Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.670
Filter
1.
BMC Microbiol ; 24(1): 154, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704559

ABSTRACT

BACKGROUND: Side effects associated with antimicrobial drugs, as well as their high cost, have prompted a search for low-cost herbal medicinal substances with fewer side effects. These substances can be used as supplements to medicine or to strengthen their effects. The current study investigated the effect of oleuropein on the inhibition of fungal and bacterial biofilm in-vitro and at the molecular level. MATERIALS AND METHODS: In this experimental study, antimicrobial properties were evaluated using microbroth dilution method. The effect of oleuropein on the formation and eradication of biofilm was assessed on 96-well flat bottom microtiter plates and their effects were observed through scanning electron microscopy (SEM). Its effect on key genes (Hwp1, Als3, Epa1, Epa6, LuxS, Pfs) involved in biofilm formation was investigated using the quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) method. RESULTS: The minimum inhibitory concentration (MIC) and minimum fungicidal/bactericidal concentration (MFC/MBC) for oleuropein were found to be 65 mg/ml and 130 mg/ml, respectively. Oleuropein significantly inhibited biofilm formation at MIC/2 (32.5 mg/ml), MIC/4 (16.25 mg/ml), MIC/8 (8.125 mg/ml) and MIC/16 (4.062 mg/ml) (p < 0.0001). The anti-biofilm effect of oleuropein was confirmed by SEM. RT-qPCR indicated significant down regulation of expression genes involved in biofilm formation in Candida albicans (Hwp1, Als3) and Candida glabrata (Epa1, Epa6) as well as Escherichia coli (LuxS, Pfs) genes after culture with a MIC/2 of oleuropein (p < 0.0001). CONCLUSIONS: The results indicate that oleuropein has antifungal and antibacterial properties that enable it to inhibit or destroy the formation of fungal and bacterial biofilm.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Candida glabrata , Escherichia coli , Fluconazole , Iridoid Glucosides , Iridoids , Microbial Sensitivity Tests , Biofilms/drug effects , Biofilms/growth & development , Iridoid Glucosides/pharmacology , Candida glabrata/drug effects , Candida glabrata/physiology , Candida glabrata/genetics , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/physiology , Escherichia coli/drug effects , Escherichia coli/genetics , Iridoids/pharmacology , Fluconazole/pharmacology , Antifungal Agents/pharmacology , Drug Resistance, Fungal , Anti-Bacterial Agents/pharmacology , Microscopy, Electron, Scanning
2.
Food Res Int ; 186: 114161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729685

ABSTRACT

In this article, the synthesis of antioxidant peptides in the enzymatic hydrolysis of caprine casein was analyzed at three different time points (60 min, 90 min, and 120 min) using immobilized pepsin on activated and modified carbon (AC, ACF, ACG 50, ACG 100). The immobilization assays revealed a reduction in the biocatalysts' activity compared to the free enzyme. Among the modified ones, ACG 50 exhibited greater activity and better efficiency for reuse cycles, with superior values after 60 min and 90 min. Peptide synthesis was observed under all studied conditions. Analyses (DPPH, ß-carotene/linoleic acid, FRAP) confirmed the antioxidant potential of the peptides generated by the immobilized enzyme. However, the immobilized enzyme in ACG 50 and ACG 100, combined with longer hydrolysis times, allowed the formation of peptides with an antioxidant capacity greater than or equivalent to those generated by the free enzyme, despite reduced enzymatic activity.


Subject(s)
Antioxidants , Caseins , Enzymes, Immobilized , Glutaral , Goats , Iridoids , Pepsin A , Peptides , Antioxidants/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Caseins/chemistry , Animals , Pepsin A/metabolism , Pepsin A/chemistry , Glutaral/chemistry , Peptides/chemistry , Iridoids/chemistry , Hydrolysis , Charcoal/chemistry
3.
Food Res Int ; 187: 114438, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763685

ABSTRACT

Early changes in sensory quality of phenols-rich virgin olive oil (VOO) and their relationship with the chemical changes are less studied in the literature. Therefore, the objective of this study was to propose a predictive model of dynamics of sensory changes based on specific chemical markers. The evolution of the sensory quality of phenol-rich VOOs from Tuscan cultivars stored under optimal storage conditions (i.e., absence of light, no O2 exposure, low temperature) was investigated using a multi-step methodological approach combining sensory (official sensory analysis (so-called Panel Test), Descriptive Analysis and Temporal Dominance of Sensation) and chemical measurements. The sensory map from descriptive data was related to the phenolic and volatile profiles, measured using HPLC-DAD and HS-SPME-GC-MS, respectively. A predictive model of the sensory changes over storage based on chemical compounds was developed. Results showed that very early changes involving phenolic and volatile compounds profiles occur in VOOs stored under optimal storage conditions, which turn in changes in sensory properties evaluated by the official panel test, the descriptive analysis and the temporal dominance of sensation. Furthermore, a chemical marker of sensory dynamics of oils during storage was identified as the ratio between two groups of secoiridoids. The proposed model, supported by the mentioned chemical marker, has the potential of improving the control of sensory changes in phenols-rich virgin olive oils during storage in optimal conditions.


