Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.640
Filter
1.
J Environ Sci (China) ; 149: 394-405, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181652

ABSTRACT

Heterogeneous crystallization is a common occurrence during the formation of solid wastes. It leads to the encapsulation of valuable/hazardous metals within the primary phase, presenting significant challenges for waste treatment and metal recovery. Herein, we proposed a novel method involving the in-situ formation of a competitive substrate during the precipitation of jarosite waste, which is an essential process for removing iron in zinc hydrometallurgy. We observed that the in-situ-formed competitive substrate effectively inhibits the heterogeneous crystallization of jarosite on the surface of anglesite, a lead-rich phase present in the jarosite waste. As a result, the iron content on the anglesite surface decreases from 34.8% to 1.65%. The competitive substrate was identified as schwertmannite, characterized by its loose structure and large surface area. Furthermore, we have elucidated a novel mechanism underlying this inhibition of heterogeneous crystallization, which involves the local supersaturation of jarosite caused by the release of ferric and sulfate ions from the competitive substrate. The local supersaturation promotes the preferential heterogeneous crystallization of jarosite on the competitive substrate. Interestingly, during the formation of jarosite, the competitive substrate gradually vanished through a dissolution-recrystallization process following the Ostwald rule, where a metastable phase slowly transitions to a stable phase. This effectively precluded the introduction of impurities and reduced waste volume. The goal of this study is to provide fresh insights into the mechanism of heterogeneous crystallization control, and to offer practical crystallization strategies conducive to metal separation and recovery from solid waste in industries.


Subject(s)
Crystallization , Ferric Compounds , Ferric Compounds/chemistry , Sulfates/chemistry , Iron Compounds/chemistry , Iron/chemistry , Refuse Disposal/methods
2.
J Environ Sci (China) ; 147: 714-725, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003084

ABSTRACT

In this study, an efficient stabilizer material for cadmium (Cd2+) treatment was successfully prepared by simply co-milling olivine with magnesite. Several analytical methods including XRD, TEM, SEM and FTIR, combined with theoretical calculations (DFT), were used to investigate mechanochemical interfacial reaction between two minerals, and the reaction mechanism of Cd removal, with ion exchange between Cd2+ and Mg2+ as the main pathway. A fixation capacity of Cd2+ as high as 270.61 mg/g, much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite, has been obtained at optimized conditions, with a neutral pH value of the solution after treatment to allow its direct discharge. The as-proposed Mg-based stabilizer with various advantages such as cost benefits, green feature etc., will boosts the utilization efficiency of natural minerals over the elaborately prepared adsorbents.


Subject(s)
Cadmium , Iron Compounds , Magnesium Compounds , Silicates , Water Pollutants, Chemical , Cadmium/chemistry , Water Pollutants, Chemical/chemistry , Magnesium Compounds/chemistry , Silicates/chemistry , Iron Compounds/chemistry , Adsorption , Models, Chemical , Water Purification/methods
3.
J Med Chem ; 67(16): 14077-14094, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39115131

ABSTRACT

The radiohybrid (rh) concept to design targeted (and chemically identical) radiotracers for imaging or radionuclide therapy of tumors has gained momentum. For this strategy, a new bifunctional Silicon-based Fluoride Acceptor (SiFA) moiety (SiFA)SeFe was synthesized, endowed with improved hydrophilicity and high versatility of integration into rh-compounds. Preliminary radiolabeling and stability studies under different conditions were conducted using model bioconjugate peptides. Further, three somatostatin receptor 2 (sstR2)-targeted rh-compounds ((SiFA)SeFe-rhTATE1-3, TATE = (Tyr3)-octreotate) were developed. Compound (SiFA)SeFe-rhTATE3, enables labeling with 18F for PET imaging or chelation of 177Lu for therapy. The rh-compounds possess comparable receptor binding affinity and in vitro performance as good as the clinically proven gold standards. SstR2-specificity was further shown for (SiFA)SeFe-rhTATE2 using the chicken chorioallantoic membrane (CAM) model. The biodistribution of two compounds in mice showed high accumulation in tumors and excretion via the kidneys, demonstrating the clinical applicability of the (SiFA)SeFe moiety.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Receptors, Somatostatin , Animals , Humans , Mice , Cell Line, Tumor , Chorioallantoic Membrane/metabolism , Fluorides/chemistry , Fluorine Radioisotopes/chemistry , Lutetium/chemistry , Peptides/chemistry , Positron-Emission Tomography , Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Receptors, Somatostatin/metabolism , Silicon/chemistry , Tissue Distribution , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Iron Compounds/chemistry
4.
Environ Sci Technol ; 58(33): 14812-14822, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39118219

