Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Lett ; 220: 71-78, 2020 04.
Article in English | MEDLINE | ID: mdl-32027873

ABSTRACT

BACKGROUND: Human proteins such as interleukin-24 (IL24), thyroperoxidase (TPO) and thyroglobulin (Tg) are targets of IgE or IgG autoantibodies. Why these proteins are recognized by autoantibodies in some patients with chronic spontaneous urticaria (CSU) or hypothyroidism is unknown. OBJECTIVE: Through in silico analysis, identify antigen patches of TPO, Tg and IL24 and compare the sequences of these human proteins with some prevalent allergens. METHODS: The amino acids sequences of IL24, thyroperoxidase and thyroglobulin were compared between them and with 22 environmental allergens. Phylogenetic studies and multiple pairing were carried out to explore the degree of protein identity and cover. The proteins without 3D structure reported in the database, were modeled by homology with "Swiss Modeller" and compared through PYMOL. Residues conserved and accessible to the solvent (rASA> 0.25) were located in the 3D model to identify possible areas of cross-reactivity and antigen binding. RESULTS: We build a 3D model of the TPO and thyroglobulin protein base on proteins closely related. Five epitopes for TPO, six for IL24 and six for thyroglobulin were predicted. The amino acid sequences of allergens from different sources (Dermatophagoides pteronyssinus, Blomia tropicalis, Betula verrucosa, Cynodon dactylon, Aspergillus fumigatus, Canis domesticus, Felis domesticus) were compared with human TPO, Tg and IL24. The cover and alignments between allergens and human proteins were low. CONCLUSION: We identify possible linear and conformational epitopes of TPO, Tg and IL24 that could be the target of IgE or IgG binding in patients with urticaria or hypothyroidism; These epitopes do not appear to be present among common environmental allergens, suggesting that autoreactivity to these human proteins are not by cross-reactivity.


Subject(s)
Allergens/immunology , Autoantigens/immunology , Chronic Urticaria/immunology , Epitopes/immunology , Hypothyroidism/immunology , Interleukins/immunology , Iodide Peroxidase/immunology , Iron-Binding Proteins/immunology , Thyroglobulin/immunology , Animals , Aspergillus fumigatus/immunology , Autoantibodies/immunology , Autoantigens/chemistry , Autoantigens/classification , Cats , Cross Reactions , Dogs , Epitope Mapping , Epitopes/chemistry , Epitopes/classification , Humans , Interleukins/chemistry , Interleukins/classification , Iodide Peroxidase/chemistry , Iodide Peroxidase/classification , Iron-Binding Proteins/chemistry , Iron-Binding Proteins/classification , Models, Chemical , Phylogeny , Thyroglobulin/chemistry , Thyroglobulin/classification
2.
J Inorg Biochem ; 170: 63-74, 2017 05.
Article in English | MEDLINE | ID: mdl-28231452

ABSTRACT

Bread wheat is one of the major staple foods of worldwide population and iron plays a significant role in growth and development of the plant. In this report, we are presenting the genome wide identification of iron-binding proteins in bread wheat. The wheat genome derived putative proteome was screened for identification of iron-binding sequence motifs. Out of 602 putative iron-binding proteins, 130 were able to produce reliable structural models by homology techniques and further analyzed for the presence of iron-binding structural motifs. The computationally identified proteins appear to bind to ferrous and ferric ions and showed diverse coordination geometries. Glu, His, Asp and Cys amino acid residues were found to be mostly involved in iron binding. We have classified these proteins on the basis of their localization in the different cellular compartments. The identified proteins were further classified into their protein folds, families and functional classes ranging from structure maintenance of cellular components, regulation of gene expression, post translational modification, membrane proteins, enzymes, signaling and storage proteins. This comprehensive report regarding structural iron binding proteome provides useful insights into the diversity of iron binding proteins of wheat plants and further utilized to study their roles in plant growth, development and physiology.


Subject(s)
Iron-Binding Proteins , Plant Proteins , Protein Folding , Proteome , Triticum , Iron-Binding Proteins/classification , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Plant Proteins/classification , Plant Proteins/genetics , Plant Proteins/metabolism , Proteome/genetics , Proteome/metabolism , Triticum/genetics , Triticum/metabolism
3.
Nucleic Acids Res ; 35(18): 6042-51, 2007.
Article in English | MEDLINE | ID: mdl-17766251

ABSTRACT

The Kae1 (Kinase-associated endopeptidase 1) protein is a member of the recently identified transcription complex EKC and telomeres maintenance complex KEOPS in yeast. Kae1 homologues are encoded by all sequenced genomes in the three domains of life. Although annotated as putative endopeptidases, the actual functions of these universal proteins are unknown. Here we show that the purified Kae1 protein (Pa-Kae1) from Pyrococcus abyssi is an iron-protein with a novel type of ATP-binding site. Surprisingly, this protein did not exhibit endopeptidase activity in vitro but binds cooperatively to single and double-stranded DNA and induces unusual DNA conformational change. Furthermore, Pa-Kae1 exhibits a class I apurinic (AP)-endonuclease activity (AP-lyase). Both DNA binding and AP-endonuclease activity are inhibited by ATP. Kae1 is thus a novel and atypical universal DNA interacting protein whose importance could rival those of RecA (RadA/Rad51) in the maintenance of genome integrity in all living cells.


Subject(s)
Archaeal Proteins/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , DNA-Binding Proteins/chemistry , Iron-Binding Proteins/chemistry , Pyrococcus abyssi/enzymology , Adenosine Triphosphate/metabolism , Archaeal Proteins/classification , Archaeal Proteins/metabolism , DNA/ultrastructure , DNA-(Apurinic or Apyrimidinic Site) Lyase/classification , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-Binding Proteins/classification , DNA-Binding Proteins/metabolism , Iron-Binding Proteins/classification , Iron-Binding Proteins/metabolism , Metalloendopeptidases/classification , Models, Molecular , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...