Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.771
Filter
1.
Carbohydr Polym ; 339: 122262, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823926

ABSTRACT

Chitosan has been widely used in biomedical fields due to its good antibacterial properties, excellent biocompatibility, and biodegradability. In this study, a pH-responsive and self-healing hydrogel was synthesized from 3-carboxyphenylboronic acid grafted with chitosan (CS-BA) and polyvinyl alcohol (PVA). The dynamic boronic ester bonds and intermolecular hydrogen bonds are responsible for the hydrogel formation. By changing the mass ratio of CS-BA and PVA, the tensile stress and compressive stress of hydrogel can controlled in the range of 0.61 kPa - 0.74 kPa and 295.28 kPa - 1108.1 kPa, respectively. After doping with tannic acid (TA)/iron nanocomplex (TAFe), the hydrogel successful killed tumor cells through the near infrared laser-induced photothermal conversion and the TAFe-triggered reactive oxygen species generation. Moreover, the photothermal conversion of the hydrogel and the antibacterial effect of CS and TA give the hydrogel a good antibacterial effect. The CS-BA/PVA/TAFe hydrogel exhibit good in vivo and in vitro anti-tumor recurrence and antibacterial ability, and therefore has the potential to be used as a powerful tool for the prevention of local tumor recurrence and bacterial infection after surgery.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Neoplasm Recurrence, Local , Polyvinyl Alcohol , Tannins , Chitosan/chemistry , Chitosan/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogen-Ion Concentration , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyvinyl Alcohol/chemistry , Mice , Neoplasm Recurrence, Local/prevention & control , Tannins/chemistry , Tannins/pharmacology , Humans , Staphylococcus aureus/drug effects , Boronic Acids/chemistry , Escherichia coli/drug effects , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Iron/chemistry , Surgical Wound Infection/prevention & control
2.
Microbes Environ ; 39(5)2024.
Article in English | MEDLINE | ID: mdl-38839370

ABSTRACT

Microbiologically influenced corrosion refers to the corrosion of metal materials caused or promoted by microorganisms. Although some novel iron-corrosive microorganisms have been discovered in various manmade and natural freshwater and seawater environments, microbiologically influenced corrosion in the deep sea has not been investigated in detail. In the present study, we collected slime-like precipitates composed of corrosion products and microbial communities from a geochemical reactor set on an artificial hydrothermal vent for 14.5 months, and conducted culture-dependent and -independent microbial community ana-lyses with corrosive activity measurements. After enrichment cultivation at 37, 50, and 70°C with zero-valent iron particles, some of the microbial consortia showed accelerated iron dissolution, which was approximately 10- to 50-fold higher than that of the abiotic control. In a comparative ana-lysis based on the corrosion acceleration ratio and amplicon sequencing of the 16S rRNA gene, three types of corrosion were estimated: the methanogen-induced type, methanogen-sulfate-reducing bacteria cooperative type, and sulfate-reducing Firmicutes-induced type. The methanogen-induced and methanogen-sulfate-reducing bacteria cooperative types were observed at 50°C, while the sulfate-reducing Firmicutes-induced type was noted at 37°C. The present results suggest the microbial components associated with microbiologically influenced corrosion in deep-sea hydrothermal systems, providing important insights for the development of future deep-sea resources with metal infrastructures.


Subject(s)
Bacteria , Hydrothermal Vents , Iron , Microbial Consortia , RNA, Ribosomal, 16S , Seawater , Corrosion , Iron/metabolism , Iron/chemistry , Seawater/microbiology , Seawater/chemistry , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Hydrothermal Vents/microbiology , Phylogeny
3.
Mikrochim Acta ; 191(7): 368, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833176

ABSTRACT

A colorimetric analysis platform has been successfully developed based on FeCo-NC dual-atom nanozyme (FeCo-NC DAzyme) for the detection of organophosphorus pesticides (OPPs). The FeCo-NC DAzyme exhibited exceptional oxidase-like activity (OXD), enabling the catalysis of colorless TMB to form blue oxidized TMB (oxTMB) without the need for H2O2 involvement. By combining acid phosphatase (ACP) hydrolase with FeCo-NC DAzyme, a "FeCo-NC DAzyme + TMB + ACP + SAP" colorimetric system was constructed, which facilitated the rapid detection of malathion. The chromogenic system was applied to detect malathion using a smartphone-based app and an auxiliary imaging interferogram device for colorimetric measurements, which have a linear range of 0.05-4.0 µM and a limit of detection (LOD) as low as 15 nM in real samples, comparable to UV-Vis and HPLC-DAD detection methods. Overall, these findings present a novel approach for convenient, rapid, and on-site monitoring of OPPs.