ABSTRACT

The surface photochemical activity of goethite, which occurs widely in surface soils and sediments, plays a crucial role in the environmental transformation of various pollutants and natural organic matter. This study systemically investigated the mechanism of different types of surface hydroxyl groups on goethite in generating reactive oxygen species (ROSs) and Fe(III) reduction under sunlight irradiation. Surface hydroxyl groups were found to induce photoreductive dissolution of Fe(III) at the goethite-water interface to produce Fe2+(aq), while promoting the production of ROSs. Substitution of the surface hydroxyl groups on goethite by fluoride significantly inhibited the photochemical activity of goethite, demonstrating their important role in photochemical activation of goethite. The results showed that the surface hydroxyl groups (especially the terminating hydroxyl groups, ≡FeOH) led to the formation of Fe(III)-hydroxyl complexes via ligand-metal charge transfer on the goethite surface upon photoexcitation, facilitating the production of Fe2+(aq) and •OH. The bridging hydroxyl groups (≡Fe2OH) were shown to mainly catalyze the production of H2O2, leading to the subsequent light-driven Fenton reaction to produce •OH. These findings provide important insights into the activation of molecular oxygen on the goethite surface driven by sunlight in the environment, and the corresponding degradation of anthropogenic and natural organic compounds caused by the generated ROSs.


Subject(s)
Reactive Oxygen Species , Reactive Oxygen Species/chemistry , Oxidation-Reduction , Ferric Compounds/chemistry , Iron Compounds/chemistry , Iron/chemistry , Minerals/chemistry , Hydroxyl Radical/chemistry , Photochemical Processes
5.
Water Res ; 264: 122194, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39121821

ABSTRACT

Estimating the availability of phosphorus in soils and sediments is complicated by the diverse mineralogical properties of iron (hydr)oxides that control the environmental fate of phosphorus. Despite various surface complexation models have been developed, lack of generic phosphate affinity constants (logKPO4s) for iron (hydr)oxides hinders the prediction of phosphate adsorption to iron (hydr)oxides in nature. The aim of this work is to derive generic logKPO4s for the Charge Distribution-Multisite Complexation extended-Stern-Gouy-Chapman (CD-MUSIC-eSGC) model using a large phosphate adsorption database and previously derived generic protonation parameters. The optimized logKPO4s of goethite, hematite and ferrihydrite are located in a much narrower range than those in the RES3T database. Specifically, the logKPO4 ranges of FeOPO3, FeOPO2OH, FeOPO(OH)2, (FeO)2PO2, and (FeO)2POOH complexes were 17.40-18.00, 24.20-27.40, 27.90-29.80, 26.50-29.60, and 30.70-33.40, respectively. A simplified CD-MUSIC-eSGC model with species FeOPO2OH and (FeO)2PO2 and generic logKPO4 values 26.0 ± 0.9 and 27.9 ± 0.8, respectively, provides an accurate prediction of phosphate adsorption and dominant speciation to the iron (hydr)oxides at environmental pH and phosphate levels. For ferrihydrite at low pH and high phosphate levels the species FeOPO(OH)2 and (FeO)2POOH cannot be neglected. The simplified model expands the application boundaries of CD-MUSIC-eSGC model in predicting the phosphate adsorption on natural iron (hydr)oxides without laborious characterization.


Subject(s)
Ferric Compounds , Phosphates , Adsorption , Phosphates/chemistry , Ferric Compounds/chemistry , Iron Compounds/chemistry
6.
Mar Environ Res ; 201: 106708, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39208767

ABSTRACT

Ocean alkalinity enhancement is considered as an effective atmospheric CO2 removal approach, but currently, little is known about the carbon sequestration potential of implementing olivine addition in offshore waters. We investigated the effect of olivine addition on the seawater carbonate system by carrying out a deck incubation experiment in the Northern Yellow Sea; the dissolution rate of olivine was calculated based on the increase in seawater alkalinity (TA), and the CO2 sequestration potential was evaluated. The results showed that the dissolution of olivine increased seawater TA and decreased partial pressure of CO2, resulting in oceanic CO2 uptake from the atmosphere through sea-air exchange; it also increased seawater pH and mitigated ocean acidification to a certain extent. The addition of 1 ‰ olivine had a more significant effect on the seawater carbonate system than 0.5 ‰ olivine addition. The average dissolution rate constant of olivine was 1.44 ± 0.15 µmol m-2 d-1. Assuming that olivine settles completely on the seabed due to gravity, the theoretically maximum amount of CO2 removed by applying 1 tonne of olivine per square meter area in the Northern Yellow Sea is only 2.0 × 10-4 t/m2. Therefore, when olivine addition is implemented in the offshore waters, it is necessary to consider reducing the olivine size, prolonging the settling time of olivine in the water column; and spreading olivine in well-mixed waters to prolong the residence time through repeated resuspension, thus increasing its potential in carbon sequestration.


