Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.544
Filter
1.
CNS Neurosci Ther ; 30(6): e14782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828651

ABSTRACT

BACKGROUND: The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia. METHODS: We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia. RESULTS: c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency. CONCLUSION: Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.


Subject(s)
Anesthesia, General , Consciousness , GABAergic Neurons , Isoflurane , Propofol , Propofol/pharmacology , Isoflurane/pharmacology , Animals , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Mice , Consciousness/drug effects , Consciousness/physiology , Male , Electroencephalography , Anesthetics, Inhalation/pharmacology , Anterior Thalamic Nuclei/drug effects , Anterior Thalamic Nuclei/physiology , Mice, Inbred C57BL , Mice, Transgenic , Anesthetics, Intravenous/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Optogenetics
2.
J Zoo Wildl Med ; 55(2): 424-429, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875198

ABSTRACT

The marbled crayfish (Procambarus virginalis) is a parthenogenetic invasive species across much of the world, and when found, euthanasia is often recommended to reduce spread to naïve ecosystems. Euthanasia recommendations in crustaceans includes a two-step method: first to produce nonresponsiveness and then to destroy central nervous tissue. Minimal data exist on adequate anesthetic or immobilization methods for crayfish. A population of 90 marbled crayfish was scheduled for euthanasia due to invasive species concerns. The population was divided into six treatment groups to evaluate whether immersion in emulsified isoflurane or propofol solutions could produce nonresponsiveness. Each group was exposed to one of six treatments for 1 h: isoflurane emulsified at 0.1%, 0.5%, 2%, 5%, and 15% or propofol at 10 mg/L and then increased to 100 mg/L. Crayfish from all treatment groups were moved to nonmedicated water after completion of 1 h and observed for an additional 4 h. All crayfish treated with isoflurane showed lack of a righting reflex at 5 min and loss of movement after 30 min. By 240 min (4 h), none of the crayfish from the isoflurane treatment groups regained movement. None of the crayfish in the propofol treatment achieved loss of reflexes or responsiveness, and all remained normal upon return to nonmedicated water. Isoflurane emulsified in water produces nonresponsiveness that is appropriate for the first step of euthanasia, while propofol was insufficient at these treatment doses.


Subject(s)
Astacoidea , Euthanasia, Animal , Isoflurane , Propofol , Animals , Astacoidea/drug effects , Isoflurane/administration & dosage , Isoflurane/pharmacology , Propofol/pharmacology , Propofol/administration & dosage , Euthanasia, Animal/methods , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacology , Immersion , Dose-Response Relationship, Drug
3.
BMC Anesthesiol ; 24(1): 200, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840092

ABSTRACT

BACKGROUND: The inhalational anesthetic isoflurane is commonly utilized in clinical practice, particularly in the field of pediatric anesthesia. Research has demonstrated its capacity to induce neuroinflammation and long-term behavioral disorders; however, the underlying mechanism remains unclear [1]. The cation-chloride cotransporters Na+-K+-2Cl--1 (NKCC1) and K+-2Cl--2 (KCC2) play a pivotal role in regulating neuronal responses to gamma-aminobutyric acid (GABA) [2]. Imbalances in NKCC1/KCC2 can disrupt GABA neurotransmission, potentially leading to neural circuit hyperexcitability and reduced inhibition following neonatal exposure to anesthesia [3]. Therefore, this study postulates that anesthetics have the potential to dysregulate NKCC1 and/or KCC2 during brain development. METHODS: We administered 1.5% isoflurane anesthesia to neonatal rats for a duration of 4 h at postnatal day 7 (PND7). Anxiety levels were assessed using the open field test at PND28, while cognitive function was evaluated using the Morris water maze test between PND31 and PND34. Protein levels of NKCC1, KCC2, BDNF, and phosphorylated ERK (P-ERK) in the hippocampus were measured through Western blotting analysis. Pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were quantified using ELISA. RESULTS: We observed a decrease in locomotion trajectories within the central region and a significantly shorter total distance in the ISO group compared to CON pups, indicating that isoflurane induces anxiety-like behavior. In the Morris water maze (MWM) test, rats exposed to isoflurane exhibited prolonged escape latency onto the platform. Additionally, isoflurane administration resulted in reduced time spent crossing in the MWM experiment at PND34, suggesting long-term impairment of memory function. Furthermore, we found that isoflurane triggered activation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α; downregulated KCC2/BDNF/P-ERK expression; and increased the NKCC1/KCC2 ratio in the hippocampus of PND7 rats. Bumetadine (NKCC1 specific inhibitors) reversed cognitive damage and effective disorder induced by isoflurane in neonatal rats by inhibiting TNF-α activation, normalizing IL-6 and IL-1ß levels, restoring KCC2 expression levels as well as BDNF and ERK signaling pathways. Based on these findings, it can be speculated that BDNF, P-ERK, IL-1ß, IL-6 and TNF - α may act downstream of the NKCC1/KCC2 pathway. CONCLUSIONS: Our findings provide evidence that isoflurane administration in neonatal rats leads to persistent cognitive deficits through dysregulation of the Cation-Chloride Cotransporters NKCC1 and KCC2, BDNF, p-ERK proteins, as well as neuroinflammatory processes.