Subject(s)
Colorimetry , Limit of Detection , Pesticides , Smartphone , Colorimetry/methods , Pesticides/analysis , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry , Malathion/analysis , Malathion/chemistry , Oxidoreductases/chemistry , Iron/chemistry , Acid Phosphatase/analysis , Acid Phosphatase/chemistry , Benzidines
4.
Environ Monit Assess ; 196(7): 595, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833198

ABSTRACT

Aquatic humic substances (AHS) are defined as an important components of organic matter, being composed as small molecules in a supramolecular structure and can interact with metallic ions, thereby altering the bioavailability of these species. To better understand this behavior, AHS were extracted and characterized from Negro River, located near Manaus city and Carú River, that is situated in Itacoatiara city, an area experiencing increasing anthropogenic actions; both were characterized as blackwater rivers. The AHS were characterized by 13C nuclear magnetic ressonance and thermochemolysis GC-MS to obtain structural characteristics. Interaction studies with Cu (II), Al (III), and Fe (III) were investigated using fluorescence spectroscopy applied to parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy with Fourier transform infrared spectroscopy (2D-COS FTIR). The AHS from dry season had more aromatic fractions not derived from lignin and had higher content of alkyls moities from microbial sources and vegetal tissues of autochthonous origin, while AHS isolated in the rainy season showed more metals in its molecular architecture, lignin units, and polysacharide structures. The study showed that AHS composition from rainy season were able to interact with Al (III), Fe (III), and Cu (II). Two fluorescent components were identified as responsible for interaction: C1 (blue-shifted) and C2 (red-shifted). C1 showed higher complexation capacities but with lower complexation stability constants (KML ranged from 0.3 to 7.9 × 105) than C2 (KML ranged from 3.1 to 10.0 × 105). 2D-COS FTIR showed that the COO- and C-O in phenolic were the most important functional groups for interaction with studied metallic ions.


Subject(s)
Aluminum , Copper , Environmental Monitoring , Humic Substances , Rivers , Seasons , Water Pollutants, Chemical , Humic Substances/analysis , Rivers/chemistry , Spectroscopy, Fourier Transform Infrared , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Copper/analysis , Aluminum/analysis , Aluminum/chemistry , Iron/analysis , Iron/chemistry , Brazil , Factor Analysis, Statistical
5.
J Nanobiotechnology ; 22(1): 309, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825720

ABSTRACT

Gene therapy aims to modify or manipulate gene expression and change the biological characteristics of living cells to achieve the purpose of treating diseases. The safe, efficient, and stable expression of exogenous genes in cells is crucial for the success of gene therapy, which is closely related to the vectors used in gene therapy. Currently, gene therapy vectors are mainly divided into two categories: viral vectors and non-viral vectors. Viral vectors are widely used due to the advantages of persistent and stable expression, high transfection efficiency, but they also have certain issues such as infectivity, high immunological rejection, randomness of insertion mutation, carcinogenicity, and limited vector capacity. Non-viral vectors have the advantages of non-infectivity, controllable chemical structure, and unlimited vector capacity, but the transfection efficiency is low. With the rapid development of nanotechnology, the unique physicochemical properties of nanomaterials have attracted increasing attention in the field of drug and gene delivery. Among many nanomaterials, iron-based nanomaterials have attracted much attention due to their superior physicochemical properties, such as Fenton reaction, magnetic resonance imaging, magnetothermal therapy, photothermal therapy, gene delivery, magnetically-assisted drug delivery, cell and tissue targeting, and so on. In this paper, the research progress of iron-based nanomaterials in gene delivery and tumor gene therapy is reviewed, and the future application direction of iron-based nanomaterials is further prospected.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Iron , Neoplasms , Genetic Therapy/methods , Humans , Neoplasms/therapy , Animals , Iron/chemistry , Iron/metabolism , Nanostructures/chemistry , Genetic Vectors
6.
Int J Nanomedicine ; 19: 5045-5056, 2024.
Article in English | MEDLINE | ID: mdl-38832334