Subject(s)
Carbon Dioxide , Carbon Sequestration , Iron Compounds , Magnesium Compounds , Seawater , Silicates , Carbon Dioxide/analysis , Seawater/chemistry , Silicates/chemistry , Magnesium Compounds/chemistry , Iron Compounds/chemistry , Ships , Hydrogen-Ion Concentration , Carbonates/chemistry
7.
Chemosphere ; 362: 142764, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969220

ABSTRACT

Microbially mediated Fe(II) oxidation has a great potential for attenuating arsenic (As) mobility in an anoxic groundwaters. Green rust (GR), a common Fe(II)-bearing phase in such environments, could be easily oxidized into Fe (oxyhydr)oxides through microbial activity. This study focused on Acidovorax sp. strain BoFeN1, an anaerobic nitrate-reducing Fe(II)-oxidizing (NRFO) bacterium, to promote the transformation of GR. In biotic GR transformation experiments, magnetite formation occurred at [As]ini = 5 mg/L while lepidocrocite and goethite were formed at [As]ini = 10 mg/L. In the absence of bacterium, the GR persisted throughout the 120-h experiment. Meanwhile, with the addition of strain BoFeN1, the final aqueous As concentration significantly decreased from 0.237 to 0.004 mg/L (C0 = 5 mg/L) and from 1.457 to 0.096 mg/L (C0 = 10 mg/L) at 120 h. It was indicated that strain BoFeN1 played a crucial role in promoting the GR transformation and enhancing As immobilization. Further investigations revealed that the role of strain BoFeN1 extended beyond Fe-oxidation. With nitrite (the intermediate of nitrate bioreduction) as oxidizer, lepidocrocite/goethite were formed in the chemical-oxidation system, excluding magnetite. In the Bio - [As]ini = 5 mg/L, the occurrence of lepidocrocite via the bio-oxidation of Fe(II) in GR at 24 h, along with the metabolism of strain BoFeN1 reducing nitrate accompanied with H+ consumption, it should be reasonably deduced that the alkaline micro-environment of periplasm induced by strain BoFeN1 were vital for the transformation of lepidocrocite to magnetite triggered by trace Fe(II). However, in the Bio - [As]ini = 10 mg/L, more As adsorbed on GR inhibiting the adsorption of bacterium, so the alkaline micro-environment had no obvious effect on such transformation. This study helps to understand the interdependence between GR and anaerobic NRFO bacterium, and provides a new perspective for more effective As remediation strategies in anoxic groundwaters.


Subject(s)
Arsenic , Comamonadaceae , Oxidation-Reduction , Comamonadaceae/metabolism , Arsenic/metabolism , Water Pollutants, Chemical/metabolism , Groundwater/microbiology , Groundwater/chemistry , Biodegradation, Environmental , Iron Compounds/metabolism , Iron Compounds/chemistry , Minerals/metabolism , Minerals/chemistry , Nitrates/metabolism
8.
Environ Sci Technol ; 58(31): 13866-13878, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39037862

ABSTRACT

Perfluorooctanesulfonate (PFOS), a toxic anionic perfluorinated surfactant, exhibits variable electrostatic adsorption mechanisms on charge-regulated minerals depending on solution hydrochemistry. This work explores the interplay of multicomponent interactions and surface charge effects on PFOS adsorption to goethite surfaces under flow-through conditions. We conducted a series of column experiments in saturated goethite-coated porous media subjected to dynamic hydrochemical conditions triggered by step changes in the electrolyte concentration of the injected solutions. Measurements of pH and PFOS breakthrough curves at the outlet allowed tracking the propagation of multicomponent reactive fronts. We performed process-based reactive transport simulations incorporating a mechanistic network of surface complexation reactions to quantitatively interpret the geochemical processes. The experimental and modeling outcomes reveal that the coupled spatio-temporal evolution of pH and electrolyte fronts, driven by the electrostatic properties of the mineral, exerts a key control on PFOS mobility by determining its adsorption and speciation reactions on goethite surfaces. These results illuminate the important influence of multicomponent transport processes and surface charge effects on PFOS mobility, emphasizing the need for mechanistic adsorption models in reactive transport simulations of ionizable PFAS compounds to determine their environmental fate and to perform accurate risk assessment.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Iron Compounds , Minerals , Alkanesulfonic Acids/chemistry , Fluorocarbons/chemistry , Surface Properties , Porosity , Iron Compounds/chemistry , Minerals/chemistry , Hydrogen-Ion Concentration , Calibration , Adsorption
9.
Water Res ; 261: 121988, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38986281