Subject(s)
Anesthetics, Inhalation , Animals, Newborn , Isoflurane , K Cl- Cotransporters , Solute Carrier Family 12, Member 2 , Symporters , Animals , Isoflurane/pharmacology , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/adverse effects , Rats , Mice , Rats, Sprague-Dawley , Male , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Female , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism
4.
Exp Biol Med (Maywood) ; 249: 10037, 2024.
Article in English | MEDLINE | ID: mdl-38854792

ABSTRACT

In-ovo imaging using avian eggs has been described as a potential alternative to animal testing using rodents. However, imaging studies are hampered by embryonal motion producing artifacts. This study aims at systematically comparing isoflurane, desflurane and sevoflurane in three different concentrations in ostrich embryos. Biomagnetic signals of ostrich embryos were recorded analyzing cardiac action and motion. Ten groups comprising eight ostrich embryos each were investigated: Control, isoflurane (2%, 4%, and 6%), desflurane (6%, 12%, and 18%) and sevoflurane (3%, 5%, and 8%). Each ostrich egg was exposed to the same narcotic gas and concentration on development day (DD) 31 and 34. Narcotic gas exposure was upheld for 90 min and embryos were monitored for additional 75 min. Toxicity was evaluated by verifying embryo viability 24 h after the experiments. Initial heart rate of mean 148 beats/min (DD 31) and 136 beats/min (DD 34) decreased over time by 44-48 beats/minute. No significant differences were observed between groups. All narcotic gases led to distinct movement reduction after mean 8 min. Embryos exposed to desflurane 6% showed residual movements. Isoflurane 6% and sevoflurane 8% produced motion-free time intervals of mean 70 min after discontinuation of narcotic gas exposure. Only one embryo death occurred after narcotic gas exposure with desflurane 6%. This study shows that isoflurane, desflurane and sevoflurane are suitable for ostrich embryo immobilization, which is a prerequisite for motion-artifact free imaging. Application of isoflurane 6% and sevoflurane 8% is a) safe as no embryonal deaths occurred after exposure and b) effective as immobilization was observed for approx. 70 min after the end of narcotic gas exposure. These results should be interpreted with caution regarding transferability to other avian species as differences in embryo size and incubation duration exist.


Subject(s)
Desflurane , Embryo, Nonmammalian , Isoflurane , Struthioniformes , Animals , Struthioniformes/embryology , Embryo, Nonmammalian/drug effects , Anesthetics, Inhalation , Sevoflurane/adverse effects , Sevoflurane/pharmacology , Narcotics/toxicity , Immobilization
5.
J Physiol Sci ; 74(1): 33, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867187

ABSTRACT

Hibernation and torpor are not passive responses caused by external temperature drops and fasting but are active brain functions that lower body temperature. A population of neurons in the preoptic area was recently identified as such active torpor-regulating neurons. We hypothesized that the other hypothermia-inducing maneuvers would also activate these neurons. To test our hypothesis, we first refined the previous observations, examined the brain regions explicitly activated during the falling phase of body temperature using c-Fos expression, and confirmed the preoptic area. Next, we observed long-lasting hypothermia by reactivating torpor-tagged Gq-expressing neurons using the activity tagging and DREADD systems. Finally, we found that about 40-60% of torpor-tagged neurons were activated by succeeding isoflurane anesthesia and by icv administration of an adenosine A1 agonist. Isoflurane-induced and central adenosine-induced hypothermia is, at least in part, an active process mediated by the torpor-regulating neurons in the preoptic area.


