Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 104(8): 8541-8553, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34024608

ABSTRACT

Streptococcus thermophilus is widely used in the dairy industry to produce fermented milk. Gas chromatography-ion mobility spectrometry-based metabolomics was used to discriminate different fermentation temperatures (37°C and 42°C) at 3 time points (F0: pH = 6.50 ± 0.02; F1: pH = 5.20 ± 0.02; F2: pH = 4.60 ± 0.02) during S. thermophilus milk fermentation, and differences of fermentation physical properties and growth curves were also evaluated. Fermentation was completed (pH 4.60) after 6 h at 42°C and after 8 h at 37°C; there were no significant differences in viable cell counts and titratable acidity; water-holding capacity and viscosity were higher at 37°C than at 42°C. Different fermentation temperatures affected volatile metabolic profiles. After the fermentation was completed, the volatile metabolites that could be used to distinguish the fermentation temperature were hexanal, butyraldehyde, ethyl acetate, ethanol, 3-methylbutanal, 3-methylbutanoic acid, and 2-methylpropionic acid. Specifically, at 37°C of milk fermentation, branched-chain AA had higher levels, and leucine, isoleucine, and valine were involved in growth and metabolism, which promoted accumulation of some short-chain fatty acids such as 3-methylbutanoic acid and 2-methylpanprooic acid. At 42°C, at 3 different time points during fermentation, ethanol from glycolysis all presented higher levels, including acetone and 3-methylbutanal, producing a more pleasant flavor in the fermented milk. This work provides detailed insight into S. thermophilus fermented milk metabolites that differed between incubation temperatures; these data can be used for understanding and eventually predicting metabolic changes during milk fermentation.


Subject(s)
Milk , Streptococcus thermophilus , Animals , Fermentation , Gas Chromatography-Mass Spectrometry/veterinary , Ion Mobility Spectrometry/veterinary , Temperature
2.
Poult Sci ; 99(12): 7192-7201, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33248636

ABSTRACT

This article presents investigation of the flavor profile on 5 different regional Chinese smoked chicken samples using gas chromatography-ion mobility spectrometry analysis methods. Five batches of samples were obtained over the course of 6 mo. A total of 34 flavor substances were identified in the 5 smoked chicken samples, including 10 aldehydes, 7 alcohols, 4 ketones, 2 hydrocarbons, 3 heterocyclic compounds, 4 esters, 2 ethers, and 2 phenolic compounds. The whole spectral fingerprint visually displayed flavor differences and relations in 5 types of smoked chicken with local characteristics. Moreover, the orthogonal projections to latent structures discriminant analysis model revealed that these samples could be separately classified into 5 groups. Multivariate statistical analysis showed that 20 chemicals with higher Variable Importance for the Projection values were the key contributors to the differences of flavor in these 5 kinds of smoked chicken. N-nonanal, heptanal, n-nonanal, heptanal, furfurol, and hexanal were the main common flavor compounds in the 5 types of Chinese smoked chicken, whereas linalool, alpha-terpineol, 1,8-cineole, and anethole were the main characteristic flavor compounds of Goubangzi chicken (No. 1); gamma-butyrolactone, 2-acetylfuran, 2-methoxyphenol, 2-acetylpyrrole, and limonene were determined as the key flavor compounds of Liaocheng chicken (No. 2); the concentration of octanal and n-nonanal was higher in Tangqiao chicken (No. 3); butyl acetate was the key contributor to the flavor compounds of Jinshan chicken (No. 4). 2-Heptanone and 2-pentylfuran had a high correlation with Zhuozishan chicken (No. 5). The different raw materials and ingredients used, especially the method of preparation and cultural differences, in different regions of the country in China were the main reasons leading to the similarities and differences of volatile compounds in the 5 kinds of Chinese traditional smoked chicken.


Subject(s)
Chickens , Food Analysis , Gas Chromatography-Mass Spectrometry , Ion Mobility Spectrometry , Poultry Products , Volatile Organic Compounds , Animals , China , Gas Chromatography-Mass Spectrometry/veterinary , Ion Mobility Spectrometry/veterinary , Poultry Products/analysis , Smoke , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...