ABSTRACT

Manganese oxides reduce arsenic (As) toxicity by promoting aqueous-phase As(III) oxidation and immobilization in natural aquatic ecosystems. In anaerobic water-sediment systems, arsenic exists both in a free state in the liquid phase and in an adsorbed state on iron (Fe) minerals. However, the influence of different manganese oxides on the fate of As in this system remains unclear. Therefore, in this study, we constructed an anaerobic microbial As(V) reduction environment and investigated the effects of three different manganese oxides on the fate of both aqueous-phase and goethite-adsorbed As under different pH conditions. The results showed that δ-MnO2 had a superior As(III) oxidation ability in both aqueous and solid phase due not only to the higher SSA, but also to its wrinkled crystalline morphology, less favorable structure for bacterial reduction, structure conducive to ion exchange, and less interference caused by the formation of secondary Fe-minerals compared to α-MnO2 and γ-MnO2. Regarding aqueous-phase As, δ-MnO2, α-MnO2, and γ-MnO2 required an alkaline condition (pH 9) to exhibit their strongest As(III) oxidation and immobilization capability. For goethite-adsorbed As, under microbial-reducing conditions, all manganese oxides had the highest As immobilization effect in neutral pH environments and the strongest As oxidation effect in alkaline environments. This was because at pH 7, Fe(II) and Mn(II) formed hydrated complexes, which was more favorable for As adsorption. At pH 9, the negatively charged state of goethite hindered As adsorption but promoted the adsorption and oxidation of As by the manganese oxides. Our research offers new insights for optimizing As removal from water using various manganese oxides and for controlling the mobilization of As in water-sediment system under different pH conditions.


Subject(s)
Arsenic , Iron Compounds , Manganese Compounds , Minerals , Oxidation-Reduction , Oxides , Oxides/chemistry , Manganese Compounds/chemistry , Hydrogen-Ion Concentration , Arsenic/chemistry , Arsenic/metabolism , Minerals/chemistry , Iron Compounds/chemistry , Arsenates/chemistry , Adsorption , Water Pollutants, Chemical/chemistry
10.
J Contam Hydrol ; 266: 104400, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39024912

ABSTRACT

Sorption of Pu(VI) onto synthesized goethite under oxidizing and normal conditions was investigated, which revealed its pH dependence on different solid/liquid ratios. Pu speciation upon sorption on the solid phase was characterized via extended X-ray absorption fine structure (EXAFS) spectroscopy, while that in solution was assessed using ultraviolet-visible (UV-Vis) spectroscopy and liquid-liquid extraction. The obtained results demonstrate differences in plutonium behavior in the studied systems. Pu(VI) remains hexavalent on the goethite surface and in solution under oxidizing conditions. While Pu(IV) is stabilized on the mineral and Pu(V) is found in solution under normal conditions. This study provides the thermodynamic descriptions of these reactions.


Subject(s)
Oxidation-Reduction , Plutonium , Plutonium/chemistry , Adsorption , Minerals/chemistry , Iron Compounds/chemistry , Hydrogen-Ion Concentration , X-Ray Absorption Spectroscopy , Thermodynamics
11.
Water Res ; 262: 122051, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39024668