ABSTRACT

Background: Chemodynamic therapy (CDT) is a new treatment approach that is triggered by endogenous stimuli in specific intracellular conditions for generating hydroxyl radicals. However, the efficiency of CDT is severely limited by Fenton reaction agents and harsh reaction conditions. Methods: Bimetallic PtMn nanocubes were rationally designed and simply synthesized through a one-step high-temperature pyrolysis process by controlling both the nucleation process and the subsequent crystal growth stage. The polyethylene glycol was modified to enhance biocompatibility. Results: Benefiting from the alloying of Pt nanocubes with Mn doping, the structure of the electron cloud has changed, resulting in different degrees of the shift in electron binding energy, resulting in the increasing of Fenton reaction activity. The PtMn nanocubes could catalyze endogenous hydrogen peroxide to toxic hydroxyl radicals in mild acid. Meanwhile, the intrinsic glutathione (GSH) depletion activity of PtMn nanocubes consumed GSH with the assistance of Mn3+/Mn2+. Upon 808 nm laser irradiation, mild temperature due to the surface plasmon resonance effect of Pt metal can also enhance the Fenton reaction. Conclusion: PtMn nanocubes can not only destroy the antioxidant system via efficient reactive oxygen species generation and continuous GSH consumption but also propose the photothermal effect of noble metal for enhanced Fenton reaction activity.


Subject(s)
Glutathione , Manganese , Platinum , Reactive Oxygen Species , Animals , Platinum/chemistry , Platinum/pharmacology , Reactive Oxygen Species/metabolism , Glutathione/chemistry , Humans , Manganese/chemistry , Manganese/pharmacology , Photothermal Therapy/methods , Mice , Metal Nanoparticles/chemistry , Hydrogen Peroxide/chemistry , Cell Line, Tumor , Hydroxyl Radical/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Iron/chemistry
7.
Sci Rep ; 14(1): 12818, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834602

ABSTRACT

Recent years have seen an increase in research on biodiesel, an environmentally benign and renewable fuel alternative for traditional fossil fuels. Biodiesel might become more cost-effective and competitive with diesel if a solid heterogeneous catalyst is used in its production. One way to make biodiesel more affordable and competitive with diesel is to employ a solid heterogeneous catalyst in its manufacturing. Based on X-ray diffraction (XRD) and Fourier Transform infrared spectroscopy (FTIR), the researchers in this study proved their hypothesis that iron oxide core-shell nanoparticles were generated during the green synthesis of iron-based nanoparticles (FeNPs) from Camellia Sinensis leaves. The fabrication of spherical iron nanoparticles was successfully confirmed using scanning electron microscopy (SEM). As a heterogeneous catalyst, the synthesised catalyst has shown potential in facilitating the conversion of algae oil into biodiesel. With the optimal parameters (0.5 weight percent catalytic load, 1:6 oil-methanol ratio, 60 °C reaction temperature, and 1 h and 30 min reaction duration), a 93.33% yield was attained. This may be due to its acid-base property, chemical stability, stronger metal support interaction. Furthermore, the catalyst was employed for transesterification reactions five times after regeneration with n-hexane washing followed by calcination at 650 °C for 3 h.


Subject(s)
Biofuels , Camellia sinensis , Plant Leaves , Plant Leaves/chemistry , Catalysis , Camellia sinensis/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , X-Ray Diffraction , Esterification , Spectroscopy, Fourier Transform Infrared
8.
J Environ Sci (China) ; 145: 107-116, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844311

ABSTRACT

High energy consumption has seriously hindered the development of Fenton-like reactions for the removal of refractory organic pollutants in water. To solve this problem, we designed a novel Fenton-like catalyst (Cu-PAN3) by coprecipitation and carbon thermal reduction. The catalyst exhibits excellent Fenton-like catalytic activity and stability for the degradation of various pollutants with low H2O2 consumption. The experimental results indicate that the dual reaction centers (DRCs) are composed of Cu-N-C and Cu-O-C bridges between copper and graphene-like carbon, which form electron-poor/rich centers on the catalyst surface. H2O2 is mainly reduced at electron-rich Cu centers to free radicals for pollutant degradation. Meanwhile, pollutants can be oxidized by donating electrons to the electron-poor C centers of the catalyst, which inhibits the ineffective decomposition of H2O2 at the electron-poor centers. This therefore significantly reduces the consumption of H2O2 and reduces energy consumption.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Iron/chemistry , Oxidation-Reduction , Copper/chemistry , Models, Chemical
9.
J Environ Sci (China) ; 145: 64-74, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844324