Subject(s)
Adenosine , Isoflurane , Neurons , Preoptic Area , Animals , Preoptic Area/drug effects , Preoptic Area/metabolism , Isoflurane/pharmacology , Isoflurane/administration & dosage , Adenosine/administration & dosage , Adenosine/pharmacology , Adenosine/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Male , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/administration & dosage , Body Temperature/drug effects , Body Temperature/physiology , Hypothermia/chemically induced , Hypothermia/metabolism , Torpor/drug effects , Mice , Proto-Oncogene Proteins c-fos/metabolism
6.
Biomed Pharmacother ; 175: 116751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754266

ABSTRACT

Anesthesia inhibits neural activity in the brain, causing patients to lose consciousness and sensation during the surgery. Layers 2/3 of the cortex are important structures for the integration of information and consciousness, which are closely related to normal cognitive function. However, the dynamics of the large-scale population of neurons across multiple regions in layer 2/3 during anesthesia and recovery processes remains unclear. We conducted simultaneous observations and analysis of large-scale calcium signaling dynamics across multiple cortical regions within cortical layer 2/3 during isoflurane anesthesia and recovery in vivo by high-resolution wide-field microscopy. Under isoflurane-induced anesthesia, there is an overall decrease in neuronal activity across multiple regions in the cortical layer 2/3. Notably, some neurons display a paradoxical increase in activity during anesthesia. Additionally, the activity among multiple cortical regions under anesthesia was homogeneous. It is only during the recovery phase that variability emerges in the extent of increased neural activity across different cortical regions. Within the same duration of anesthesia, neural activity did not return to preanesthetic levels. To sum up, anesthesia as a dynamic alteration of brain functional networks, encompassing shifts in patterns of neural activity, homogeneousness among cortical neurons and regions, and changes in functional connectivity. Recovery from anesthesia does not entail a reversal of these effects within the same timeframe.


Subject(s)
Anesthetics, Inhalation , Cerebral Cortex , Isoflurane , Neurons , Isoflurane/pharmacology , Neurons/drug effects , Neurons/physiology , Animals , Anesthetics, Inhalation/pharmacology , Male , Cerebral Cortex/drug effects , Mice , Calcium Signaling/drug effects , Mice, Inbred C57BL
7.
Saudi Med J ; 45(5): 468-475, 2024 May.
Article in English | MEDLINE | ID: mdl-38734439

ABSTRACT

OBJECTIVES: To compare the genotoxic effects of desflurane and propofol using comet assay in patients undergoing elective discectomy surgery. METHODS: This was a randomized controlled study. Patients who underwent elective lumbar discectomy under general anesthesia with propofol or desflurane were included in the study. Venous blood samples were obtained at 4 different time points: 5 minutes before anesthesia induction (T1), 2 hours after the start of anesthesia (T2), the first day after surgery (T3), and the fifth day following surgery (T4). Deoxyribonucleic acid damage in lymphocytes was assessed via the comet assay. RESULTS: A total of 30 patients, 15 in each group, were included in the analysis. The groups were similar in terms of age and gender distribution. There were no significant differences in demographics, duration of surgery, total remifentanil consumption, and total rocuronium bromide consumption. The comet assay revealed that head length, head intensity, tail intensity, tail moment at T1 were similar in the desflurane and propofol groups. Head length, tail length and tail moment measured in the desflurane group at T4 were significantly higher compared to the propofol group. Tail lengths of the desflurane group at T1, T2 and T3 were significantly higher than the corresponding values in the propofol group. CONCLUSION: Propofol and desflurane do not appear to induce DNA damage in lymphocytes. However, when the quantitative data were compared, it was determined that propofol had relatively lower genotoxic potential than desflurane.ClinicalTrials.gov Reg. No.: NCT05185167.