ABSTRACT

Serious arsenic (As) contaminations could commonly result from the oxidative dissolution of As-containing sulfide minerals, such as arsenopyrite (FeAsS). Pyrite (Py) and calcite (Cal) are two typically co-existing reactive minerals and represent different geological scenarios. Previous studies have shown that a high proportion of Py can generate a stronger galvanic effect and acid dissolution, thereby significantly promoting the release of arsenic. However, this conclusion overlooks calcite's antagonistic effect on the release of As in the natural environment. That antagonistic effect could remodel the linear relationship of pyrite on the oxidative dissolution of arsenopyrite, thus altering the environmental risk of As. We examined As release from arsenopyrite along a gradient of Py to Cal molar ratios (Py:Cal). The results showed that the lowest As release from arsenopyrite was surprisingly found in co-existing Py and Cal systems than in the singular Cal system, let alone in the singular Py system. This phenomenon indicated an interesting possibility of Py assistance to Cal inhibition of As release, though Py has always been regarded as a booster, also evidenced in this research, for As release from arsenopyrite. In singular systems of Py and Cal, As continued to be released for 60 days. However, in co-existing Py and Cal systems, As was released non-linearly in three stages over time: initial release (0-1 Day), immobilization (1-15 Days), and subsequent re-release (>15 Days). This is a new short-term natural attenuation stage for As, but over time, this stage gradually collapses. During the re-release stage (> 15 Days), a higher molar ratio of Py:Cal (increasing from 1:9 to 9:1) results in a lower rate constant k (mg·L-1·h-1) of As release (range from 0.0011 to 0.0002), and a higher abundance of secondary minerals formed (up to 26 mg/g goethite and hematite at Py: Cal=9:1). This demonstrates that increasing the Py:Cal molar ratio results in the formation of more secondary minerals which compensate for the higher potential antagonistic mechanisms generated by pyrites, such as acid dissolution and galvanic effect. These results explain the mechanisms of the high-risk characteristics of As both in acidic mine drainage and karst aquifers and discover the lowest risk in pyrite and calcite co-existing regions. Moreover, we emphasize that reactive minerals are important variables that can't be ignored in predicting As pollution in the future.


Subject(s)
Arsenic , Arsenicals , Calcium Carbonate , Iron Compounds , Iron , Minerals , Sulfides , Minerals/chemistry , Sulfides/chemistry , Iron Compounds/chemistry , Arsenicals/chemistry , Calcium Carbonate/chemistry , Iron/chemistry , Solubility , Water Pollutants, Chemical/chemistry , Oxidation-Reduction
12.
Bioresour Technol ; 408: 131104, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029765

ABSTRACT

The high efficiency, economy, sustainability and no secondary pollution of U(VI) removal is an important and challenging topic for U(VI) wastewater treatment. Here, the regenerable biohybrids with xanthan gum (XG) stabilized biogenic mackinawite nanoparticles (BX-FeS) were prepared, where XG acted as carrier facilitated the Fe2+ attachment and induced the low size, high stability and activity of nearly spherical FeS nanoparticles. Results showed that BX-FeS kept high activity after storing two years and good performance for U(VI) removal in broad pH range and co-existence of ions, and had greater removal efficiency (97.9 %) than biogenic B-FeS (67.1 %). Moreover, BX-FeS preformed high adsorption capacity in uranium wastewater (658.0 mg/g), and lower cost compared with zerovalent-iron and silica gel. Importantly, BX-FeS maintained high activity within three regeneration cycles driven by Desulfovibrio desulfuricans, inhibited the secondary pollution (Fe3+, SO42-) of reaction. This study provides a new strategy for sustainable and efficient treatment of U(VI) wastewater.


Subject(s)
Nanoparticles , Polysaccharides, Bacterial , Uranium , Wastewater , Water Purification , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Wastewater/chemistry , Water Purification/methods , Nanoparticles/chemistry , Green Chemistry Technology/methods , Adsorption , Hydrogen-Ion Concentration , Water Pollutants, Radioactive , Iron Compounds/chemistry , Biodegradation, Environmental , Ferrous Compounds
13.
Chemosphere ; 363: 142766, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969214

ABSTRACT

The adsorption of heavy metals on iron oxides generally increases with pH and is almost complete at neutral to slightly alkaline pH. However, almost complete adsorption on a linear scale does not imply sufficient removal of the heavy metals in terms of their toxicity. Here, we elucidated the chemical reactions that determine the solid-liquid partitioning of Pb(II) and Cd(II) on goethite at high pH. While the removal of both heavy metals was almost complete on a linear scale above pH 7 for Pb(II) and pH 9 for Cd(II), the dissolved metal concentrations decreased on a logarithmic scale with pH, reaching minima at around pH 10 for Pb(II) and pH 10-11 for Cd(II), and then they increased with pH thereafter. The XAFS spectra of Pb(II)- or Cd(II)-adsorbed goethite prepared at pH > 11 were almost the same as those at neutral pH, suggesting that removal of the heavy metals from solution was achieved by a single adsorption reaction over the entire pH range. Based on the observed macroscopic and microscopic adsorption behaviors at high pH, a robust surface complexation model was developed to predict the solid-liquid partitioning of divalent heavy metals over the entire pH range.