Subject(s)
Food Storage , Olive Oil , Phenols , Volatile Organic Compounds , Olive Oil/chemistry , Phenols/analysis , Food Storage/methods , Volatile Organic Compounds/analysis , Humans , Taste , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Male , Female , Adult , Biomarkers/analysis , Iridoids/analysis
4.
Ultrason Sonochem ; 106: 106899, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733852

ABSTRACT

Chitosan nanoparticles (NPs) possess great potential in biomedical fields. Orifice-induced hydrodynamic cavitation (HC) has been used for the enhancement of fabrication of size-controllable genipin-crosslinked chitosan (chitosan-genipin) NPs based on the emulsion cross-linking (ECLK). Experiments have been performed using various plate geometries, chitosan molecular weight and under different operational parameters such as inlet pressure (1-3.5 bar), outlet pressure (0-1.5 bar) and cross-linking temperature (40-70 °C). Orifice plate geometry was a crucial factor affecting the properties of NPs, and the optimized geometry of orifice plate was with single hole of 3.0 mm diameter. The size of NPs with polydispersity index of 0.359 was 312.6 nm at an optimized inlet pressure of 3.0 bar, and the maximum production yield reached 84.82 %. Chitosan with too high or too low initial molecular weight (e.g., chitosan oligosaccharide) was not applicable for producing ultra-fine and narrow-distributed NPs. There existed a non-linear monotonically-increasing relationship between cavitation number (Cv) and chitosan NP size. Scanning electron microscopy (SEM) test indicated that the prepared NPs were discrete with spherical shape. The study demonstrated the superiority of HC in reducing particle size and size distribution of NPs, and the energy efficiency of orifice type HC-processed ECLK was two orders of magnitude than that of ultrasonic horn or high shear homogenization-processed ECLK. In vitro drug-release studies showed that the fabricated NPs had great potential as a drug delivery system. The observations of this study can offer strong support for HC to enhance the fabrication of size-controllable chitosan-genipin NPs.


Subject(s)
Chitosan , Hydrodynamics , Iridoids , Nanoparticles , Particle Size , Chitosan/chemistry , Nanoparticles/chemistry , Iridoids/chemistry , Pressure , Temperature , Molecular Weight
5.
Invest Ophthalmol Vis Sci ; 65(5): 24, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38748430

ABSTRACT

Purpose: Hydrogels derived from decellularized tissues are promising biomaterials in tissue engineering, but their rapid biodegradation can hinder in vitro cultivation. This study aimed to retard biodegradation of a hydrogel derived from porcine decellularized lacrimal glands (dLG-HG) by crosslinking with genipin to increase the mechanical stability without affecting the function and viability of lacrimal gland (LG)-associated cells. Methods: The effect of different genipin concentrations on dLG-HG stiffness was measured rheologically. Cell-dependent biodegradation was quantified over 10 days, and the impact on matrix metalloproteinase (MMP) activity was quantified by gelatin and collagen zymography. The viability of LG epithelial cells (EpCs), mesenchymal stem cells (MSCs), and endothelial cells (ECs) cultured on genipin-crosslinked dLG-HG was assessed after 10 days, and EpC secretory activity was analyzed by ß-hexosaminidase assay. Results: The 0.5-mM genipin increased the stiffness of dLG-HG by about 46%, and concentrations > 0.25 mM caused delayed cell-dependent biodegradation and reduced MMP activity. The viability of EpCs, MSCs, and ECs was not affected by genipin concentrations of up to 0.5 mM after 10 days. Moreover, up to 0.5-mM genipin did not negatively affect EpC secretory activity compared to control groups. Conclusions: A concentration of 0.5-mM genipin increased dLG-HG stiffness, and 0.25-mM genipin was sufficient to prevent MMP-dependent degradation. Importantly, concentrations of up to 0.5-mM genipin did not compromise the viability of LG-associated cells or the secretory activity of EpCs. Thus, crosslinking with genipin improves the properties of dLG-HG for use as a substrate in LG tissue engineering.


Subject(s)
Cell Survival , Cross-Linking Reagents , Hydrogels , Iridoids , Tissue Engineering , Animals , Iridoids/pharmacology , Iridoids/metabolism , Swine , Tissue Engineering/methods , Cross-Linking Reagents/pharmacology , Cells, Cultured , Mesenchymal Stem Cells/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Biocompatible Materials
6.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731491