Subject(s)
Anesthetics, Inhalation , Comet Assay , DNA Damage , Desflurane , Diskectomy , Lymphocytes , Propofol , Humans , Propofol/adverse effects , Diskectomy/methods , Comet Assay/methods , Male , Lymphocytes/drug effects , Female , Adult , Middle Aged , Anesthetics, Inhalation/adverse effects , DNA Damage/drug effects , Lumbar Vertebrae/surgery , Anesthetics, Intravenous/adverse effects , Isoflurane/analogs & derivatives , Isoflurane/adverse effects
8.
Ann Card Anaesth ; 27(1): 10-16, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38722115

ABSTRACT

BACKGROUND AND OBJECTIVE: Regional analgesia is effective for post-thoracotomy pain. The primary objective of the study is to compare the intraoperative requirement of isoflurane and fentanyl between general anaesthesia (GA) with epidural analgesia and GA with paravertebral analgesia. METHODS AND MATERIAL: A prospective observational comparative study was conducted on 56 patients undergoing open thoracotomy procedures. The patients were divided into two groups of 28 by assigning the study participants alternatively to each group: Group GAE - received thoracic epidural catheterization with GA, and Group GAP - received ultrasound guided thoracic paravertebral catheterization on the operative side with GA. Intraoperative requirement of isoflurane, fentanyl, postoperative analgesia, stress response, need of rescue analgesics and adverse effects were observed and analysed. RESULTS: 25 patients in each group were included in the data analysis. The intraoperative requirement of isoflurane (32.28 ± 1.88 vs 48.31 ± 4.34 ml; p < 0.0001) and fentanyl (128.87 ± 25.12 vs 157 ± 30.92 µg; p = 0.0009) were significantly less in the GAE group than in the GAP group. VAS scores and need of rescue analgesics and blood glucose levels were not statistically significant during the postoperative period (p > 0.05). The incidence of adverse effects was comparable except for hypotension and urinary retention which were significantly higher in the GAE group. CONCLUSION: GA with epidural analgesia resulted in significant reduction in the intraoperative consumption of isoflurane and fentanyl in comparison to GA with paravertebral analgesia. However, both the techniques were equally effective in the postoperative period.


Subject(s)
Analgesia, Epidural , Anesthesia, General , Fentanyl , Pain, Postoperative , Thoracotomy , Humans , Female , Male , Thoracotomy/methods , Prospective Studies , Middle Aged , Anesthesia, General/methods , Fentanyl/administration & dosage , Analgesia, Epidural/methods , Pain, Postoperative/prevention & control , Pain, Postoperative/drug therapy , Adult , Isoflurane/administration & dosage , Anesthetics, Inhalation/administration & dosage , Analgesics/therapeutic use , Analgesics/administration & dosage , Aged , Nerve Block/methods
9.
Physiol Meas ; 45(5)2024 May 21.
Article in English | MEDLINE | ID: mdl-38697205

ABSTRACT

Objectives.The purpose of this study is to investigate the age dependence of bilateral frontal electroencephalogram (EEG) coupling characteristics, and find potential age-independent depth of anesthesia monitoring indicators for the elderlies.Approach.We recorded bilateral forehead EEG data from 41 patients (ranged in 19-82 years old), and separated into three age groups: 18-40 years (n= 12); 40-65 years (n= 14), >65 years (n= 15). All these patients underwent desflurane maintained general anesthesia (GA). We analyzed the age-related EEG spectra, phase amplitude coupling (PAC), coherence and phase lag index (PLI) of EEG data in the states of awake, GA, and recovery.Main results.The frontal alpha power shows age dependence in the state of GA maintained by desflurane. Modulation index in slow oscillation-alpha and delta-alpha bands showed age dependence and state dependence in varying degrees, the PAC pattern also became less pronounced with increasing age. In the awake state, the coherence in delta, theta and alpha frequency bands were all significantly higher in the >65 years age group than in the 18-40 years age group (p< 0.05 for three frequency bands). The coherence in alpha-band was significantly enhanced in all age groups in GA (p< 0.01) and then decreased in recovery state. Notably, the PLI in the alpha band was able to significantly distinguish the three states of awake, GA and recovery (p< 0.01) and the results of PLI in delta and theta frequency bands had similar changes to those of coherence.Significance.We found the EEG coupling and synchronization between bilateral forehead are age-dependent. The PAC, coherence and PLI portray this age-dependence. The PLI and coherence based on bilateral frontal EEG functional connectivity measures and PAC based on frontal single-channel are closely associated with anesthesia-induced unconsciousness.