Subject(s)
Cadmium , Iron Compounds , Lead , Metals, Heavy , Minerals , X-Ray Absorption Spectroscopy , Lead/chemistry , Cadmium/chemistry , Cadmium/analysis , Hydrogen-Ion Concentration , Adsorption , Iron Compounds/chemistry , Metals, Heavy/chemistry , Metals, Heavy/analysis , Minerals/chemistry , Models, Chemical
14.
Chemosphere ; 363: 142913, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053775

ABSTRACT

The abiotic oxidation of As(III) is simultaneously mediated by the oxidation of Fe(II) in microaerobic environment, but the role of Fe minerals in the Fe(II)-mediated As(III) oxidation have been neglected. This work mimicked the microaerobic environment and examined the mechanisms of Fe(II) mediated the As(III) oxidation in the presence of Fe minerals using a variety of iron minerals (lepidocrocite, goethite, etc.). The results indicated the Fe(II) and As(III) oxidation rate were improved with Fe minerals, while As(III) oxidation efficiency increased by 1.3-1.8 times in comparison to that without minerals. Fe(II) mediated the As(III) oxidation happened on Fe minerals surface in the presence of Fe minerals. The As(III) oxidation efficiency increased with increasing Fe mineral concentrations (from 0.5 to 2 g L-1) but decreased with increasing pH values. Reactive oxygen species (ROS) that play a crucial role in As(III) oxidation were Fe(IV) and ·O2-, accounting for 42.7%-47.9% and 24.1%-29.8%, respectively. The Fe minerals facilitated the oxidation of As(III) by ROS and stimulated the release of ROS through the adsorbed-Fe(II) oxidation, both of which favored As(III) oxidation. This work highlighted the potential mechanisms of Fe minerals in promoting Fe(II) mediated the As(III) oxidation in microaerobic environment, especially in terms of As(III) oxidation efficiency, shedding a valuable insight on optimization of arsenic contaminated wastewater treatment processes.


Subject(s)
Iron , Minerals , Oxidation-Reduction , Minerals/chemistry , Iron/chemistry , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/chemistry , Arsenic/chemistry , Iron Compounds/chemistry , Adsorption , Ferrous Compounds/chemistry
15.
J Hazard Mater ; 477: 135257, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39047557

ABSTRACT

Fate and transport of nanoplastics in aquatic environments are affected by their heteroaggregation with minerals in the presence of macromolecules. This study investigated the heteroaggregation of polystyrene nanoplastics (PSNPs) with goethite nanoparticles (GNPs) under the influence of macromolecules [humic acid (HA), bovine serum albumin (BSA), and DNA] and electrolytes. Under 1 mg C/L macromolecule, raising electrolyte concentration promoted heteroaggregation via charge screening, except that calcium bridging with HA also enhanced heteroaggregation at CaCl2 concentration above 5 mM. At all NaCl concentrations and CaCl2 concentration below 5 mM, 1 mg C/L macromolecules strongly retarded heteroaggregation, ranking BSA > DNA > HA. Raising macromolecule concentration strengthened such stabilization effect of all macromolecules in NaCl solution and that of DNA and BSA in CaCl2 solution by enhancing steric hindrance. However, 0.1 mg C/L BSA slightly promoted heteroaggregation in CaCl2 solution due to stronger electrostatic attraction than steric hindrance. In CaCl2 solution, raising HA concentration strengthened its destabilization effect via calcium bridging. Macromolecules having more compact globular structure and higher molecular weight may exert greater steric hindrance to inhibit heteroaggregation more effectively. This study provides new insights on the effects of macromolecules and electrolytes on heteroaggregation between nanoplastics and iron minerals in aquatic environments.