ABSTRACT

Catnip (Nepeta cataria L.) plants produce a wide array of specialized metabolites with multiple applications for human health. The productivity of such metabolites, including nepetalactones, and natural insect repellents is influenced by the conditions under which the plants are cultivated. In this study, we assessed how field-grown catnip plants, transplanted after being propagated via either single-node stem cuttings or seeds, varied regarding their phytochemical composition throughout a growing season in two distinct environmental conditions (Pittstown and Upper Deerfield) in the state of New Jersey, United States. Iridoid terpenes were quantified in plant tissues via ultra-high-performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-QqQ-MS), and phenolic compounds (phenolic acids and flavonoids) were analyzed via UHPLC with diode-array detection (UHPLC-DAD). The highest contents of total nepetalactones in Pittstown were found at 6 weeks after transplanting (WAT) for both seedlings and cuttings (1305.4 and 1223.3 mg/100 g, respectively), while in Upper Deerfield, the highest contents for both propagules were at 11 WAT (1247.7 and 997.1 mg/100 g, respectively) for seed-propagated and stem cuttings). The highest concentration of nepetalactones was associated with floral-bud to partial-flowering stages. Because plants in Pittstown accumulated considerably more biomass than plants grown in Upper Deerfield, the difference in nepetalactone production per plant was striking, with peak productivity reaching only 598.9 mg per plant in Upper Deerfield and 1833.1 mg per plant in Pittstown. Phenolic acids accumulated in higher contents towards the end of the season in both locations, after a period of low precipitation, and flavone glycosides had similar accumulation patterns to nepetalactones. In both locations, rooted stem cuttings reached their maximum nepetalactone productivity, on average, four weeks later than seed-propagated plants, suggesting that seedlings have, overall, better agronomic performance.


Subject(s)
Nepeta , Seasons , Nepeta/chemistry , Chromatography, High Pressure Liquid , Phytochemicals/chemistry , Phytochemicals/analysis , Flavonoids/analysis , Flavonoids/chemistry , Cyclopentane Monoterpenes , Seeds/chemistry , Seeds/growth & development , Plant Extracts/chemistry , Iridoids/chemistry , Pyrones
7.
Phytochemistry ; 223: 114144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754799

ABSTRACT

Nine previously undescribed iridoids, ptehosides A-I (1-9), together with 12 known ones (10-21), were isolated from Pterocephalus hookeri (C.B. Clarke) Höeck. Their structures were elucidated using various spectroscopic methods including HR-ESI-MS, NMR, UV, IR and CD, etc. The cytotoxic activities of all isolates were evaluated using MTT method in three human cancer cell lines (Caco2, Huh-7, and SW982). As result, compound 9 exhibited substantial inhibitory activity on Caco2, Huh-7, and SW982 cells with IC50 values of 1.17 ± 0.05, 1.15 ± 0.05 and 1.14 ± 0.04 µM, respectively. A preliminary mechanism study showed that 9 arrested the cell cycle of SW982 cells in the G0/G1 phase and induced apoptosis by upregulating Bax expression and downregulating Bcl-2 expression.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis , Drug Screening Assays, Antitumor , Iridoids , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Iridoids/chemistry , Iridoids/pharmacology , Iridoids/isolation & purification , Molecular Structure , Cell Proliferation/drug effects , Structure-Activity Relationship , Dose-Response Relationship, Drug , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism
8.
Pak J Pharm Sci ; 37(1(Special)): 205-213, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747271

ABSTRACT

In this study, a sensitive high-performance liquid chromatography detector was established and validated for the simultaneous determination of geniposide, ellagic acid, piperine, costunolide and dehydrocostuslactone in Liuwei Muxiang Capsules. The analysis was achieved on CHANIN 100-5-C18-H column (5µm, 250 mm×4.6 mm) with the temperature of 30oC. Gradient elution was applied using 0.1% phosphoric acid solution-methanol-acetonitrile (50:50) as mobile phase at the flow rate of 1.0 mL/min. The determination was performed at the wavelength of 225 nm (detecting geniposide), 254 nm (detecting ellagic acid), 343 nm (detecting piperine) and 225 nm (detecting costunolide and dehydrocostuslactone) along with the sample volume of 10µL. The linear ranges of geniposide, ellagic acid, piperine, costunolide and dehydrocostuslactone demonstrated good linear relationships within their respective determination ranges. The average recoveries were 100.04%, 99.86%, 99.79%, 100.17% and 100.41%, respectively. RSD% was 1.3%, 1.2%, 1.2%, 1.2%, 1.5%, respectively. The developed method was proved to be simple, accurate and sensitive, which can provide a quantitative analysis method for the content determination of geniposide, ellagic acid, piperine, costunolide and dehydrocostuslactone in Liuwei Muxiang capsules.


Subject(s)
Alkaloids , Benzodioxoles , Capsules , Drugs, Chinese Herbal , Ellagic Acid , Iridoids , Lactones , Piperidines , Polyunsaturated Alkamides , Chromatography, High Pressure Liquid/methods , Benzodioxoles/analysis , Polyunsaturated Alkamides/analysis , Piperidines/analysis , Piperidines/chemistry , Alkaloids/analysis , Lactones/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Iridoids/analysis , Ellagic Acid/analysis , Reproducibility of Results , Sesquiterpenes/analysis
9.
Plant Cell Rep ; 43(5): 127, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652203

ABSTRACT

KEY MESSAGE: This study identified 16 pyridoxal phosphate-dependent decarboxylases in olive at the whole-genome level, conducted analyses on their physicochemical properties, evolutionary relationships and characterized their activity. Group II pyridoxal phosphate-dependent decarboxylases (PLP_deC II) mediate the biosynthesis of characteristic olive metabolites, such as oleuropein and hydroxytyrosol. However, there have been no report on the functional differentiation of this gene family at the whole-genome level. This study conducted an exploration of the family members of PLP_deC II at the whole-genome level, identified 16 PLP_deC II genes, and analyzed their gene structure, physicochemical properties, cis-acting elements, phylogenetic evolution, and gene expression patterns. Prokaryotic expression and enzyme activity assays revealed that OeAAD2 and OeAAD4 could catalyze the decarboxylation reaction of tyrosine and dopa, resulting in the formation of their respective amine compounds, but it did not catalyze phenylalanine and tryptophan. Which is an important step in the synthetic pathway of hydroxytyrosol and oleuropein. This finding established the foundational data at the molecular level for studying the functional aspects of the olive PLP_deC II gene family and provided essential gene information for genetic improvement of olive.