ABSTRACT

Anaerobic digestion has been defined as a competitive approach to facilitate the recycling of corn stalks. However, few studies have focused on the role of direct interspecies electron transfer (DIET) pathway in the acidification stage under the addition of different particle sizes of zero-valent iron (ZVI). In this study, three types of ZVI, namely iron filings, iron powder and nanoscale iron, were investigated, respectively, to enhance its high-value conversion. Variations in volatile fatty acids (VFAs) and methane (CH4) production associated with the underlying mechanisms were emphatically determined. Results indicated that the addition of ZVI could increase the concentration of VFAs, with the most outstanding performance observed with the use of nanoscale iron. Importantly, the conversion of propionic acid to acetic acid was driven by adding ZVI with no between-group differences in acidizing phase. Conversely, the substrate was more fully utilized when supplied with iron powder compared with other groups in methanogenic phase, thereby displaying the maximum CH4 yield with a value of 263.1 mL/(g total solids (TS)). However, adding nanoscale iron could signally shorten the digestion time (T80), saving 7 days in comparison to the group of iron powder.


Subject(s)
Iron , Methane , Zea mays , Iron/chemistry , Anaerobiosis , Fatty Acids, Volatile , Bioreactors
10.
Environ Geochem Health ; 46(7): 222, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849580

ABSTRACT

In previous studies, iron-based nanomaterials, especially biochar (BC)-supported sulfidized nanoscale zero-valent iron (S-nZVI/BC), have been widely used for the remediation of soil contaminants. However, its potential risks to the soil ecological environment are still unknown. This study aims to explore the effects of 3% added S-nZVI/BC on soil environment and microorganisms during the remediation of Cd contaminated yellow-brown soil of paddy field. The results showed that after 49 d of incubation, S-nZVI/BC significantly reduced physiologically based extraction test (PBET) extractable Cd concentration (P < 0.05), and increased the immobilization efficiency of Cd by 16.51% and 17.43% compared with S-nZVI and nZVI/BC alone, respectively. Meanwhile, the application of S-nZVI/BC significantly increased soil urease and sucrase activities by 0.153 and 0.446 times, respectively (P < 0.05), improving the soil environmental quality and promoting the soil nitrogen cycle and carbon cycle. The results from the analysis of the 16S rRNA genes indicated that S-nZVI/BC treatment had a minimal effect on the bacterial community and did not appreciably alter the species of the original dominant bacterial phylum. Importantly, compared to other iron-based nanomaterials, incorporating S-nZVI/BC significantly increased the soil organic carbon (OC) content and decreased the excessive release of iron (P < 0.05). This study also found a significant negative correlation between OC content and Fe(II) content (P < 0.05). It might originate from the reducing effect of Fe-reducing bacteria, which consumed OC to promote the reduction of Fe(III). Accompanying this process, the redistribution of Cd and Fe mineral phases in the soil as well as the generation of secondary Fe(II) minerals facilitated Cd immobilization. Overall, S-nZVI/BC could effectively reduce the bioavailability of Cd, increase soil nutrients and enzyme activities, with less toxic impacts on the soil microorganisms.


Subject(s)
Cadmium , Charcoal , Iron , Soil Microbiology , Soil Pollutants , Charcoal/chemistry , Cadmium/chemistry , Iron/chemistry , Oryza , Soil/chemistry , Bacteria/metabolism , Environmental Restoration and Remediation/methods , RNA, Ribosomal, 16S , Biodegradation, Environmental
11.
Environ Geochem Health ; 46(7): 224, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849581

