Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.595
Filter
1.
Int J Nanomedicine ; 19: 4907-4921, 2024.
Article in English | MEDLINE | ID: mdl-38828197

ABSTRACT

Purpose: Pueraria lobata (P. lobata), a dual-purpose food and medicine, displays limited efficacy in alcohol detoxification and liver protection, with previous research primarily focused on puerarin in its dried roots. In this study, we investigated the potential effects and mechanisms of fresh P. lobata root-derived exosome-like nanovesicles (P-ELNs) for mitigating alcoholic intoxication, promoting alcohol metabolism effects and protecting the liver in C57BL/6J mice. Methods: We isolated P-ELNs from fresh P. lobata root using differential centrifugation and characterized them via transmission electron microscopy, nanoscale particle sizing, ζ potential analysis, and biochemical assays. In Acute Alcoholism (AAI) mice pre-treated with P-ELNs, we evaluated their effects on the timing and duration of the loss of the righting reflex (LORR), liver alcohol metabolism enzymes activity, liver and serum alcohol content, and ferroptosis-related markers. Results: P-ELNs, enriched in proteins, lipids, and small RNAs, exhibited an ideal size (150.7 ± 82.8 nm) and negative surface charge (-31 mV). Pre-treatment with 10 mg/(kg.bw) P-ELNs in both male and female mice significantly prolonged ebriety time, shortened sobriety time, enhanced acetaldehyde dehydrogenase (ALDH) activity while concurrently inhibited alcohol dehydrogenase (ADH) activity, and reduced alcohol content in the liver and serum. Notably, P-ELNs demonstrated more efficacy compared to P-ELNs supernatant fluid (abundant puerarin content), suggesting alternative active components beyond puerarin. Additionally, P-ELNs prevented ferroptosis by inhibiting the reduction of glutathione peroxidase 4 (GPX4) and reduced glutathione (GSH), and suppressing acyl-CoA synthetase long-chain family member 4 (ACSL4) elevation, thereby mitigating pathological liver lipid accumulation. Conclusion: P-ELNs exhibit distinct exosomal characteristics and effectively alleviate alcoholic intoxication, improve alcohol metabolism, suppress ferroptosis, and protect the liver from alcoholic injury. Consequently, P-ELNs hold promise as a therapeutic agent for detoxification, sobriety promotion, and prevention of alcoholic liver injury.


Subject(s)
Alcoholic Intoxication , Exosomes , Liver , Mice, Inbred C57BL , Plant Roots , Pueraria , Animals , Pueraria/chemistry , Exosomes/metabolism , Exosomes/drug effects , Exosomes/chemistry , Mice , Male , Alcoholic Intoxication/drug therapy , Plant Roots/chemistry , Liver/drug effects , Liver/metabolism , Ethanol/chemistry , Ethanol/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alcoholism/drug therapy , Isoflavones
2.
BMC Public Health ; 24(1): 1362, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773414

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) accounts as a crucial health concern with a huge burden on health and economic systems. The aim of this study is to evaluate the effect of soy isoflavones supplementation on metabolic status in patients with NAFLD. METHODS: In this randomized clinical trial, 50 patients with NAFLD were randomly allocated to either soy isoflavone or placebo groups for 12 weeks. The soy isoflavone group took 100 mg/d soy isoflavone and the placebo group took the similar tablets containing starch. Anthropometric indices, blood lipids, glycemic parameters and blood pressure were measured at the beginning and at the end of the study. RESULTS: At the end of week 12 the level of serum triglyceride (TG), low density lipoprotein (LDL) and total cholesterol (TC) was significantly decreased only in soy isoflavone group compared to baseline (P < 0.05). Although waist circumference (WC) decreased significantly in both groups after 12 weeks of intervention (P < 0.05), hip circumference (HC) decreased significantly only in soy isoflavone group (P = 0.001). No significant changes observed regarding high density lipoprotein (HDL) and blood pressure in both groups. At the end of the study, serum glucose level was significantly decreased in the placebo group compared to baseline (P = 0.047). No significant changes demonstrated in the soy isoflavone group in regard to glycemic parameters (P > 0.05). CONCLUSIONS: This study revealed that soy isoflavones could significantly reduce TG, LDL TC, WC and HC in NAFLD patients. TRIAL REGISTRATION: The Ethics committee of Ahvaz Jundishapur University of Medical Sciences approved the protocol of the present clinical research (IR.AJUMS.REC.1401.155). The study was in accordance with the Declaration of Helsinki. This study's registered number and date are IRCT20220801055597N1 and 20.09.2022, respectively at https://fa.irct.ir .