Subject(s)
Gene Expression Regulation, Plant , Olea , Phenylethyl Alcohol , Phenylethyl Alcohol/analogs & derivatives , Phylogeny , Olea/genetics , Olea/metabolism , Phenylethyl Alcohol/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Iridoid Glucosides/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Pyridoxal Phosphate/metabolism , Iridoids/metabolism , Genes, Plant
10.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673848

ABSTRACT

Alzheimer's disease is associated with protein aggregation, oxidative stress, and the role of acetylcholinesterase in the pathology of the disease. Previous investigations have demonstrated that geniposide and harpagoside protect the brain neurons, and cerium nanoparticles (CeO2 NPs) have potent redox and antioxidant properties. Thus, the effect of nanoparticles of Ce NPs and geniposide and harpagoside (GH/CeO2 NPs) on ameliorating AD pathogenesis was established on AlCl3-induced AD in mice and an aggregation proteins test in vitro. Findings of spectroscopy analysis have revealed that GH/CeO2 NPs are highly stable, nano-size, spherical in shape, amorphous nature, and a total encapsulation of GH in cerium. Treatments with CeO2 NPs, GH/CeO2 NPs, and donepezil used as positive control inhibit fibril formation and protein aggregation, protect structural modifications in the BSA-ribose system, have the ability to counteract Tau protein aggregation and amyloid-ß1-42 aggregation under fibrillation condition, and are able to inhibit AChE and BuChE. While the GH/CeO2 NPs, treatment in AD induced by AlCl3 inhibited amyloid-ß1-42, substantially enhanced the memory, the cognition coordination of movement in part AD pathogenesis may be alleviated through reducing amyloidogenic pathway and AChE and BuChE activities. The findings of this work provide important comprehension of the chemoprotective activities of iridoids combined with nanoparticles. This could be useful in the development of new therapeutic methods for the treatment of neurodegenerative diseases.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Cerium , Iridoids , Neuroprotective Agents , Cerium/chemistry , Cerium/pharmacology , Iridoids/pharmacology , Iridoids/chemistry , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Acetylcholinesterase/metabolism , Amyloid beta-Peptides/metabolism , Male , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Disease Models, Animal
11.
Chemosphere ; 356: 141956, 2024 May.
Article in English | MEDLINE | ID: mdl-38604514

ABSTRACT

Emerging micropollutants, such as pharmaceuticals and microplastics (MPs), have become a pressing water environmental concern. The aim of this study is to synthesize chitosan sponges using graphene oxide (GO) and genipin (GP) for the removal of pharmaceuticals (diclofenac (DCF) and triclosan (TCS)) and MPs, verify their adsorption mechanisms, evaluate the effects of temperature, pH, and salinity on their adsorption capacities, and determine their reusability. The GO5/CS/GP sponge exhibited a macroporous nature (porosity = 95%, density = 32.6 mg/cm3). GO and cross-linker GP enhanced the adsorption of DCF, TCS, and polystyrene (PS) MPs onto the CS sponges. The adsorption of DCF, TCS, and PS MPs involved multiple steps: surface diffusion and pore diffusion of the sponge. The adsorption isotherms demonstrated that Langmuir model was the most fitted well model to explain adsorption of TCS (qm = 7.08 mg/g) and PS MPs (qm = 7.42 mg/g) on GO5/CS/GP sponge, while Freundlich model suited for DCF adsorption (qm = 48.58 mg/g). DCF adsorption was thermodynamically spontaneous and endothermic; however, the adsorption of TCS and PS MPs was exothermic (283-313 K). The optimal pH was 5.5-7 due to the surface charge of the GO5/CS/GP sponge (pHzpc = 5.76) and ionization of DCF, TCS, and PS MPs. As the salinity increased, DCF removal efficiency drastically decreased due to the weakening of electrostatic interactions; however, TCS removal efficiency remained stable because TCS adsorption was mainly caused by hydrophobic and π-π interactions rather than electrostatic interaction. The removal of PS MPs was enhanced by the electrostatic screening effects of high Na+ ions. PS nanoplastics (average size = 26 nm) were removed by the GO5/CS/GP sponge at a rate of 73.0%, which was better than that of PS MPs (41.5%). In addition, the GO5/CS/GP sponge could be recycled over five adsorption-desorption cycles.