ABSTRACT

This study aimed to evaluate the effect of modified nanoscale zero-valent iron (SAS-nZVI) on chemical leaching of lead and cadmium composite contaminated soil by citric acid (CA). The synthesized SAS-nZVI was used as a leaching aid to improve the removal rate of soil heavy metals (HMs) by CA chemical leaching. The effects of various factors such as SAS-nZVI dosage, elution temperature and elution time were studied. At the same time, the effect of chemical leaching on the basic physical and chemical properties of soil and the morphology of HMs was evaluated. The results show that when the SAS-nZVI dosage is 2.0 g/L, the leaching temperature is 25 °C, and the leaching time is 720 min, the maximum removal rates of Pb and Cd in the soil are 77.64% and 97.15% respectively. The experimental results were evaluated using elution and desorption kinetic models (Elovich model, double constant model, diffusion model). The elution and desorption process of Pb and Cd in soil by SAS-nZVI-CA fitted well with the double-constant model, indicating that the desorption kinetic process of Pb and Cd is a heterogeneous diffusion process, and the elution process is controlled by diffusion factors. After leaching with SAS-nZVI-CA, the physical and chemical properties of the soil changed little, the mobility and toxicity of HMs in the soil were reduced, and the HMs content in the leaching waste liquid was reduced. It can be concluded that SAS-nZVI enhances the efficiency of CA in extracting Pb and Cd from soil, minimizes soil damage resulting from chemical leaching technology, and alleviates the challenges associated with treating leaching waste liquid.


Subject(s)
Cadmium , Citric Acid , Iron , Lead , Soil Pollutants , Soil Pollutants/chemistry , Citric Acid/chemistry , Iron/chemistry , Cadmium/chemistry , Lead/chemistry , Environmental Restoration and Remediation/methods , Metal Nanoparticles/chemistry , Metals, Heavy/chemistry , Kinetics , Soil/chemistry , Temperature
12.
J Mol Model ; 30(7): 200, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850372

ABSTRACT

CONTEXT: Given the diverse pathophysiological mechanisms underlying Alzheimer's disease, it is improbable that a single targeted drug will prove successful as a therapeutic strategy. Therefore, exploring various hypotheses in drug design is imperative. The sequestration of Fe(II) and Zn(II) cations stands out as a crucial mechanism based on the mitigation of reactive oxygen species. Moreover, inhibiting acetylcholinesterase represents a pivotal strategy to enhance acetylcholine levels in the synaptic cleft. This research aims to investigate the analogs of Huperzine A, documented in scientific literature, considering of these two hypotheses. Consequently, the speciation chemistry of these structures with Fe(II) and Zn(II) was scrutinized using quantum chemistry calculations, molecular docking simulations, and theoretical predictions of pharmacokinetics properties. From the pharmacokinetic properties, only two analogs, HupA-A1 and HupA-A2, exhibited a theoretical permeability across the blood-brain barrier; on the other hand, from a thermodynamic standpoint, the enantiomers of HupA-A2 showed negligible chelation values. The enantiomers with the most favorable interaction parameters were S'R'HupA-A1 (ΔGBIND = -40.0 kcal mol-1, fitness score = 35.5) and R'R'HupA-A1 (ΔGBIND = -35.5 kcal mol-1, fitness score = 22.61), being compared with HupA (ΔGBIND = -41.75 kcal mol-1, fitness score = 39.95). From this study, some prime candidates for promising drug were S'R'HupA-A1 and R'R'HupA-A1, primarily owing to their favorable thermodynamic chelating capability and potential anticholinesterase mechanism. METHODS: Quantum chemistry calculations were carried out at B3LYP/6-31G(d) level, considering the IEF-PCM(UFF) implicit solvent model for water. The coordination compounds were assessed using the Gibbs free energy variation and hard and soft acid theory. Molecular docking calculations were conducted using the GOLD program, based on the crystal structure of the acetylcholinesterase protein (PDB code = 4EY5), where the ChemScore function was employed with the active site defined as the region within a 15-Å radius around the centroid coordinates (X = -9.557583, Y = -43.910473, Z = 31.466687). Pharmacokinetic properties were predicted using SwissADME, focusing on Lipinski's rule of five.


Subject(s)
Acetylcholinesterase , Alkaloids , Alzheimer Disease , Cholinesterase Inhibitors , Molecular Docking Simulation , Sesquiterpenes , Alzheimer Disease/drug therapy , Alkaloids/chemistry , Sesquiterpenes/chemistry , Humans , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Blood-Brain Barrier/metabolism , Thermodynamics , Zinc/chemistry , Models, Molecular , Iron/chemistry , Iron/metabolism
13.
Environ Monit Assess ; 196(6): 524, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717730