Subject(s)
Electrolytes , Iron Compounds , Minerals , Nanoparticles , Polystyrenes , Water Pollutants, Chemical , Polystyrenes/chemistry , Minerals/chemistry , Electrolytes/chemistry , Iron Compounds/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , DNA/chemistry , DNA/drug effects , Serum Albumin, Bovine/chemistry , Calcium Chloride/chemistry
16.
Environ Res ; 260: 119660, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39048066

ABSTRACT

The knowledge about co-transport of goethite and As3+ to investigate the effect of goethite colloids on As3+ transport under various degrees of seawater intrusion, particular extremely conditions, in groundwater environment is still limited. The main objective is to investigate the influence of seawater intrusion on the sorption, migration, and reaction of As3+and goethite colloids into sand aquifer media under anoxic conditions by using the bench-scale and reactive geochemical modeling. The research consisted of two parts as follows: 1) column transport experiments consisting of 8 columns, which were packed by using synthesis groundwater at IS of 0.5, 50, 200, and 400 mM referring to the saline of seawater system in the study area, and 2) reactive transport modeling, the mathematical model (HYDRUS-1D) was applied to describe the co-transport of As3+ and goethite. Finally, to explain the interaction of goethite and As3+, the Derjaguin-Landau-Verwey-Overbeek (DLVO) calculation was considered to support the experimental results and HYDRUS-1D model. The results of column experiments showed goethite colloids can significantly inhibit the mobility of As3+ under high IS conditions (>200 mM). The Rf of As3+ bound to goethite grows to higher sizes (47.5 and 65.0 µm for 200 and 400 mM, respectively) of goethite colloid, inhibiting As3+ migration through the sand columns. In contrast, based on Rf value, goethite colloids transport As3+ more rapidly than a solution with a lower IS (0.5 and 50 mM). The knowledge gained from this study would help to better understand the mechanisms of As3+ contamination in urbanized coastal groundwater aquifers and to assess the transport of As3+ in groundwater, which is useful for groundwater management, including the optimum pumping rate and long-term monitoring of groundwater quality.


Subject(s)
Arsenites , Colloids , Iron Compounds , Minerals , Iron Compounds/chemistry , Colloids/chemistry , Minerals/chemistry , Osmolar Concentration , Arsenites/chemistry , Arsenites/analysis , Groundwater/chemistry , Sand/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Models, Chemical , Models, Theoretical , Seawater/chemistry
17.
Environ Sci Technol ; 58(28): 12664-12673, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38953777

ABSTRACT

Investigating the fate of persistent organic pollutants in water distribution systems (WDSs) is of great significance for preventing human health risks. The role of iron corrosion scales in the migration and transformation of organics in such systems remains unclear. Herein, we determined that hydroxyl (•OH), chlorine, and chlorine oxide radicals are generated by Fenton-like reactions due to the coexistence of oxygen vacancy-related Fe(II) on goethite (a major constituent of iron corrosion scales) and hypochlorous acid (HClO, the main reactive chlorine species of residual chlorine at pH ∼ 7.0). •OH contributed mostly to the decomposition of atrazine (ATZ, model compound) more than other radicals, producing a series of relatively low-toxicity small molecular intermediates. A simplified kinetic model consisting of mass transfer of ATZ and HClO, •OH generation, and ATZ oxidation by •OH on the goethite surface was developed to simulate iron corrosion scale-triggered residual chlorine oxidation of organic compounds in a WDS. The model was validated by comparing the fitting results to the experimental data. Moreover, the model was comprehensively applicable to cases in which various inorganic ions (Ca2+, Na+, HCO3-, and SO42-) and natural organic matter were present. With further optimization, the model may be employed to predict the migration and accumulation of persistent organic pollutants under real environmental conditions in the WDSs.


Subject(s)
Water Pollutants, Chemical , Kinetics , Free Radicals/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Iron/chemistry , Iron Compounds/chemistry , Minerals/chemistry
18.
Chemosphere ; 362: 142602, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871190

ABSTRACT

In urbanized areas, extracellular DNA (exDNA) is suspected of carrying genes with undesirable traits like virulence genes (VGs) or antibiotic resistance genes (ARGs), which can spread through horizontal gene transfer (HGT). Hence, it is crucial to develop novel approaches for the mitigation of exDNA in the environment. Our research explores the role of goethite, a common iron mineral with high adsorption capabilities, in exDNA adsorption processes. We compare well-crystalline, semi-crystalline, and nano goethites with varying particle sizes to achieve various specific surface areas (SSAs) (18.7-161.6 m2/g) and porosities. We conducted batch adsorption experiments using DNA molecules of varying chain lengths (DNA sizes: <11 Kb, <6 Kb, and <3 Kb) and assessed the impact of Ca2+ and biomacromolecules on the adsorption efficacy and mechanisms. Results show that porosity and pore structure significantly influence DNA adsorption capacity. Goethite with well-developed meso- and macroporosity demonstrated enhanced DNA adsorption. The accumulation of DNA on the goethite interface led to substantial aggregation in the system, thus the formation of DNA-goethite conjugates, indicating the bridging between mineral particles. DNA chain length, the presence of Ca2+, and the biomacromolecule matrix also affected the adsorption capacity and mechanism. Interactions between DNA and positively charged biomacromolecules or Ca2+ led to DNA compaction, allowing greater DNA accumulation in pores. However, a high concentration of biomacromolecules led to the saturation of the goethite surface, inhibiting DNA adsorption. AFM imaging of goethite particles after adsorption suggested the formation of the DNA multilayer. The study advances understanding of the environmental behavior of exDNA and its interaction with iron oxyhydroxides, offering insights into developing more effective methods for ARGs removal in wastewater treatment plants. By manipulating the textural properties of goethite, it's possible to enhance exDNA removal, potentially reducing the spread of biocontamination in urban and industrial environments.