Subject(s)
Chitosan , Diclofenac , Graphite , Iridoids , Microplastics , Triclosan , Water Pollutants, Chemical , Graphite/chemistry , Diclofenac/chemistry , Chitosan/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Triclosan/chemistry , Microplastics/chemistry , Iridoids/chemistry , Water Purification/methods , Hydrogen-Ion Concentration
12.
Molecules ; 29(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611777

ABSTRACT

Iridoid components have been reported to have significant neuroprotective effects. However, it is not yet clear whether the efficacy and mechanisms of iridoid components with similar structures are also similar. This study aimed to compare the neuroprotective effects and mechanisms of eight iridoid components (catalpol (CAT), genipin (GE), geniposide (GEN), geniposidic acid (GPA), aucubin (AU), ajugol (AJU), rehmannioside C (RC), and rehmannioside D (RD)) based on corticosterone (CORT)-induced injury in PC12 cells. PC12 cells were randomly divided into a normal control group (NC), model group (M), positive drug group (FLX), and eight iridoid administration groups. Firstly, PC12 cells were induced with CORT to simulate neuronal injury. Then, the MTT method and flow cytometry were applied to evaluate the protective effects of eight iridoid components on PC12 cell damage. Thirdly, a cell metabolomics study based on ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was performed to explore changes in relevant biomarkers and metabolic pathways following the intervention of administration. The MTT assay and flow cytometry analysis showed that the eight iridoid components can improve cell viability, inhibit cell apoptosis, reduce intracellular ROS levels, and elevate MMP levels. In the PCA score plots, the sample points of the treatment groups showed a trend towards approaching the NC group. Among them, AU, AJU, and RC had a weaker effect. There were 38 metabolites (19 metabolites each in positive and negative ion modes, respectively) identified as potential biomarkers during the experiment, among which 23 metabolites were common biomarkers of the eight iridoid groups. Pathway enrichment analysis revealed that the eight iridoid components regulated the metabolism mainly in relation to D-glutamine and D-glutamate metabolism, arginine biosynthesis, the TCA cycle, purine metabolism, and glutathione metabolism. In conclusion, the eight iridoid components could reverse an imbalanced metabolic state by regulating amino acid neurotransmitters, interfering with amino acid metabolism and energy metabolism, and harmonizing the level of oxidized substances to exhibit neuroprotective effects.


Subject(s)
Iridoid Glucosides , Iridoid Glycosides , Neuroprotective Agents , Pyrans , Animals , Rats , Neuroprotective Agents/pharmacology , Metabolomics , Iridoids/pharmacology , Amino Acids , Biomarkers
13.
Nutrients ; 16(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38612968

ABSTRACT

Presbyopia is a global problem with an estimated 1.3 billion patients worldwide. In the area of functional food applications, dietary supplements or herbs, there are very few reports describing the positive effects of their use. In the available literature, there is a lack of studies in humans as well as on an animal model of extracts containing, simultaneously, compounds from the polyphenol group (in particular, anthocyanins) and iridoids, so we undertook a study of the effects of a preparation composed of these compounds on a condition of the organ of vision. Our previous experience on a rabbit model proved the positive effect of taking an oral extract of Cornus mas in stabilizing the intraocular pressure of the eye. The purpose of this study was to evaluate the effect of an orally administered ternary compound preparation on the status of physiological parameters of the ocular organ. The preparation contained an extract of the chokeberry Aronia melanocarpa, the honeysuckle berry Lonicera caerulea L., and the bilberry Vaccinium myrtillus (hereafter AKB) standardized for anthocyanins and iridoids, as bioactive compounds known from the literature. A randomized, double-blind, cross-over study lasting with a "wash-out" period of 17 weeks evaluated a group of 23 people over the age of 50, who were subjects with presbyopia and burdened by prolonged work in front of screen monitors. The group of volunteers was recruited from people who perform white-collar jobs on a daily basis. The effects of the test substances contained in the preparation on visual acuity for distance and near, sense of contrast for distance and near, intraocular pressure, and conjunctival lubrication, tested by Schirmer test, LIPCOF index and TBUT test, and visual field test were evaluated. Anthocyanins (including cyanidin 3-O-galactoside, delphinidin 3-O-arabinoside, cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, cyanidin 3-O-arabinoside) and iridoids (including loganin, sweroside, loganic acid) were identified as substances present in the extract obtained by HPLC-MS. The preliminary results showed that the composition of AKB applied orally does not change visual acuity in the first 6 weeks of administration. Only in the next cycle of the study was an improvement in near visual acuity observed in 92.3% of the patients. This may indicate potential to correct near vision in presbyopic patients. On the other hand, an improvement in conjunctival wetting was observed in the Schirmer test at the beginning of week 6 of administration in 80% of patients. This effect was weakened in subsequent weeks of conducting the experiment to 61.5%. The improvement in conjunctival hydration in the Schirmer test shows the potential beneficial effect of the AKB formulation in a group of patients with dry eye syndrome. This is the first study of a preparation based on natural, standardized extracts of chokeberry, honeysuckle berry, and bilberry. Preliminary studies show an improvement in near visual acuity and conjunctival hydration on the Schirmer test, but this needs to be confirmed in further studies.