ABSTRACT

The utilization of agricultural waste to create value-added goods has benefited waste management while resolving cost-effectiveness and food shortage problems. Returning biochar produced from agricultural waste to the agricultural field is a sustainable method of enhancing crop production while lowering the environmental effect of typical fertilizers. It also enhances soil condition by modulating pH, soil organic carbon, water retention capacity, and soil ion exchange potential. The current work concentrated on the production of iron oxide-loaded biochar from banana peels. Pyrolysis was carried out at temperatures ranging from 400 to 500 °C. The co-precipitation technique was utilized to impregnate Fe3O4 nanoparticles on biochar, and it showed to be an effective and trustworthy method. Loading was done in situ. Characterization techniques such as XRD, FTIR, CHNS, and TGA were employed to characterize synthesized materials. Swelling ratio, water retention, absorbance, and equilibrium water content percentage were used to study the adsorption capabilities of Fe3O4-loaded biochar, soil, and raw biochar. As a consequence, Fe3O4-enriched biochar was shown to have better adsorption capability than raw biochar, which in turn showed better adsorption properties than soil. Iron-loaded biochar was employed as a fertilizer in Abelmoschus esculentus (Okra), and the results showed that it is a cost-effective, environmentally friendly fertilizer.


Subject(s)
Agriculture , Charcoal , Fertilizers , Soil , Fertilizers/analysis , Charcoal/chemistry , Agriculture/methods , Soil/chemistry , Iron/chemistry , Adsorption
14.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726825

ABSTRACT

Bacterial species referred to as magnetotactic bacteria (MTB) biomineralize iron oxides and iron sulphides inside the cell. Bacteria can arrange themselves passively along geomagnetic field lines with the aid of these iron components known as magnetosomes. In this study, magnetosome nanoparticles, which were obtained from the taxonomically identified MTB isolate Providencia sp. PRB-1, were characterized and their antibacterial activity was evaluated. An in vitro test showed that magnetosome nanoparticles significantly inhibited the growth of Staphylococcus sp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Magnetosomes were found to contain cuboidal iron crystals with an average size of 42 nm measured by particle size analysis and scanning electron microscope analysis. The energy dispersive X-ray examination revealed that Fe and O were present in the extracted magnetosomes. The extracted magnetosome nanoparticles displayed maximum absorption at 260 nm in the UV-Vis spectrum. The distinct magnetite peak in the Fourier transform infrared (FTIR) spectroscopy spectra was observed at 574.75 cm-1. More research is needed into the intriguing prospect of biogenic magnetosome nanoparticles for antibacterial applications.


Subject(s)
Anti-Bacterial Agents , Magnetosomes , Providencia , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Pseudomonas aeruginosa/drug effects , Magnetosomes/chemistry , Magnetosomes/metabolism , Providencia/chemistry , Providencia/drug effects , Spectroscopy, Fourier Transform Infrared , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Nanoparticles/chemistry , Microbial Sensitivity Tests , Staphylococcus/drug effects , Staphylococcus/growth & development , Particle Size , Iron/chemistry , Iron/metabolism , Magnetite Nanoparticles/chemistry
15.
J Nanobiotechnology ; 22(1): 228, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38715049

ABSTRACT

Development of ferroptosis-inducible nanoplatforms with high efficiency and specificity is highly needed and challenging in tumor ferrotherapy. Here, we demonstrate highly effective tumor ferrotherapy using iron (II)-based metal-organic framework (FessMOF) nanoparticles, assembled from disulfide bonds and ferrous ions. The as-prepared FessMOF nanoparticles exhibit peroxidase-like activity and pH/glutathione-dependent degradability, which enables tumor-responsive catalytic therapy and glutathione depletion by the thiol/disulfide exchange to suppress glutathione peroxidase 4, respectively. Upon PEGylation and Actinomycin D (ActD) loading, the resulting FessMOF/ActD-PEG nanoplatform induces marked DNA damage and lipid peroxidation. Concurrently, we found that ActD can inhibit Xc- system and elicit ferritinophagy, which further boosts the ferrotherapeutic efficacy of the FessMOF/ActD-PEG. In vivo experiments demonstrate that our fabricated nanoplatform presents excellent biocompatibility and a high tumor inhibition rate of 91.89%.