Subject(s)
Dietary Supplements , Isoflavones , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/diet therapy , Non-alcoholic Fatty Liver Disease/metabolism , Isoflavones/pharmacology , Male , Female , Middle Aged , Adult , Glycine max/chemistry
3.
J Agric Food Chem ; 72(19): 10944-10957, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710505

ABSTRACT

Isoflavones, the major secondary metabolites of interest due to their benefits to both human and plant health, are exclusively produced by legumes. In this study, we profiled the isoflavone content in dry seeds from 211 soybean [Glycine max (L.) Merr.] accessions grown across five environments. Broad and discernible phenotypic variations were observed among accessions, regions, and years of growth. Twenty-six single-nucleotide polymorphisms (SNPs) associated with the sum of glycitein (GLE), glycitin (GL), 6″-O-acetylglycitin (AGL), and 6″-O-malonylglycitin (MGL) contents were detected in multiple environments via a genome-wide association study (GWAS). These SNPs were located on chromosome 11 (8,148,438 bp to 8,296,956 bp, renamed qGly11-01). Glyma.11g108300 (GmGLY1), a gene that encodes a P450 family protein, was identified via sequence variation analysis, functional annotation, weighted gene coexpression network analysis (WGCNA), and expression profile analysis of candidate gene, and hairy roots transformation in soybean. Overexpression of GmGLY1 increased the glycitein content (GLC) in soybean hairy roots and transgenic seeds, while CRISPR/Cas9-generated mutants exhibited decreased GLC and increased daidzein content (DAC). Haplotype analysis revealed that GmGLY1 allelic variations significantly affect the GLC accumulation. These findings enhance our understanding of genes influencing GLC in soybean and may guide breeding for lines with high and stable GLC.


Subject(s)
Genome-Wide Association Study , Glycine max , Isoflavones , Plant Proteins , Polymorphism, Single Nucleotide , Seeds , Glycine max/metabolism , Glycine max/genetics , Glycine max/chemistry , Isoflavones/metabolism , Isoflavones/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/metabolism , Seeds/genetics , Seeds/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant
4.
Eur J Pharmacol ; 975: 176636, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38729417

ABSTRACT

Endothelial cells express multiple receptors mediating estrogen responses; including the G protein-coupled estrogen receptor (GPER). Past studies on nitric oxide (NO) production elicited by estrogens raised the question whether 17-ß-estradiol (E2) and natural phytoestrogens activate equivalent mechanisms. We hypothesized that E2 and phytoestrogens elicit NO production via coupling to distinct intracellular pathways signalling. To this aim, perfusion of E2 and phytoestrogens to the precontracted rat mesentery bed examined vasorelaxation, while fluorescence microscopy on primary endothelial cells cultures quantified single cell NO production determined following 4-amino-5-methylamino-2',7'-difluoroescein diacetate (DAF) incubation. Daidzein (DAI) and genistein (GEN) induced rapid vasodilatation associated to NO production. Multiple estrogen receptor activity was inferred based on the reduction of DAF-NO signals; G-36 (GPER antagonist) reduced 75 % of all estrogen responses, while fulvestrant (selective nuclear receptor antagonist) reduced significantly more the phytoestrogens responses than E2. The joint application of both antagonists abolished the E2 response but not the phytoestrogen-induced DAF-NO signals. Wortmannin or LY-294002 (PI3K inhibitors), reduced by 90% the E2-evoked signal while altering significantly less the DAI-induced response. In contrast, H-89 (PKA inhibitor), elicited a 23% reduction of the E2-induced signal while blocking 80% of the DAI-induced response. Desmethylxestospongin-B (IP3 receptor antagonist), decreased to equal extent the E2 or the DAI-induced signal. Epidermal growth factor (EGF) induced NO production, cell treatment with AG-1478, an EGF receptor kinase inhibitor reduced 90% DAI-induced response while only 53% the E2-induced signals; highlighting GPER induced EGF receptor trans-modulation. Receptor functional selectivity may explain distinct signalling pathways mediated by E2 and phytoestrogens.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , ErbB Receptors , Estradiol , Nitric Oxide , Phosphatidylinositol 3-Kinases , Phytoestrogens , Signal Transduction , Vasodilation , Animals , Phytoestrogens/pharmacology , Estradiol/pharmacology , Nitric Oxide/metabolism , Rats , Signal Transduction/drug effects , Vasodilation/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , ErbB Receptors/metabolism , Male , Isoflavones/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Genistein/pharmacology , Receptors, Estrogen/metabolism , Rats, Wistar
5.
Biochem Biophys Res Commun ; 720: 150118, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38776757

ABSTRACT

Tectorigenin (TEC) as a plant extract has the advantage of low side effects on metabolic dysfunction-associated steatohepatitis (MASH) treatment. Our previous study have shown that tRNA-derived RNA fragments (tRFs) associated with autophagy and pyroptosis in MASH, but whether TEC can mitigate MASH through tRFs-mediated mitophagy is not fully understood. This study aims to investigate whether TEC relies on tRFs to adjust the crosstalk of hepatocyte mitophagy with pyroptosis in MASH. Immunofluorescence results of PINK1 and PRKN with MitoTracker Green-labeled mitochondria verified that TEC enhanced mitophagy. Additionally, TEC inhibited pyroptosis, as reflected by the level of GSDME, NLRP3, IL-1ß, and IL-18 decreased after TEC treatment, while the effect of pyroptosis inhibition by TEC was abrogated by Pink1 silencing. We found that the upregulation expression of tRF-3040b caused by MASH was suppressed by TEC. The promotion of mitophagy and the suppression of pyroptosis induced by TEC were abrogated by tRF-3040b mimics. TEC reduced lipid deposition, inflammation, and pyroptosis, and promoted mitophagy in mice, but tRF-3040b agomir inhibited these effects. In summary, our findings provided that TEC significantly reduced the expression of tRF-3040b to enhance mitophagy, thereby inhibiting pyroptosis in MASH. We elucidated a powerful theoretical basis and provided safe and effective potential drugs for MASH with the prevention and treatment.