Subject(s)
Lonicera , Photinia , Presbyopia , Vaccinium myrtillus , Animals , Humans , Rabbits , Presbyopia/drug therapy , Anthocyanins , Cross-Over Studies , Visual Acuity , Conjunctiva , Iridoids
14.
J Agric Food Chem ; 72(17): 10106-10116, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629120

ABSTRACT

The authentication of ingredients in formulas is crucial yet challenging, particularly for constituents with comparable compositions but vastly divergent efficacy. Rehmanniae Radix and its derivatives are extensively utilized in food supplements, which contain analogous compositions but very distinct effects. Rehmanniae Radix, also a difficult-to-detect herbal ingredient, was chosen as a case to explore a novel HPTLC-QDa MS technique for the identification of herbal ingredients in commercial products. Through systematic condition optimization, including thin layer and mass spectrometry, a stable and reproducible HPTLC-QDa MS method was established, which can simultaneously detect oligosaccharides and iridoids. Rehmannia Radix and its processed products were then analyzed to screen five markers that could distinguish between raw and prepared Rehmannia Radix. An HPTLC-QDa-SIM method was further established for formula detection by using the five markers and validated using homemade prescriptions and negative controls. Finally, this method was applied to detect raw and prepared Rehmannia Radix in 12 commercial functional products and supplements.


Subject(s)
Drugs, Chinese Herbal , Rehmannia , Rehmannia/chemistry , Chromatography, Thin Layer/methods , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Plant Roots/chemistry , Dietary Supplements/analysis , Mass Spectrometry/methods , Oligosaccharides/analysis , Oligosaccharides/chemistry , Iridoids/analysis , Iridoids/chemistry
15.
Int Immunopharmacol ; 133: 112082, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652958

ABSTRACT

Psoriasis is an incurable immune-mediated disease affecting the skin or the joints. There are continuing studies on drugs for psoriasis prevention and treatment. This research found that Geniposide (GE) significantly thinned IMQ mice's skin lesions, reduced the scales, and lowered the presence of inflammatory cells in the pathology in a dose-dependent manner. GE inhibited IL-23, IL-22, IL-17A, IL-12, IL-6, and TNF-α levels in psoriatic mice serum. AKT1, TNF, TLR4, MMP9, MAPK3, and EGFR were selected as the top 6 targets of GE against psoriasis via network pharmacology, and GE-TLR4 has the most robust docking score value by molecular docking. Taken together, GE significantly inhibited TLR4 and MMP9 protein expression and influenced MyD88/NF-κB p65 signaling pathway. Finally, TLR4 was verified as the critical target of GE, which engaged in immunomodulatory activities and reduced MMP9 production in LPS and TAK-242-induced HaCaT cells. GE had a medium affinity for TLR4, and the KD value was 1.06 × 10-5 M. GE is an effective treatment and preventative strategy for psoriasis since it impacts TLR4.


Subject(s)
Iridoids , Matrix Metalloproteinase 9 , Myeloid Differentiation Factor 88 , Psoriasis , Signal Transduction , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Animals , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/drug effects , Matrix Metalloproteinase 9/metabolism , Humans , Psoriasis/drug therapy , Psoriasis/immunology , Iridoids/pharmacology , Iridoids/therapeutic use , Mice , Transcription Factor RelA/metabolism , Skin/drug effects , Skin/pathology , Skin/immunology , Skin/metabolism , Cytokines/metabolism , Male , Molecular Docking Simulation , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , HaCaT Cells , Imiquimod , Cell Line
16.
Int Immunopharmacol ; 132: 111923, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38565041

ABSTRACT

In this study, we aimed to evaluate the protective effect of geniposide (GEN) on imiquimod (IMQ)-induced psoriasis-like skin lesions in mice. Firstly, visual changes of psoriatic skin lesions were observed and the severity was recorded using psoriasis area and severity index (PASI) score. Histological changes were assessed by HE staining for epidermal thickness and Masson's staining for collagen fibers. Then, photographs of microvascular inside the skin were taken for macroscopic observation, and microscopic changes associated with angiogenesis were evaluated. Furthermore, expression of angiogenic factors were analyzed by ELISA, immunohistochemistry and immunofluorescence, separately. Lastly, the expression of VEGFR signaling-related proteins was detected by WB. Compared with control, IMQ drove a significant increment of epidermal thicknesses with higher PASI scores and more dermal collagen deposition. IMQ treatment led to abnormal keratinocyte proliferation, increased microvascular inside skin, growing production of angiogenesis-related factors, up-regulated expression of VEGFR1 and VEGFR2, and enhanced phosphorylation of p38. However, GEN significantly ameliorated the psoriatic skin lesions, the epidermal thickness, the formation of collagen fibers, and abnormal keratinocyte proliferation. Importantly, GEN inhibited angiogenesis, the production of angiogenic factors (VEGF-A, Ang-2, TNF-α, and IL-17A), and the proliferation of vascular endothelial cells. Simultaneously, GEN curbed the expression of VEGFR1, VEGFR2, p38, and P-p38 proteins involved in VEGFR signaling. Of note, the suppressive effect of GEN was reversed in the HUVECs with over-expressed VEGFR1 or VEGFR2 related to the cells without transfection. These findings suggest that VEGFR1 and VEGFR2 participate in the anti-angiogenesis of GEN in IMQ-induced psoriasis-like skin lesions in mice.