Subject(s)
DNA Damage , Ferroptosis , Iron , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Ferroptosis/drug effects , Animals , Humans , Mice , DNA Damage/drug effects , Iron/chemistry , Cell Line, Tumor , DNA Repair/drug effects , Nanoparticles/chemistry , Neoplasms/drug therapy , Mice, Inbred BALB C , Female
16.
Water Environ Res ; 96(5): e11040, 2024 May.
Article in English | MEDLINE | ID: mdl-38752384

ABSTRACT

In this study, a pyrite-based autotrophic denitrification (PAD) system, a polycaprolactone (PCL)-supported heterotrophic denitrification (PHD) system, and a pyrite+PCL-based split-mixotrophic denitrification (PPMD) system were constructed. The pyrite particle size was controlled in 1-3, 3-5, or 5-8 mm in both the PAD and PPMD systems to investigate the effect of pyrite particle size on the denitrification performance of autotrophic or split-mixotrophic bioreactors. It was found that the PAD system achieved the best denitrification efficiency with an average removal rate of 98.98% in the treatment of 1- to 3-mm particle size, whereas it was only 19.24% in the treatment of 5- to 8-mm particle size. At different phases of the whole experiment, the nitrate removal rates of both the PHD and PPMD systems remained stable at a high level (>94%). Compared with the PAD or PHD system, the PPMD system reduced the concentrations of sulfate and chemical oxygen demand in the final effluent efficiently. The interconnection network diagram explained the intrinsic metabolic pathways of nitrogen, sulfur, and carbon in the three denitrification systems at different phases. In addition, the microbial community analysis showed that the PPMD system was beneficial for the enrichment of Firmicutes. Finally, the impact mechanism of pyrite particle size on the performance of the PPMD system was proposed. PRACTITIONER POINTS: The reduction of pyrite particle size was beneficial for improving the efficiency of the PAD process. The change in particle size had an effect on NO2 --N accumulation in the PAD system. The accumulation of NH4 +-N in the PPMD system increased with the decrease in particle size. The reduction of pyrite particle size increased the production of SO4 2- in the PAD and PPMD systems. The correlations among the effluent indicators of the PAD and PPMD systems could be well explained.


Subject(s)
Bioreactors , Denitrification , Iron , Particle Size , Polyesters , Sulfides , Sulfides/chemistry , Sulfides/metabolism , Polyesters/chemistry , Polyesters/metabolism , Iron/chemistry , Iron/metabolism , Autotrophic Processes , Nitrates/metabolism , Nitrates/chemistry
17.
J Environ Manage ; 359: 120979, 2024 May.
Article in English | MEDLINE | ID: mdl-38692033

ABSTRACT

If pharmaceutical wastewater is not managed effectively, the presence of residual antibiotics will result in significant environmental contamination. In addition, inadequate utilization of agricultural waste represents a squandering of resources. The objective of this research was to assess the efficacy of iron-doped biochar (Fe-BC) derived from peanut shells in degrading high concentrations of Tetracycline (TC) wastewater through activated peroxymonosulfate. Fe-BC demonstrated significant efficacy, achieving a removal efficiency of 87.5% for TC within 60 min without the need to adjust the initial pH (20 mg/L TC, 2 mM PMS, 0.5 g/L catalyst). The degradation mechanism of TC in this system involved a dual action, namely Reactive Oxygen Species (ROS) and electron transfer. The primary active sites were the Fe species, which facilitated the generation of SO4•-, •OH, O2•-, and 1O2. The presence of Fe species and the C=C structure in the Fe-BC catalyst support the electron transfer. Degradation pathways were elucidated through the identification of intermediate products and calculation of the Fukui index. The Toxicity Estimator Software Tool (T.E.S.T.) suggested that the intermediates exhibited lower levels of toxicity. Furthermore, the system exhibited exceptional capabilities in real water and circulation experiments, offering significant economic advantages. This investigation provides an efficient strategy for resource recycling and the treatment of high-concentration antibiotic wastewater.


Subject(s)
Charcoal , Iron , Reactive Oxygen Species , Tetracycline , Wastewater , Tetracycline/chemistry , Charcoal/chemistry , Reactive Oxygen Species/chemistry , Wastewater/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Electron Transport
18.
J Environ Manage ; 359: 120986, 2024 May.
Article in English | MEDLINE | ID: mdl-38696849