Subject(s)
Down-Regulation , Isoflavones , Mice, Inbred C57BL , Mitophagy , Pyroptosis , Pyroptosis/drug effects , Mitophagy/drug effects , Animals , Mice , Male , Isoflavones/pharmacology , Down-Regulation/drug effects , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/drug therapy , Fatty Liver/genetics , Humans
6.
Biomed Pharmacother ; 175: 116780, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781864

ABSTRACT

Pueraria lobata, commonly known as kudzu, is a medicinal and food plant widely used in the food, health food, and pharmaceutical industries. It has clinical pharmacological effects, including hypoglycemic, antiinflammatory, and antioxidant effects. However, its mechanism of hypoglycemic effect on type 2 diabetes mellitus (T2DM) has not yet been elucidated. In this study, we prepared a Pueraria lobata oral liquid (POL) and conducted a comparative study in a T2DM rat model to evaluate the hypoglycemic effect of different doses of Pueraria lobata oral liquid. Our objective was to investigate the hypoglycemic effect of Puerarin on T2DM rats and understand its mechanism from the perspective of metabolomics. In this study, we assessed the hypoglycemic effect of POL through measurements of FBG, fasting glucose tolerance test, plasma lipids, and liver injury levels. Furthermore, we examined the mechanism of action of POL using hepatic metabolomics. The study's findings demonstrated that POL intervention led to improvements in weight loss, blood glucose, insulin, and lipid levels in T2DM rats, while also providing a protective effect on the liver. Finally, POL significantly affected the types and amounts of hepatic metabolites enriched in metabolic pathways, providing an important basis for revealing the molecular mechanism of Pueraria lobata intervention in T2DM rats. These findings indicate that POL may regulate insulin levels, reduce liver damage, and improve metabolic uptake in the liver. This provides direction for new applications and research on Pueraria lobata to prevent or improve T2DM.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Metabolomics , Pueraria , Rats, Sprague-Dawley , Animals , Pueraria/chemistry , Male , Rats , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/blood , Liver/metabolism , Liver/drug effects , Administration, Oral , Plant Extracts/pharmacology , Isoflavones/pharmacology , Insulin/blood , Insulin/metabolism , Lipids/blood
7.
Immun Inflamm Dis ; 12(5): e1077, 2024 May.
Article in English | MEDLINE | ID: mdl-38722267

ABSTRACT

BACKGROUND: Considering the antihepatitis effects of Tectorigenin (TEC), and the same adenosine mitogen-activated protein kinase (MAPK) pathway in both hepatitis and inflammatory bowel disease (IBD) models, exploring the role of TEC in IBD is contributive to develop a new treatment strategy against IBD. METHODS: The IBD mouse model was constructed by feeding with dextran sodium sulfate (DSS) and injection of TEC. Afterward, the mouse body weight, colon length, and disease activity index (DAI) were tested to assess the enteritis level. Mouse intestine lesions were detected by hematoxylin and eosin staining. Murine macrophages underwent lipopolysaccharide (LPS) induction to establish an inflammation model. Cell viability was determined by cell counting kit-8 assay. Enzyme-linked immunosorbent assay was performed to measure interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) levels. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions were quantified via quantitative reverse transcription polymerase chain reaction. Levels of MAPK pathway-related proteins (p-P38, P38, p-Jun N-terminal kinase (JNK), JNK, signal-regulated kinase (ERK), p-ERK), COX-2 and iNOS were quantitated by Western blot. RESULTS: TEC improved the inflammatory response through ameliorating weight loss, shortening colon, and increasing DAI score in IBD mouse. Expressions of intestinal inflammatory factors (IL-6, TNF-α, iNOS and COX-2) and MAPK pathway-related proteins (p-P38, p-JNK, and p-ERK) were increased both in DSS-induced mouse intestinal tissue, but TEC inhibited expressions of inflammatory factors. The same increased trend was identified in LPS-induced macrophages, but TEC improved macrophage inflammation, as evidenced by downregulation of inflammatory factors. CONCLUSION: TEC mitigates IBD and LPS-induced macrophage inflammation in mice via inhibiting MAPK signaling pathway.