Subject(s)
Imiquimod , Iridoids , Neovascularization, Pathologic , Psoriasis , Skin , Animals , Male , Mice , Angiogenesis , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/pharmacology , Cell Proliferation/drug effects , Disease Models, Animal , Imiquimod/toxicity , Iridoids/pharmacology , Iridoids/therapeutic use , Keratinocytes/drug effects , Mice, Inbred BALB C , Neovascularization, Pathologic/drug therapy , Psoriasis/drug therapy , Psoriasis/chemically induced , Psoriasis/pathology , Skin/pathology , Skin/drug effects , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
17.
J Integr Med ; 22(3): 210-222, 2024 May.
Article in English | MEDLINE | ID: mdl-38631983

ABSTRACT

In recent years, preclinical research on diabetic kidney disease (DKD) has surged to the forefront of scientific and clinical attention. DKD has become a pervasive complication of type 2 diabetes. Given the complexity of its etiology and pathological mechanisms, current interventions, including drugs, dietary modifications, exercise, hypoglycemic treatments and lipid-lowering methods, often fall short in achieving desired therapeutic outcomes. Iridoids, primarily derived from the potent components of traditional herbs, have been the subject of long-standing research. Preclinical data suggest that iridoids possess notable renal protective properties; however, there has been no summary of the research on their efficacy in the management and treatment of DKD. This article consolidates findings from in vivo and in vitro research on iridoids in the context of DKD and highlights their shared anti-inflammatory activities in treating this condition. Additionally, it explores how certain iridoid components modify their chemical structures through the regulation of intestinal flora, potentially bolstering their therapeutic effects. This review provides a focused examination of the mechanisms through which iridoids may prevent or treat DKD, offering valuable insights for future research endeavors. Please cite this article as: Zhou TY, Tian N, Li L, Yu R. Iridoids modulate inflammation in diabetic kidney disease: A review. J Integr Med. 2024; 22(3): 210-222.


Subject(s)
Diabetic Nephropathies , Iridoids , Diabetic Nephropathies/drug therapy , Humans , Iridoids/pharmacology , Iridoids/therapeutic use , Animals , Inflammation/drug therapy , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications
18.
Phytomedicine ; 129: 155596, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626646

ABSTRACT

BACKGROUND: Traditional Chinese medicine (TCM) is useful in disease treatment and prevention. Genipin is an active TCM compound used to treat diabetic retinopathy (DR). In this study, a network pharmacology (NP)-based approach was employed to investigate the therapeutic mechanisms underlying genipin administration in DR. METHODS: The potential targets of DR were identified using the gene expression omnibus (GEO) database. TCM database screening and NP were used to predict the potential active targets and pathways of genipin in DR. Cell viability was tested in vitro to determine the effects of different doses of glucose and genipin on Human Retinal Microvascular Endothelial Cells (hRMECs). CCK-8, CCK-F, colony formation, CellTiter-Lum, Annexin V-FITC, wound healing, Transwell, tube-forming, reactive oxygen species (ROS), and other assay kits were used to detect the effects of genipin on hRMECs during high levels of glucose. In vivo, a streptozotocin (STZ)-mouse intraocular genipin injection (IOI.) model was used to explore the effects of genipin on diabetes-induced retinal dysfunction. Western blotting was performed to identify the cytokines involved in proliferation, apoptosis, angiogenesis, ROS, and inflammation. The protein expression of the AKT/ PI3K/ HIF-1α and AGEs/ RAGE pathways was also examined. RESULTS: Approximately 14 types of TCM, and nearly 300 active ingredients, including genipin, were identified. The NP approach successfully identified the HIF-1α and AGEs-RAGE pathways, with the EGR1 and UCP2 genes, as key targets of genipin in DR. In the in vitro and in vivo models, we discovered that high glucose increased cell proliferation, apoptosis, angiogenesis, ROS, and inflammation. However, genipin application regulated cell proliferation and apoptosis, inhibited angiogenesis, and reduced ROS and inflammation in the HRMECs exposed to high glucose. Furthermore, the retinal thickness in the genipin-treated group was lower than that in the untreated group. AKT/ PI3K/ HIF-1α and AGEs/ RAGE signaling was increased by high glucose levels; however, genipin treatment decreased AKT/ PI3K and AGEs/ RAGE pathway expressions. Genipin also increased HIF-1α phosphorylation, oxidative phosphorylation of ATP synthesis, lipid peroxidation, and the upregulation of oxidoreductase. Genipin was found to protect HG-induced hRMECs and the retina of STZ-mice, based on; 1 the inhibition of UCP2 and Glut1 decreased intracellular glucose, and glycosylation; 2 the increased presence of HIF-1α, which increased oxidative phosphorylation and decreased substrate phosphorylation; 3 the increase in oxidative phosphorylation from ATP synthesis increased lipid peroxidation and oxidoreductase activity, and; 4 the parallel effect of phosphorylation and glycosylation on vascular endothelial growth factor (VEGF), MMP9, and Scg3. CONCLUSION: Based on NP, we demonstrated the potential targets and pathways of genipin in the treatment of DR and confirmed its effective molecular mechanism in vitro and in vivo. Genipin protects cells and tissues from high glucose levels by regulating phosphorylation and glycosylation. The activation of the HIF-1α pathway can also be used to treat DR. Our study provides new insights into the key genes and pathways associated with the prognosis and pathogenesis of DR.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Endothelial Cells , Glycation End Products, Advanced , Hypoxia-Inducible Factor 1, alpha Subunit , Iridoids , Mice, Inbred C57BL , Signal Transduction , Diabetic Retinopathy/drug therapy , Animals , Iridoids/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Humans , Glycation End Products, Advanced/metabolism , Diabetes Mellitus, Experimental/drug therapy , Male , Mice , Endothelial Cells/drug effects , Signal Transduction/drug effects , Receptor for Advanced Glycation End Products/metabolism , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Retina/drug effects , Apoptosis/drug effects , Glucose/metabolism
19.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674064

ABSTRACT

Olive leaf contains plenty of phenolic compounds, among which oleuropein (OP) is the main component and belongs to the group of secoiridoids. Additionally, phenolic compounds such as oleocanthal (OL) and oleacein (OC), which share a structural similarity with OP and two aldehyde groups, are also present in olive leaves. These compounds have been studied for several health benefits, such as anti-cancer and antioxidant effects. However, their impact on the skin remains unknown. Therefore, this study aims to compare the effects of these three compounds on melanogenesis using B16F10 cells and human epidermal cells. Thousands of gene expressions were measured by global gene expression profiling with B16F10 cells. We found that glutaraldehyde compounds derived from olive leaves have a potential effect on the activation of the melanogenesis pathway and inducing differentiation in B16F10 cells. Accordingly, the pro-melanogenesis effect was investigated by means of melanin quantification, mRNA, and protein expression using human epidermal melanocytes (HEM). This study suggests that secoiridoid and its derivates have an impact on skin protection by promoting melanin production in both human and mouse cell lines.


Subject(s)
Iridoid Glucosides , Melanins , Melanocytes , Olea , Phenols , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Olea/chemistry , Animals , Melanins/biosynthesis , Melanins/metabolism , Mice , Phenols/pharmacology , Iridoid Glucosides/pharmacology , Iridoids/pharmacology , Aldehydes/pharmacology , Cell Differentiation/drug effects , Cyclopentane Monoterpenes , Epidermal Cells/metabolism , Epidermal Cells/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Epidermis/metabolism , Epidermis/drug effects , Cell Line, Tumor , Plant Leaves/chemistry , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Melanogenesis
20.
Phytomedicine ; 129: 155617, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614041

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is the leading cause of global death, which manifests as arterial lipid stack and plaque formation. Geniposide is an iridoid glycoside extract from Gardenia jasminoides J.Ellis that ameliorates AS by mediating autophagy. However, how Geniposide regulates autophagy and treats AS remains unclear. PURPOSE: To evaluate the efficacy and mechanism of Geniposide in treating AS. STUDY DESIGN AND METHODS: Geniposide was administered to high-fat diet-fed ApoE-/- mice and oxidized low-density lipoprotein-incubated primary vascular smooth muscle cells (VSMCs). AS was evaluated with arterial lipid stack, plaque progression, and collagen loss in the artery. Foam cell formation was detected by lipid accumulation, inflammation, apoptosis, and the expression of foam cell markers. The mechanism of Geniposide in treating AS was assessed using network pharmacology. Lipophagy was measured by lysosomal activity, expression of lipophagy markers, and the co-localization of lipids and lipophagy markers. The effects of lipophagy were blocked using Chloroquine. The role of PARP1 was assessed by Olaparib (a PARP1 inhibitor) intervention and PARP1 overexpression. RESULTS: In vivo, Geniposide reversed high-fat diet-induced hyperlipidemia, plaque progression, and inflammation. In vitro, Geniposide inhibited VSMC-derived foam cell formation by suppressing lipid stack, apoptosis, and the expressions of foam cell markers. Network pharmacological analysis and in vitro validation suggested that Geniposide treated AS by enhancing lipophagy via suppressing the PI3K/AKT signaling pathway. The benefits of Geniposide in alleviating AS were offset by Chloroquine in vivo and in vitro. Inhibiting PARP1 using Olaparib promoted lipophagy and alleviated AS progression, while PARP1 overexpression exacerbated foam cell formation and lipophagy blockage. The above effects of PARP1 were weakened by PI3K inhibitor LY294002. PARP1 also inhibited the combination of the ABCG1 and PLIN1. CONCLUSION: Geniposide alleviated AS by restoring PARP1/PI3K/AKT signaling pathway-suppressed lipophagy. This study is the first to present the lipophagy-inducing effect of Geniposide and the binding of ABCG1 and PLIN1 inhibited by PARP1.


Subject(s)
Atherosclerosis , Diet, High-Fat , Iridoids , Phosphatidylinositol 3-Kinases , Poly (ADP-Ribose) Polymerase-1 , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Iridoids/pharmacology , Atherosclerosis/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Male , Mice , Diet, High-Fat/adverse effects , Autophagy/drug effects , Gardenia/chemistry , Muscle, Smooth, Vascular/drug effects , Mice, Inbred C57BL , Foam Cells/drug effects , Foam Cells/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Network Pharmacology , Lipoproteins, LDL
SELECTION OF CITATIONS
SEARCH DETAIL
...