ABSTRACT

The efficient, safe and eco-friendly disposal of the chromium-containing sludge (CCS) has attracted an increasing concern. In this study, Co-processing of CCS was developed via employing sintering and ironmaking combined technology for its harmless disposal and resource utilization. Crystalline phase and valence state transformation of chromium (Cr), technical feasibility assessment, leaching risk, characteristics of sintered products, and pollutant release during CCS co-processing were investigated through a series of laboratory-scale sintering pot experiments and large scale industrial trials. The results showed that the content of Cr(VI) in sintered products first increased then decreased with increasing temperature ranges of 300 °C-800 °C, and reached a maximum of 2189.64 mg/kg at 500 °C. 99.99% of Cr(VI) can be reduced to Cr(III) at above 1000 °C, which was attributed to the transformation of the Cr(VI)-containing crystalline phases (such as, MgCrO4 and CaCrO4) to the (Mg, Fe2+)(Cr, Al, Fe3+)2O4. The industrial trial results showed that adding 0.5 wt‰ CCS to sintering feed did not have adverse effects on the properties of the sintered ore and the plant's operating stability. The tumbler index of sinter was above 78% and the leaching concentrations of TCr (0.069 mg/L) was significantly lower than the Chinese National Standard of 1.0 mg/L (GB5085.3-2007). The TCr contents of sintering dust and blast furnace gas (BFG) scrubbing water were less than 0.19 wt‰ and 0.11 mg/L, respectively, which was far below the regulatory limit (1.5 mg/L, GB13456-2012). The mass balance evaluation results indicated that at least 89.9% of the Cr in the CCS migrated into the molten iron in the blast furnace (BF), which became a useful supplement to the molten iron. This study provided a new perspective strategy for the safe disposal and resource utilization of CCS in iron and steel industry.


Subject(s)
Chromium , Sewage , Chromium/chemistry , Sewage/chemistry , Iron/chemistry
19.
Chemosphere ; 358: 142158, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697561

ABSTRACT

A novel dual Photo-Fenton photocatalyst Fe2O3-Fe-CN with excellent Fe(III)/Fe(II) conversion efficiency and trace metal ion leaching rate has been fabricated by in-situ deposition of α-Fe2O3 quantum dots on ultrathin porous Fe-doped carbon nitride (Fe-CN) nanosheets. The iron species in Fe-CN and α-Fe2O3 QDs constitute a mutually reinforcing dual Photo-Fenton effect. The 4% Fe2O3-Fe-CN showed superior performance with kobs values 8.60 and 4.80 folders greater than pure CN and Fe-CN, respectively. The synergistic effect between α-Fe2O3 QDs and the ultrathin porous structure of Fe-CN is the primary reason for the outstanding catalytic performance exhibited by α-Fe2O3/Fe-CN. On one hand, the ultrathin porous structure of Fe-CN promotes the rapid transfer of photogenerated electrons. On the other hand, the efficient photogenerated charge separation at the α-Fe2O3/Fe-CN interface enables more photogenerated electrons to participate in the Fe3+/Fe2+ conversion and H2O2 activation. The trapping experiments demonstrate that •OH and •O2- are the primary active species in TC degradation. This work presents novel insights into the design of efficient heterogeneous Fenton catalysts for practical applications.


Subject(s)
Ferric Compounds , Hydrogen Peroxide , Iron , Quantum Dots , Catalysis , Ferric Compounds/chemistry , Iron/chemistry , Hydrogen Peroxide/chemistry , Quantum Dots/chemistry , Photochemical Processes , Nitriles/chemistry , Porosity , Graphite , Nitrogen Compounds
20.
Chemosphere ; 358: 142083, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701859

ABSTRACT

Dissolve organic matters (DOM) usually showed negative effect on the removal of inorganic arsenic (As) in groundwater by electrochemical approaches, yet which parts of sub-component within DOM played the role was lack of evidence. Herein, we investigated the effects of land-source humic-like acid (HA) on groundwater As(III) removal using air cathode iron electrocoagulation, based on the parallel factor analysis of three-dimensional excitation-emission matrix and statistical methods. Our results showed that the land-source HA contained five kinds of components and all components presented significantly negative correlations with the removal of both As(III) and As(V). However, the high aromatic fulvic-like acid and low aromatic humic-like acid components of land-source HA presented the opposite correlations with the concentration of As(III) during the reaction. The high aromaticity fulvic-like components of land-source HA (Sigma-Aldrich HA, SAHA) produced during the reaction facilitated the oxidation of As(III) due to its high electron transfer capacities and good solubility in wide pH range, but the low aromaticity humic-like ones worked against the oxidation of As(III). Our findings offered the novel insights for the flexible activities of DOM in electron Fenton system.


Subject(s)
Arsenites , Electrodes , Groundwater , Humic Substances , Iron , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Iron/chemistry , Humic Substances/analysis , Arsenites/chemistry , Oxidation-Reduction , Electrocoagulation/methods , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...