Subject(s)
Desflurane , Electroencephalography , Humans , Desflurane/pharmacology , Adult , Middle Aged , Aged , Electroencephalography/drug effects , Young Adult , Male , Female , Aged, 80 and over , Adolescent , Aging/physiology , Aging/drug effects , Frontal Lobe/drug effects , Frontal Lobe/physiology , Isoflurane/analogs & derivatives , Isoflurane/pharmacology , Anesthetics, Inhalation/pharmacology , Anesthesia, General
10.
J Neurosci ; 44(24)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38749704

ABSTRACT

General anesthetics disrupt brain network dynamics through multiple pathways, in part through postsynaptic potentiation of inhibitory ion channels as well as presynaptic inhibition of neuroexocytosis. Common clinical general anesthetic drugs, such as propofol and isoflurane, have been shown to interact and interfere with core components of the exocytic release machinery to cause impaired neurotransmitter release. Recent studies however suggest that these drugs do not affect all synapse subtypes equally. We investigated the role of the presynaptic release machinery in multiple neurotransmitter systems under isoflurane general anesthesia in the adult female Drosophila brain using live-cell super-resolution microscopy and optogenetic readouts of exocytosis and neural excitability. We activated neurotransmitter-specific mushroom body output neurons and imaged presynaptic function under isoflurane anesthesia. We found that isoflurane impaired synaptic release and presynaptic protein dynamics in excitatory cholinergic synapses. In contrast, isoflurane had little to no effect on inhibitory GABAergic or glutamatergic synapses. These results present a distinct inhibitory mechanism for general anesthesia, whereby neuroexocytosis is selectively impaired at excitatory synapses, while inhibitory synapses remain functional. This suggests a presynaptic inhibitory mechanism that complements the other inhibitory effects of these drugs.


Subject(s)
Brain , Drosophila Proteins , Isoflurane , SNARE Proteins , Synapses , Animals , Synapses/drug effects , Synapses/metabolism , Synapses/physiology , Female , SNARE Proteins/metabolism , Isoflurane/pharmacology , Brain/metabolism , Brain/drug effects , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila , Anesthetics, Inhalation/pharmacology , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , Mushroom Bodies/drug effects , Mushroom Bodies/metabolism , Mushroom Bodies/physiology
11.
Vet Anaesth Analg ; 51(4): 391-398, 2024.
Article in English | MEDLINE | ID: mdl-38719760

ABSTRACT

OBJECTIVE: To investigate the effect of three different doses of oral pregabalin on minimum alveolar concentration of isoflurane (MACISO) in cats. STUDY DESIGN: Prospective, randomized, placebo-controlled, blinded, crossover trial. ANIMALS: A group of eight healthy adult cats aged 24-48 months. METHODS: Cats were randomly assigned to three oral doses of pregabalin (low dose: 2.5 mg kg-1, medium dose: 5 mg kg-1, high dose: 10 mg kg-1) or placebo 2 hours before MACISO determination, with the multiple treatments administered with a minimum 7 day washout period. Anesthesia was induced and maintained with isoflurane in oxygen until endotracheal intubation was achieved, and maintained with isoflurane with volume-controlled ventilation. MACISO was determined in triplicate using the bracketing technique and tail clamp method 120 minutes after pregabalin or placebo administration. Physiologic variables (including heart rate and blood pressure) recorded during MACISO determination were averaged and compared between the pregabalin and placebo treatments. One-way analysis of variance and the Friedman test were used to assess the difference for normally and non-normally distributed data, respectively. The Tukey test was used as a post hoc analysis. Values of p < 0.05 were considered significant. RESULTS: The MACISO with the medium- and high-dose pregabalin treatments were 1.33 ± 0.21% and 1.23 ± 0.17%, respectively. These were significantly lower than MACISO after placebo treatment (1.62 ± 0.13%; p = 0.014, p < 0.001, respectively), representing a decrease of 18 ± 9% and 24 ± 6%. The mean plasma pregabalin concentration was negatively correlated with MACISO values. Physiologic variables did not differ significantly between treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Doses of 5 or 10 mg kg-1 pregabalin, administered orally 2 hours before determining MACISO, had a significant isoflurane-sparing effect in cats.