Subject(s)
Inflammatory Bowel Diseases , Isoflavones , Lipopolysaccharides , MAP Kinase Signaling System , Macrophages , Animals , Mice , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , MAP Kinase Signaling System/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Isoflavones/pharmacology , Isoflavones/therapeutic use , Disease Models, Animal , Dextran Sulfate/toxicity , Inflammation/drug therapy , Inflammation/immunology , Male , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism
8.
Food Res Int ; 186: 114335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729717

ABSTRACT

Germination holds the key to nutritional equilibrium in plant grains. In this study, the effect of soybean germination on the processing of soymilk (SM) and glucono-δ-lactone (GDL) induced soymilk gel (SG) was investigated. Germination promoted soybean sprout (SS) growth by activating the energy metabolism system. The energy metabolism was high during the three-day germination and was the most vigorous on the second day of germination. After germination, protein dissolution was improved in SM, and endogenous enzymes produced small molecule proteins. Small molecule proteins were more likely to aggregate to produce SM protein particles. Germination increased the water-holding capacity of SG induced by GDL but weakened the strength. Furthermore, the dynamic fluctuations in isoflavone content were closely monitored throughout the processing of soybean products, including SS, SM, and SG. Although the total amount of isoflavones in SM and SG processed from germinated soybeans decreased, a significant enrichment in the content of aglycone isoflavones was observed. The content of aglycone isoflavones in SG processed from germinated soybeans on the second day of germination was 736.17 ± 28.49 µg/g DW, which was 83.19 % higher than that of the control group. This study demonstrates that germination can enhance the nutritional value of soybean products, providing innovative opportunities for the development of health-promoting soybean-based products.


Subject(s)
Gels , Germination , Glycine max , Isoflavones , Soy Milk , Isoflavones/analysis , Isoflavones/metabolism , Soy Milk/chemistry , Soy Milk/metabolism , Glycine max/growth & development , Glycine max/chemistry , Glycine max/metabolism , Food Handling/methods , Nutritive Value , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Energy Metabolism , Lactones/metabolism , Lactones/analysis
9.
Sci Rep ; 14(1): 11034, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744977

ABSTRACT

Currently, the stable, uniform, and highly efficient production of raw materials for pharmaceutical companies has received special attention. To meet these criteria and reduce harvesting pressure on the natural habitats of licorice (Glycyrrhiza glabra L.), cultivation of this valuable plant is inevitable. In the present study, to introduce the glycyrrhizic acid (GA)- and glabridin-rich genotypes from cultivated Iranian licorice, forty genotypes from eight high-potential wild populations were cultivated and evaluated under the same environmental conditions. The GA content varied from 5.00 ± 0.04 mg/g DW (TF2 genotype) to 23.13 ± 0.02 mg/g DW (I5 genotype). The highest and lowest glabridin content were found in the K2 (0.72 ± 0.021 mg/g DW) and M5 (0.02 ± 0.002 mg/g DW) genotypes, respectively. The rutin content in the leaves of the studied genotypes varied from 1.27 ± 0.02 mg/g DW in E4 to 3.24 ± 0.02 mg/g DW in BO5 genotypes. The genotypes from the Ilam population were characterized by higher vegetative growth and yield traits in the aerial parts and roots. The average root dry yield was 2.44 tons per hectare (t/ha) among the studied genotypes and a genotype from Ilam (I5) yielded the maximum value (3.08 ± 0.034 t/ha). The highest coefficient of variation among the genotypes was observed for leaf width (CV = 34.9%). The GA and glabridin-rich genotypes introduced in this study can be used in the future breeding programs to release new bred licorice cultivars.


Subject(s)
Genotype , Glycyrrhiza , Glycyrrhizic Acid , Isoflavones , Phenols , Glycyrrhizic Acid/metabolism , Isoflavones/metabolism , Glycyrrhiza/genetics , Glycyrrhiza/metabolism , Phenols/metabolism , Iran , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/growth & development
10.
J Cell Mol Med ; 28(9): e18358, 2024 May.
Article in English | MEDLINE | ID: mdl-38693868

ABSTRACT

Gastric cancer is considered a class 1 carcinogen that is closely linked to infection with Helicobacter pylori (H. pylori), which affects over 1 million people each year. However, the major challenge to fight against H. pylori and its associated gastric cancer due to drug resistance. This research gap had led our research team to investigate a potential drug candidate targeting the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. In this study, a total of 45 daidzein derivatives were investigated and the best 10 molecules were comprehensively investigated using in silico approaches for drug development, namely pass prediction, quantum calculations, molecular docking, molecular dynamics simulations, Lipinski rule evaluation, and prediction of pharmacokinetics. The molecular docking study was performed to evaluate the binding affinity between the target protein and the ligands. In addition, the stability of ligand-protein complexes was investigated by molecular dynamics simulations. Various parameters were analysed, including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM). The results has confirmed that the ligand-protein complex CID: 129661094 (07) and 129664277 (08) formed stable interactions with the target protein. It was also found that CID: 129661094 (07) has greater hydrogen bond occupancy and stability, while the ligand-protein complex CID 129664277 (08) has greater conformational flexibility. Principal component analysis revealed that the ligand-protein complex CID: 129661094 (07) is more compact and stable. Hydrogen bond analysis revealed favourable interactions with the reported amino acid residues. Overall, this study suggests that daidzein derivatives in particular show promise as potential inhibitors of H. pylori.