Subject(s)
DNA , Iron Compounds , Minerals , Iron Compounds/chemistry , Adsorption , Minerals/chemistry , DNA/chemistry , Porosity , Particle Size
19.
J Hazard Mater ; 476: 134988, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38908178

ABSTRACT

Biochar-derived dissolved organic matter (BDOM), is extensively involved in the recrystallization of minerals and the speciation alteration of associated toxic metals. This study investigates how BDOM extracted from tobacco petiole (TP) or tobacco stalk (TS) biochar influences the speciation repartitioning of Cr(VI) in environments impacted by acid mine drainage (AMD), focusing on interactions with secondary minerals during Schwertmannite (Sch) dissolution and recrystallization. TP-BDOM, rich in lignin-like substances, slowed down the Cr-Sch dissolution and Cr release under acidic conditions compared to TS-BDOM. TP-BDOM's higher O/C component exerts a delayed impact on Cr-Sch stability and Cr(VI) reduction. In-situ ATR-FTIR and 2D-COS analysis showed that carboxylic and aromatic N-OH groups in BDOM could interact with Cr-Sch surfaces, affecting sulfate and Cr(VI) release. It was also observed that slight recrystallization occurred from Cr-Sch to goethite, along with increased Cr incorporation into secondary minerals within TS-BDOM. This enhances our understanding of BDOM's role in Cr(VI) speciation changes in AMD-contaminated sites.


Subject(s)
Charcoal , Crystallization , Iron Compounds , Charcoal/chemistry , Iron Compounds/chemistry , Chromates/chemistry , Nicotiana/chemistry , Solubility , Minerals/chemistry , Mining , Water Pollutants, Chemical/chemistry , Chromium/chemistry
20.
Environ Res ; 257: 119392, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38857857

ABSTRACT

Iron (Fe) and manganese (Mn) oxides can be used to remediate Cd-polluted soils due to their excellent performance in heavy metal adsorption. However, their remediation capability is rather limited, and a higher content of available Mn and Fe in soils can reduce Cd accumulation in wheat plants due to the competitive absorption effect. In this study, goethite and cryptomelane were first respectively used to immobilize Cd in Cd-polluted weakly alkaline soils, and sodium citrate was then added to increase the content of available Mn and Fe content for further reduction of wheat Cd absorption. In the first season, the content of soil-available Cd and Cd in wheat plants significantly decreased when cryptomelane, goethite and their mixture were used as the remediation agents. Cryptomelane showed a better remediation effect, which could be attributed to its higher adsorption performance. The grain Cd content could be decreased from 0.35 mg kg-1 to 0.25 mg kg-1 when the content of cryptomelane was controlled at 0.5%. In the second season, when sodium citrate at 20 mmol kg-1 was further added to the soils with 0.5% cryptomelane treatment in the first season, the content of soil available Cd was increased by 14.8%, and the available Mn content was increased by 19.5%, leading to a lower Cd content in wheat grains (0.16 mg kg-1) probably due to the competitive absorption. This work provides a new strategy for the remediation of slightly Cd-polluted arable soils with safe and high-quality production of wheat.


Subject(s)
Cadmium , Manganese Compounds , Oxides , Soil Pollutants , Triticum , Triticum/metabolism , Triticum/chemistry , Cadmium/metabolism , Cadmium/analysis , Soil Pollutants/metabolism , Soil Pollutants/analysis , Manganese Compounds/chemistry , Manganese Compounds/metabolism , Oxides/chemistry , Environmental Restoration and Remediation/methods , Soil/chemistry , Citric Acid/metabolism , Adsorption , Minerals/metabolism , Minerals/chemistry , Iron Compounds/metabolism , Iron Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL