CONCLUSIONS: This study explored the heterogeneity of PTC LNM using scRNA-seq. By combining with bulk RNA-seq data, diagnostic markers were explored and the model was established. Clinical diagnostic efficacy of S100A2 and DIO2 was validated and the treatment potential of DIO2 was discovered.


Subject(s)
Biomarkers, Tumor , Lymphatic Metastasis , Single-Cell Analysis , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/diagnosis , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Lymphatic Metastasis/diagnosis , Lymphatic Metastasis/genetics , Single-Cell Analysis/methods , Animals , Mice , Sequence Analysis, RNA/methods , Female , Male , S100 Proteins/genetics , S100 Proteins/metabolism , Prognosis , Gene Expression Regulation, Neoplastic , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Iodothyronine Deiodinase Type II , Cell Proliferation , Middle Aged , Gene Expression Profiling/methods , Chemotactic Factors
15.
PLoS Genet ; 19(11): e1011017, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37988371

ABSTRACT

Metastasis of lung adenocarcinoma (LUAD) is a major cause of death in patients. Aryl hydrocarbon receptor (AHR), an important transcription factor, is involved in the initiation and progression of lung cancer. Polo-like kinase 1 (PLK1), a serine/threonine kinase, acts as an oncogene promoting the malignancy of multiple cancer types. However, the interaction between these two factors and their significance in lung cancer remain to be determined. In this study, we demonstrate that PLK1 phosphorylates AHR at S489 in LUAD, leading to epithelial-mesenchymal transition (EMT) and metastatic events. RNA-seq analyses reveal that type 2 deiodinase (DIO2) is responsible for EMT and enhanced metastatic potential. DIO2 converts tetraiodothyronine (T4) to triiodothyronine (T3), activating thyroid hormone (TH) signaling. In vitro and in vivo experiments demonstrate that treatment with T3 or T4 promotes the metastasis of LUAD, whereas depletion of DIO2 or a deiodinase inhibitor disrupts this property. Taking together, our results identify the AHR phosphorylation by PLK1 and subsequent activation of DIO2-TH signaling as mechanisms leading to LUAD metastasis. These findings can inform possible therapeutic interventions for this event.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Phosphorylation , Iodide Peroxidase/metabolism , Receptors, Aryl Hydrocarbon/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Adenocarcinoma of Lung/genetics , Thyroid Hormones/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation/physiology , Polo-Like Kinase 1
16.
JCI Insight ; 8(23)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37856222

ABSTRACT

Thyroid hormone (TH) levels are low during development, and the deiodinases control TH signaling through tissue-specific activation or inactivation of TH. Here, we studied human induced pluripotent stem cell-derived (iPSC-derived) hepatic organoids and identified a robust induction of DIO2 expression (the deiodinase that activates T4 to T3) that occurs in hepatoblasts. The surge in DIO2-T3 (the deiodinase that activates thyroxine [T4] to triiodothyronine [T3]) persists until the hepatoblasts differentiate into hepatocyte- or cholangiocyte-like cells, neither of which expresses DIO2. Preventing the induction of the DIO2-T3 signaling modified the expression of key transcription factors, decreased the number of hepatocyte-like cells by ~60%, and increased the number of cholangiocyte-like cells by ~55% without affecting the growth or the size of the mature liver organoid. Physiological levels of T3 could not fully restore the transition from hepatoblasts to mature cells. This indicates that the timed surge in DIO2-T3 signaling critically determines the fate of developing human hepatoblasts and the transcriptome of the maturing hepatocytes, with physiological and clinical implications for how the liver handles energy substrates.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Transcriptome , Liver/metabolism , Hepatocytes/metabolism , Thyroid Hormones/metabolism , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Organoids/metabolism
17.
Toxicology ; 491: 153527, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37116683

ABSTRACT

BDE47 (2,2,4,4-tetrabromodiphenyl ether) is a member of the most important congeners of polybrominated diphenyl ethers (PBDEs) and has been identified as a developmental, reproductive and nervous system toxicant and endocrine system disruptor due to its frequent detection in human tissue and environmental samples. Our preliminary work suggested that high- and low-level of bromodiphenyl ethers have different effects on neuronal cells with differential targets of actions on neural tissues. In this study, we presented the underlying mechanism of BDE47 neurotoxicity from the perspective of thyroid hormone (TH) metabolism using in vitro model of human SK-N-AS neuronal cells. BDE47 could induce local TH metabolism disorder in neuronal cells by inhibiting the expression of the main enzyme, human type III iodothyronine deiodinase (Dio3). Further elucidation revealed that BDE47 effectively up-regulating miR-24-3p, which binds to the 3'-UTR of Dio3 and inhibits its expression. In addition, BDE47 could also inhibit the deiodinase activity of Dio3. Collectively, our study demonstrates the molecular mechanism of BDE47 regulating Dio3-induced TH metabolism disorder through inducing miR-24-3p, providing new clues for the role of miRNAs in neurodevelopmental toxicity mediated by environmental pollutants.


Subject(s)
Environmental Pollutants , MicroRNAs , Humans , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Thyroid Hormones , MicroRNAs/genetics , MicroRNAs/metabolism , Environmental Pollutants/toxicity , Neurons/metabolism , Halogenated Diphenyl Ethers/toxicity , Halogenated Diphenyl Ethers/metabolism
18.
Cells ; 12(7)2023 03 27.
Article in English | MEDLINE | ID: mdl-37048095

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) has gained worldwide attention as a public health problem. Nonetheless, lack of enough mechanistic knowledge restrains effective treatments. It is known that thyroid hormone triiodothyronine (T3) regulates hepatic lipid metabolism, and mitochondrial function. Liver dysfunction of type 3 deiodinase (D3) contributes to MAFLD, but its role is not fully understood. OBJECTIVE: To evaluate the role of D3 in the progression of MAFLD in an animal model. METHODOLOGY: Male/adult Sprague Dawley rats (n = 20) were allocated to a control group (2.93 kcal/g) and high-fat diet group (4.3 kcal/g). Euthanasia took place on the 28th week. D3 activity and expression, Uncoupling Protein 2 (UCP2) and type 1 deiodinase (D1) expression, oxidative stress status, mitochondrial, Krebs cycle and endoplasmic reticulum homeostasis in liver tissue were measured. RESULTS: We observed an increase in D3 activity/expression (p < 0.001) related to increased thiobarbituric acid reactive substances (TBARS) and carbonyls and diminished reduced glutathione (GSH) in the MAFLD group (p < 0.05). There was a D3-dependent decrease in UCP2 expression (p = 0.01), mitochondrial capacity, respiratory activity with increased endoplasmic reticulum stress in the MAFLD group (p < 0.001). Surprisingly, in an environment with lower T3 levels due to high D3 activity, we observed an augmented alpha-ketoglutarate dehydrogenase (KGDH) and glutamate dehydrogenase (GDH) enzymes activity (p < 0.05). CONCLUSION: Induced D3, triggered by changes in the REDOX state, decreases T3 availability and hepatic mitochondrial capacity. The Krebs cycle enzymes were altered as well as endoplasmic reticulum stress. Taken together, these results shed new light on the role of D3 metabolism in MAFLD.


Subject(s)
Iodide Peroxidase , Non-alcoholic Fatty Liver Disease , Rats , Animals , Male , Iodide Peroxidase/metabolism , Rats, Sprague-Dawley , Thyroid Hormones/metabolism , Triiodothyronine/metabolism
19.
Clin Chim Acta ; 545: 117365, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37105454

ABSTRACT

BACKGROUND: Serum anti-thyroid peroxidase antibody (anti-TPO) and anti-thyroglobulin antibody (anti-Tg) levels are key indicators for the diagnosis of autoimmune diseases, especially autoimmune thyroiditis. Before the thyroid autoantibodies turn from negative to positive, it is unknown whether any clinical indicators in the body play a warning role. PURPOSE: To establish an early prediction model of seroconversion to positive thyroid autoantibodies. METHODS: This retrospective cohort study collected information based on clinical laboratory data. A logistic regression model was used to analyse the risk factors associated with a change in thyroid autoantibodies to an abnormal status. A machine-learning approach was employed to establish an early warning model, and a nomogram was used for model performance assessment and visualisation. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analyses were used for internal and external validation. RESULTS: Logistic regression analysis revealed that albumin to globulin ratio, triglyceride levels, and Glutamic acid levels among liver function and some metabolism-related indicators, high density lipoprotein C among metabolism-related indicators, and cystatin C among renal function indicators were all risk factors for thyroid antibody conversion (P < 0.05). In addition, several indicators in the blood count correlated with thyroid conversion (P < 0.05). Changes in the ratio of free thyroxine to free triiodothyronine were a risk factor for positive thyroid antibody conversion (ORfT4/fT3 = 1.763; 95% confidence interval 1.554-2.000). The area under the curve (AUC) of the early warning model based on the positive impact of clinical laboratory indicators, age, and sex was 0.85, which was validated by both internal (AUC 0.8515) and external (AUC 0.8378) validation. CONCLUSIONS: The early warning model of anti-TPO and anti-Tg conversion combined with some clinical laboratory indicators in routine physical examination has a stable warning efficiency.


Subject(s)
Autoimmune Diseases , Thyroiditis, Autoimmune , Retrospective Studies , Humans , Iodide Peroxidase/chemistry , Iodide Peroxidase/metabolism , Seroconversion , Autoantibodies/chemistry , Autoantibodies/immunology
20.
Endocr Relat Cancer ; 30(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36862025

ABSTRACT

The three deiodinase selenoenzymes are key regulators of intracellular thyroid hormone (TH) levels. The two TH-activating deiodinases (type 1 deiodinase and type 2 deiodinase (D2)) are normally expressed in follicular thyroid cells and contribute to overall TH production. During thyroid tumorigenesis, the deiodinase expression profile changes to customize intracellular TH levels to different requirements of cancer cells. Differentiated thyroid cancers overexpress the TH-inactivating type 3 deiodinase (D3), likely to reduce the TH signaling within the tumor. Strikingly, recent evidence suggests that during the late stage of thyroid tumorigenesis, D2 expression raises and this, together with a reduction in D3 expression levels, increases TH intracellular signaling in dedifferentiated thyroid cancers. These findings call into question the different functions of TH in the various stages of thyroid cancers.


Subject(s)
Iodide Peroxidase , Thyroid Neoplasms , Humans , Iodide Peroxidase/metabolism , Thyroid Hormones/metabolism , Thyroid Neoplasms/genetics , Cell Transformation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...