Subject(s)
Anesthetics, Inhalation , Cross-Over Studies , Isoflurane , Pregabalin , Pulmonary Alveoli , Animals , Pregabalin/administration & dosage , Pregabalin/pharmacology , Isoflurane/administration & dosage , Isoflurane/pharmacokinetics , Cats , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacokinetics , Anesthetics, Inhalation/pharmacology , Pulmonary Alveoli/metabolism , Male , Female , Administration, Oral , Drug Interactions , Dose-Response Relationship, Drug , Analgesics/administration & dosage , Analgesics/pharmacology , Analgesics/pharmacokinetics , Anesthesia, Inhalation/veterinary
12.
Biosci Rep ; 44(6)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38757914

ABSTRACT

Surgeries that require general anesthesia occur in 1.5-2% of gestations. Isoflurane is frequently used because of its lower possibility of affecting fetal growth. Therefore, we examined the isoflurane anesthesia-induced effects on maternal hemodynamic and vascular changes. We hypothesized that isoflurane would enhance endothelium-dependent vasodilation as a consequence of increased nitric oxide and decreased metalloproteinases (MMPs). Female rats (n=28) were randomized into 4 groups (7 rats/group): conscious (non-anesthetized) non-pregnant group, non-pregnant anesthetized group, conscious pregnant group, and pregnant anesthetized group. Anesthesia was performed on the 20th pregnancy day, and hemodynamic parameters were monitored. Nitric oxide metabolites, gelatinolytic activity of MMP-2 and MMP-9, and the vascular function were assessed. Isoflurane caused no significant hemodynamic changes in pregnant compared with non-pregnant anesthetized group. Impaired acetylcholine-induced relaxations were observed only in conscious non-pregnant group (by approximately 62%) versus 81% for other groups. Phenylephrine-induced contractions were greater in endothelium-removed aorta segments of both pregnant groups (with or without isoflurane) compared with non-pregnant groups. Higher nitric oxide metabolites were observed in anesthetized pregnant in comparison with the other groups. Reductions in the 75 kDa activity and concomitant increases in 64 kDa MMP-2 isoforms were observed in aortas of pregnant anesthetized (or not) groups compared with conscious non-pregnant group. Isoflurane anesthesia shows stable effects on hemodynamic parameters and normal MMP-2 activation in pregnancy. Furthermore, there were increases in nitric oxide bioavailability, suggesting that isoflurane provides protective actions to the endothelium in pregnancy.


Subject(s)
Isoflurane , Matrix Metalloproteinase 2 , Nitric Oxide , Vasodilation , Animals , Female , Pregnancy , Rats , Anesthetics, Inhalation/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Hemodynamics/drug effects , Isoflurane/pharmacology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Nitric Oxide/metabolism , Vasodilation/drug effects , Rats, Wistar
13.
Nutrients ; 16(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38794716