Subject(s)
Helicobacter pylori , Isoflavones , Molecular Docking Simulation , Molecular Dynamics Simulation , Helicobacter pylori/drug effects , Helicobacter pylori/metabolism , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/metabolism , Humans , Hydrogen Bonding , Ligands , Protein Binding , Principal Component Analysis , Helicobacter Infections/microbiology , Helicobacter Infections/drug therapy , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Stomach Neoplasms/microbiology , Stomach Neoplasms/drug therapy
11.
Nutrients ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732519

ABSTRACT

Metabolic syndrome (MetS) is a cluster of risk factors for cardiovascular diseases (CVDs) that has become a global public health problem. Puerarin (PUE), the principal active compound of Pueraria lobata, has the effects of regulating glucose and lipid metabolism and protecting against cardiovascular damage. This study aimed to investigate whether dietary supplementation with PUE could ameliorate MetS and its associated cardiovascular damage. Rats were randomly divided into three groups: the normal diet group (NC), the high-fat/high-sucrose diet group (HFHS), and the HFHS plus PUE diet group (HFHS-PUE). The results showed that PUE-supplemented rats exhibited enhanced glucose tolerance, improved lipid parameters, and reduced blood pressure compared to those on the HFHS diet alone. Additionally, PUE reversed the HFHS-induced elevations in the atherogenic index (AI) and the activities of serum lactate dehydrogenase (LDH) and creatine kinase (CK). Ultrasonic evaluations indicated that PUE significantly ameliorated cardiac dysfunction and arterial stiffness. Histopathological assessments further confirmed that PUE significantly mitigated cardiac remodeling, arterial remodeling, and neuronal damage in the brain. Moreover, PUE lowered systemic inflammatory indices including C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and systemic immune-inflammation index (SII). In conclusion, dietary supplementation with PUE effectively moderated metabolic disorders, attenuated systemic inflammation, and minimized cardiovascular damage in rats with MetS induced by an HFHS diet. These results provide novel insights into the potential benefits of dietary PUE supplementation for the prevention and management of MetS and its related CVDs.


Subject(s)
Cardiovascular Diseases , Diet, High-Fat , Isoflavones , Metabolic Syndrome , Animals , Metabolic Syndrome/etiology , Metabolic Syndrome/drug therapy , Isoflavones/pharmacology , Diet, High-Fat/adverse effects , Male , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Rats , Dietary Supplements , Rats, Sprague-Dawley , Blood Pressure/drug effects , Blood Glucose/metabolism , Dietary Sucrose/adverse effects , Vascular Stiffness/drug effects , Disease Models, Animal , Lipids/blood , Pueraria/chemistry
12.
J Biochem Mol Toxicol ; 38(6): e23735, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773908

ABSTRACT

Cancer is one of the major causes of death worldwide, with more than 10 million deaths annually. Despite tremendous advances in the health sciences, cancer continues to be a substantial global contributor to mortality. The current treatment methods demand a paradigm shift that not only improves therapeutic efficacy but also minimizes the side effects of conventional medications. Recently, an increased interest in the potential of natural bioactive compounds in the treatment of several types of cancer has been observed. Ononin, also referred to as formononetin-7-O-ß-d-glucoside, is a natural isoflavone glycoside, derived from the roots, stems, and rhizomes of various plants. It exhibits a variety of pharmacological effects, including Antiangiogenic, anti-inflammatory, antiproliferative, proapoptotic, and antimetastatic activities. The current review presents a thorough overview of sources, chemistry, pharmacokinetics, and the role of ononin in affecting various mechanisms involved in cancer. The review also discusses potential synergistic interactions with other compounds and therapies. The combined synergistic effect of ononin with other compounds increased the efficacy of treatment methods. Finally, the safety studies, comprising both in vitro and in vivo assessments of ononin's anticancer activities, are described.


Subject(s)
Isoflavones , Neoplasms , Isoflavones/pharmacology , Isoflavones/chemistry , Isoflavones/therapeutic use , Humans , Animals , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Glucosides/pharmacology , Glucosides/therapeutic use , Glucosides/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Glycosides/pharmacology , Glycosides/therapeutic use , Glycosides/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry
13.
J Cell Mol Med ; 28(10): e18239, 2024 May.
Article in English | MEDLINE | ID: mdl-38774996

ABSTRACT

The occurrence and development of diabetic vascular diseases are closely linked to inflammation-induced endothelial dysfunction. Puerarin (Pue), the primary component of Pueraria lobata, possesses potent anti-inflammatory properties. However, its vasoprotective role remains elusive. Therefore, we investigated whether Pue can effectively protect against vascular damage induced by diabetes. In the study, Pue ameliorated lipopolysaccharide-adenosine triphosphate (LPS-ATP) or HG-primed cytotoxicity and apoptosis, while inhibited reactive oxygen species (ROS)-mediated NLR family pyrin domain containing 3 (NLRP3) inflammasome in HUVECs, as evidenced by significantly decreased ROS level, NOX4, Caspase-1 activity and expression of NLRP3, GSDMD, cleaved caspase-1, IL-1ß and IL-18. Meanwhile, ROS inducer CoCI2 efficiently weakened the effects of Pue against LPS-ATP-primed pyroptosis. In addition, NLRP3 knockdown notably enhanced Pue's ability to suppress pyroptosis in LPS-ATP-primed HUVECs, whereas overexpression of NLRP3 reversed the inhibitory effects of Pue. Furthermore, Pue inhibited the expression of ROS and NLRP3 inflammasome-associated proteins on the aorta in type 2 diabetes mellitus rats. Our findings indicated that Pue might ameliorate LPS-ATP or HG-primed damage in HUVECs by inactivating the ROS-NLRP3 signalling pathway.