ABSTRACT

It has been demonstrated that isoflurane-induced anesthesia can increase the blood glucose level, leading to hyperglycemia and several adverse effects. The administration of a mix of ketone diester (KE) and medium-chain triglyceride (MCT) oil, named KEMCT, abolished the isoflurane-anesthesia-induced increase in blood glucose level and prolonged the recovery time from isoflurane anesthesia in a male preclinical rodent model, Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. While most preclinical studies use exclusively male animals, our previous study on blood glucose changes in response to KEMCT administration showed that the results can be sex-dependent. Thus, in this study, we investigated female WAG/Rij rats, whether KEMCT gavage (3 g/kg/day for 7 days) can change the isoflurane (3%)-anesthesia-induced increase in blood glucose level and the recovery time from isoflurane-evoked anesthesia using the righting reflex. Moreover, KEMCT-induced ketosis may enhance both the extracellular level of adenosine and the activity of adenosine A1 receptors (A1Rs). To obtain information on the putative A1R mechanism of action, the effects of an A1R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine; intraperitoneal/i.p. 0.2 mg/kg), on KEMCT-generated influences were also investigated. Our results show that KEMCT supplementation abolished the isoflurane-anesthesia-induced increase in blood glucose level, and this was abrogated by the co-administration of DPCPX. Nevertheless, KEMCT gavage did not change the recovery time from isoflurane-induced anesthesia. We can conclude that intragastric gavage of exogenous ketone supplements (EKSs), such as KEMCT, can abolish the isoflurane-anesthesia-induced increase in blood glucose level in both sexes likely through A1Rs in WAG/Rij rats, while recovery time was not affected in females, unlike in males. These results suggest that the administration of EKSs as an adjuvant therapy may be effective in mitigating metabolic side effects of isoflurane, such as hyperglycemia, in both sexes.


Subject(s)
Anesthetics, Inhalation , Blood Glucose , Isoflurane , Ketones , Animals , Female , Isoflurane/pharmacology , Isoflurane/administration & dosage , Blood Glucose/drug effects , Blood Glucose/metabolism , Rats , Ketones/administration & dosage , Ketones/pharmacology , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacology , Rats, Wistar , Dietary Supplements , Triglycerides/blood , Triglycerides/administration & dosage , Male , Adenosine/pharmacology , Adenosine/administration & dosage , Anesthesia/methods
14.
Neurotox Res ; 42(3): 27, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819761

ABSTRACT

Early and prolonged exposure to anesthetic agents could cause neurodevelopmental disorders in children. Astrocytes, heavily outnumber neurons in the brain, are crucial regulators of synaptic formation and function during development. However, how general anesthetics act on astrocytes and the impact on cognition are still unclear. In this study, we investigated the role of ferroptosis and GPX4, a major hydroperoxide scavenger playing a pivotal role in suppressing the process of ferroptosis, and their underlying mechanism in isoflurane-induced cytotoxicity in astrocytes and cognitive impairment. Our results showed that early 6 h isoflurane anesthesia induced cognitive impairment in mice. Ferroptosis-relative genes and metabolic changes were involved in the pathological process of isoflurane-induced cytotoxicity in astrocytes. The level of GPX4 was decreased while the expression of 4-HNE and generation of ROS were elevated after isoflurane exposure. Selectively blocking ferroptosis with Fer-1 attenuated the abovementioned cytotoxicity in astrocytes, paralleling with the reverse of the changes in GPX4, ROS and 4-HNE secondary to isoflurane anesthesia. Fer-1 attenuated the cognitive impairment induced by prolonged isoflurane exposure. Thus, ferroptosis conduced towards isoflurane-induced cytotoxicity in astrocytes via suppressing GPX4 and promoting lipid peroxidation. Fer-1 was expected to be an underlying intervention for the neurotoxicity induced by isoflurane in the developing brain, and to alleviate cognitive impairment in neonates.


Subject(s)
Animals, Newborn , Astrocytes , Cognitive Dysfunction , Ferroptosis , Isoflurane , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Isoflurane/toxicity , Ferroptosis/drug effects , Ferroptosis/physiology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/metabolism , Mice , Anesthetics, Inhalation/toxicity , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism
15.
Sci Rep ; 14(1): 10669, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724577