Subject(s)
Adenosine Triphosphate , Human Umbilical Vein Endothelial Cells , Inflammasomes , Isoflavones , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Signal Transduction , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Isoflavones/pharmacology , Isoflavones/therapeutic use , Humans , Animals , Signal Transduction/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Rats , Male , Adenosine Triphosphate/metabolism , Inflammasomes/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Pyroptosis/drug effects , Rats, Sprague-Dawley , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Glucose/metabolism , Apoptosis/drug effects
14.
Medicine (Baltimore) ; 103(18): e38023, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701310

ABSTRACT

Cancer remains a significant challenge in the field of oncology, with the search for novel and effective treatments ongoing. Calycosin (CA), a phytoestrogen derived from traditional Chinese medicine, has garnered attention as a promising candidate. With its high targeting and low toxicity profile, CA has demonstrated medicinal potential across various diseases, including cancers, inflammation, and cardiovascular disease. Studies have revealed that CA possesses inhibitory effects against a diverse array of cancers. The underlying mechanism of action involves a reduction in tumor cell proliferation, induction of tumor cell apoptosis, and suppression of tumor cell migration and invasion. Furthermore, CA has been shown to enhance the efficacy of certain chemotherapeutic drugs, making it a potential component in treating malignant tumors. Given its high efficacy, low toxicity, and multi-targeting characteristics, CA holds considerable promise as a therapeutic agent for cancer treatment. The objective of this review is to present a synthesis of the current understanding of the antitumor mechanism of CA and its research progress.


Subject(s)
Isoflavones , Neoplasms , Phytoestrogens , Isoflavones/therapeutic use , Isoflavones/pharmacology , Humans , Phytoestrogens/therapeutic use , Phytoestrogens/pharmacology , Neoplasms/drug therapy , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology
15.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 236-246, 2024 Feb 28.
Article in English, Chinese | MEDLINE | ID: mdl-38755719

ABSTRACT

OBJECTIVES: Hypoxia is a common pathological phenomenon, usually caused by insufficient oxygen supply or inability to use oxygen effectively. Hydroxylated and methoxylated flavonoids have significant anti-hypoxia activity. This study aims to explore the synthesis, antioxidant and anti-hypoxia activities of 6-hydroxygenistein (6-OHG) and its methoxylated derivatives. METHODS: The 6-OHG and its methoxylated derivatives, including 4',6,7-trimethoxy-5-hydroxyisoflavone (compound 3), 4',5,6,7-tetramethoxyisoflavone (compound 4), 4',6-imethoxy-5,7-dihydroxyisoflavone (compound 6), and 4'-methoxy-5,6,7-trihydroxyisoflavone (compound 7), were synthesized by methylation, bromination, methoxylation, and demethylation using biochanin A as raw material. The structure of these products were characterized by 1hydrogen-nuclear magnetic resonance spectroscopy (1H-NMR) and mass spectrometry (MS). The purity of these compounds was detected by high pressure chromatography (HPLC). The antioxidant activity in vitro was investigated by 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) free radical scavenging assay. PC12 cells were divided into a normal group, a hypoxia model group, rutin (1×10-9-1×10-5 mol/L) groups, and target compounds (1×10-9-1×10-5 mol/L) groups under normal and hypoxic conditions. Cell viability was detected by cell counting kit-8 (CCK-8) assay, the target compounds with excellent anti-hypoxia activity and the drug concentration at the maximum anti-hypoxia activity were screened. PC12 cells were treated with the optimal concentration of the target compound or rutin with excellent anti-hypoxia activity, and the cell morphology was observed under light microscope. The apoptotic rate was determined by flow cytometry, and the expressions of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) were detected by Western blotting. RESULTS: The structure of 6-OHG and its 4 methylated derivatives were correct, and the purity was all more than 97%. When the concentration was 4 mmol/L, the DPPH free radical removal rates of chemical compounds 7 and 6-OHG were 81.16% and 86.94%, respectively, which were higher than those of rutin, the positive control. The removal rates of chemical compounds 3, 4, and 6 were all lower than 20%. Compared with the normal group, the cell viability of the hypoxia model group was significantly decreased (P<0.01). Compared with the hypoxia model group, compounds 3, 4, and 6 had no significant effect on cell viability under hypoxic conditions. At all experimental concentrations, the cell viability of the 6-OHG group was significantly higher than that of the hypoxia model group (all P<0.05). The cell viability of compound 7 group at 1×10-7 and 1×10-6 mol/L was significantly higher than that of the hypoxia model group (both P<0.05). The anti-hypoxia activity of 6-OHG and compound 7 was excellent, and the optimal drug concentration was 1×10-6 and 1×10-7 mol/L. After PC12 cells was treated with 6-OHG (1×10-6 mol/L) and compound 7 (1×10-7 mol/L), the cell damage was reduced, the apoptotic rate was significantly decreased (P<0.01), and the protein expression levels of HIF-1α and VEGF were significantly decreased in comparison with the hypoxia model group (both P<0.01). CONCLUSIONS: The optimized synthesis route can increase the yield of 6-OHG and obtain 4 derivatives by methylation and selective demethylation. 6-OHG and compound 7 have excellent antioxidant and anti-hypoxia activities, which are related to the structure of the A-ring ortho-triphenol hydroxyl group in the molecule.


Subject(s)
Antioxidants , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Rats , Animals , PC12 Cells , Methylation , Cell Hypoxia/drug effects , Vascular Endothelial Growth Factor A/metabolism , Isoflavones/pharmacology , Isoflavones/chemical synthesis , Isoflavones/chemistry , Flavones/pharmacology
16.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791264

ABSTRACT

Flavonoids, a variety of plant secondary metabolites, are known for their diverse biological activities. Isoflavones are a subgroup of flavonoids that have gained attention for their potential health benefits. Puerarin is one of the bioactive isoflavones found in the Kudzu root and Pueraria genus, which is widely used in alternative Chinese medicine, and has been found to be effective in treating chronic conditions like cardiovascular diseases, liver diseases, gastric diseases, respiratory diseases, diabetes, Alzheimer's disease, and cancer. Puerarin has been extensively researched and used in both scientific and clinical studies over the past few years. The purpose of this review is to provide an up-to-date exploration of puerarin biosynthesis, the most common extraction methods, analytical techniques, and biological effects, which have the potential to provide a new perspective for medical and pharmaceutical research and development.


Subject(s)
Isoflavones , Isoflavones/biosynthesis , Isoflavones/chemistry , Isoflavones/isolation & purification , Humans , Pueraria/chemistry , Flavonoids/biosynthesis , Animals
17.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791314

ABSTRACT

Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver triglyceride, liver free fatty acid (FFA), and improved gut microbiota dysbiosis in obese mice. Puerarin's beneficial metabolic effects were attenuated when farnesoid X receptor (FXR) was antagonized, suggesting FXR-mediated mechanisms. In hepatocytes, puerarin ameliorated high FFA-induced sterol regulatory element-binding protein (SREBP) 1 signaling, inflammation, and mitochondrial dysfunction in an FXR-dependent manner. In obese mice, puerarin reduced liver damage, regulated hepatic lipogenesis, decreased inflammation, improved mitochondrial function, and modulated mitophagy and ubiquitin-proteasome pathways, but was less effective in FXR knockout mice. Puerarin upregulated hepatic expression of FXR, bile salt export pump (BSEP), and downregulated cytochrome P450 7A1 (CYP7A1) and sodium taurocholate transporter (NTCP), indicating modulation of bile acid synthesis and transport. Puerarin also restored gut microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of Clostridium celatum and Akkermansia muciniphila. This study demonstrates that puerarin effectively ameliorates metabolic disturbances and gut microbiota dysbiosis in obese mice, predominantly through FXR-dependent pathways. These findings underscore puerarin's potential as a therapeutic agent for managing obesity and enhancing gut health, highlighting its dual role in improving metabolic functions and modulating microbial communities.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Isoflavones , Liver , Obesity , Receptors, Cytoplasmic and Nuclear , Animals , Isoflavones/pharmacology , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Receptors, Cytoplasmic and Nuclear/metabolism , Mice , Obesity/metabolism , Obesity/drug therapy , Liver/metabolism , Liver/drug effects , Male , Dysbiosis , Mice, Obese , Mice, Inbred C57BL , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Mice, Knockout , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/metabolism , Symporters/genetics , Lipid Metabolism/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Akkermansia
18.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791455

ABSTRACT

Diabetes mellitus resulting from hyperglycemia stands as the primary cause of diabetic kidney disease. Emerging evidence suggests that plasma concentrations of soy isoflavones, substances with well-established antidiabetic properties, rise following supplemental inulin administration. The investigation encompassed 36 male Sprague-Dawley (SD) rats segregated into two cohorts: non-diabetic and diabetic, induced with type 2 diabetes (high-fat diet + two intraperitoneal streptozotocin injections). Each cohort was further divided into three subgroups (n = 6): control, isoflavone-treated, and isoflavone plus inulin-treated rats. Tail blood glucose and ketone levels were gauged. Upon termination, blood samples were drawn directly from the heart for urea, creatinine, and HbA1c/HbF analyses. One kidney per rat underwent histological (H-E) and immunohistochemical assessments (anti-AQP1, anti-AQP2, anti-AVPR2, anti-SLC22A2, anti-ACC-alpha, anti-SREBP-1). The remaining kidney underwent fatty acid methyl ester analysis. Results unveiled notable alterations in water intake, body and kidney mass, kidney morphology, fatty acids, AQP2, AVPR2, AcetylCoA, SREBP-1, blood urea, creatinine, and glucose levels in control rats with induced type 2 diabetes. Isoflavone supplementation exhibited favorable effects on plasma urea, plasma urea/creatinine ratio, glycemia, water intake, and kidney mass, morphology, and function in type 2 diabetic rats. Additional inulin supplementation frequently modulated the action of soy isoflavones.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Fatty Acids , Glycine max , Inulin , Isoflavones , Kidney , Rats, Sprague-Dawley , Animals , Isoflavones/pharmacology , Inulin/pharmacology , Inulin/administration & dosage , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Male , Rats , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Glycine max/chemistry , Blood Glucose/metabolism , Blood Glucose/drug effects , Diet, High-Fat/adverse effects , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
19.
BMC Urol ; 24(1): 102, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702664

ABSTRACT

BACKGROUND: Fermented soy products have shown to possess inhibitory effects on prostate cancer (PCa). We evaluated the effect of a fermented soy beverage (Q-Can®), containing medium-chain triglycerides, ketones and soy isoflavones, among men with localized PCa prior to radical prostatectomy. METHODS: We conducted a placebo-controlled, double-blind randomized trial of Q-Can®. Stratified randomization (Cancer of the Prostate Risk Assessment (CAPRA) score at diagnosis) was used to assign patients to receive Q-Can® or placebo for 2-5 weeks before RP. Primary endpoint was change in serum PSA from baseline to end-of-study. We assessed changes in other clinical and pathologic endpoints. The primary ITT analysis compared PSA at end-of-study between randomization arms using repeated measures linear mixed model incorporating baseline CAPRA risk strata. RESULTS: We randomized 19 patients, 16 were eligible for analysis of the primary outcome. Mean age at enrollment was 61, 9(56.2%) were classified as low and intermediate risk, and 7(43.8%) high CAPRA risk. Among patients who received Q-Can®, mean PSA at baseline and end-of-study was 8.98(standard deviation, SD 4.07) and 8.02ng/mL(SD 3.99) compared with 8.66(SD 2.71) to 9.53ng/mL(SD 3.03), respectively, (Difference baseline - end-of-study, p = 0.36). There were no significant differences in Gleason score, clinical stage, surgical margin status, or CAPRA score between treatment arms (p > 0.05), and no significant differences between treatment arms in end-of-study or change in lipids, testosterone and FACT-P scores (p > 0.05). CONCLUSIONS: Short exposure to Q-Can® among patients with localized PCa was not associated with changes in PSA levels, PCa characteristics including grade and stage or serum testosterone. Due to early termination from inability to recruit, study power, was not achieved.


Subject(s)
Prostatectomy , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Prostatectomy/methods , Middle Aged , Double-Blind Method , Aged , Prostate-Specific Antigen/blood , Soy Foods , Fermentation , Beverages , Isoflavones/therapeutic use , Isoflavones/administration & dosage , Glycine max , Preoperative Care/methods
20.
J Cell Mol Med ; 28(10): e18331, 2024 May.
Article in English | MEDLINE | ID: mdl-38780500

ABSTRACT

Heart failure is a leading cause of death in the elderly. Traditional Chinese medicine, a verified alternative therapeutic regimen, has been used to treat heart failure, which is less expensive and has fewer adverse effects. In this study, a total of 15 active ingredients of Astragalus membranaceus (Huangqi, HQ) were obtained; among them, Isorhamnetin, Quercetin, Calycosin, Formononetin, and Kaempferol were found to be linked to heart failure. Ang II significantly enlarged the cell size of cardiomyocytes, which could be partially reduced by Quercetin, Isorhamnetin, Calycosin, Kaempferol, or Formononetin. Ang II significantly up-regulated ANP, BNP, ß-MHC, and CTGF expressions, whereas Quercetin, Isorhamnetin, Calycosin, Kaempferol or Formononetin treatment partially downregulated ANP, BNP, ß-MHC and CTGF expressions. Five active ingredients of HQ attenuated inflammation in Ang II-induced cardiomyocytes by inhibiting the levels of TNF-α, IL-1ß, IL-18 and IL-6. Molecular docking shows Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol can bind with its target protein ESR1 in a good bond by intermolecular force. Quercetin, Calycosin, Kaempferol or Formononetin treatment promoted the expression levels of ESR1 and phosphorylated ESR1 in Ang II-stimulated cardiomyocytes; however, Isorhamnetin treatment had no effect on ESR1 and phosphorylated ESR1 expression levels. In conclusion, our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of HQ against heart failure. Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol might be the primary active ingredients of HQ, dominating its cardioprotective effects against heart failure through regulating ESR1 expression, which provided a basis for the clinical application of HQ to regulate cardiac hypertrophy and heart failure.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Heart Failure , Molecular Docking Simulation , Myocytes, Cardiac , Network Pharmacology , Astragalus propinquus/chemistry , Heart Failure/drug therapy , Heart Failure/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/analogs & derivatives , Angiotensin II/metabolism , Kaempferols/pharmacology , Kaempferols/chemistry , Rats , Humans , Isoflavones/pharmacology , Isoflavones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...