ABSTRACT

Anaesthetics are used daily in human and veterinary medicine as well as in scientific research. Anaesthetics have an impact on cell homeostasis especially through modulation of protein post-translational modifications. O-GlcNAcylation, a ubiquitous post-translational modification, plays a role in many biological processes. The aims of this study were to evaluate whether (1) anaesthesia influences O-GlcNAcylation and (2) its stimulation affects physiological parameters. Male Wistar rats (n = 38) were anaesthetized with ketamine-xylazine or isoflurane. They randomly received either an intravenous injection of Ringer's lactate or NButGT (10mg/kg) in order to increase O-GlcNAcylation levels. One hour after induction of anaesthesia, haemodynamic parameters and plasmatic markers were evaluated. Heart, brain and lungs were harvested and O-GlcNAcylation levels and O-GlcNAc-related enzymes were evaluated by western blot. Cardiac and pulmonary O-GlcNAcylation levels and cardiac, cerebral and pulmonary O-GlcNAc associated enzyme expression were not impacted with anaesthesia. Compared with ketamine-xylazine, isoflurane had a lower impact on blood pressure, heart rate and glycaemia. Pharmacological stimulation of O-GlcNAcylation by NButGT did not affect the physiological parameters. This study offers unprecedented insights into the regulation of O-GlcNAcylation and O-GlcNAc related enzymes during anaesthesia. Pharmacological stimulation of O-GlcNAcylation over a 1-h period did not disrupt the physiological balance in healthy anaesthetized rats.


Subject(s)
Isoflurane , Ketamine , Rats, Wistar , Xylazine , Animals , Male , Rats , Isoflurane/pharmacology , Ketamine/pharmacology , Xylazine/pharmacology , Anesthesia , Acetylglucosamine/metabolism , Protein Processing, Post-Translational , Brain/metabolism , N-Acetylglucosaminyltransferases/metabolism , Heart Rate/drug effects , Lung/metabolism , Anesthetics/pharmacology , Blood Pressure/drug effects , Hemodynamics
16.
Br Dent J ; 236(9): 680-682, 2024 May.
Article in English | MEDLINE | ID: mdl-38730155

ABSTRACT

Nitrous oxide is a widely used and well-established form of inhalation sedation in dentistry. Its properties have a wide margin of safety and allow for anxious, paediatric and adult patients to receive dental treatment with minimal impact upon discharge. Nitrous oxide has drawbacks, however, including its environmental impact and need for specialist equipment. Methoxyflurane is another drug which could prove to be an alternative to nitrous oxide. Methoxyflurane's use has proved popular within emergency medicine in Australia and New Zealand for its potent analgesic effects and recognition of its anxiolytic effect. As a result, its use in invasive outpatient procedures has now become popular. Unfortunately, there is very limited evidence of its use within dentistry as a form of inhalation sedation and analgesic. A wider evidence base should be established, as methoxyflurane could prove to be an effective and environmentally friendly alternative to nitrous oxide.


Subject(s)
Anesthesia, Dental , Anesthetics, Inhalation , Methoxyflurane , Nitrous Oxide , Humans , Methoxyflurane/administration & dosage , Methoxyflurane/therapeutic use , Methoxyflurane/pharmacology , Nitrous Oxide/administration & dosage , Anesthetics, Inhalation/administration & dosage , Anesthesia, Dental/methods , Isoflurane/administration & dosage , Conscious Sedation/methods
17.
Braz J Cardiovasc Surg ; 39(3): e20210424, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629941

ABSTRACT

OBJECTIVE: Intravenous non-volatile anaesthetics like propofol are commonly used in cardiac surgeries across several countries. Volatile anaesthetics like isoflurane may help in protecting the myocardium and minimize ischaemia-reperfusion injury. Hence, we did this review to compare the cardioprotective effect of isoflurane and propofol among patients undergoing coronary artery bypass grafting (CABG). METHODS: We conducted a search in the databases Medical Literature Analysis and Retrieval System Online (or MEDLINE), Embase, PubMed Central®, ScienceDirect, Google Scholar, and Cochrane Library from inception until April 2021. We carried out a meta-analysis with random-effects model and reported pooled risk ratio (RR) or standardized mean difference (SMD) with 95% confidence interval (CI) depending on the type of outcome. RESULTS: We analysed 13 studies including 808 participants. Almost all were low-quality studies. For cardiac index, the pooled SMD was 0.14 (95% CI: -0.22 to 0.50); for cardiac troponin I, pooled SMD was 0.10 (95% CI: -0.28 to 0.48). For mortality, the RR was 3.00 (95% CI: 0.32 to 28.43); for MI, pooled RR was 1.58 (95% CI: 0.59 to 4.20); and for inotropic drug use, pooled RR was 1.04 (95% CI: 0.90 to 1.21). For length of intensive care unit stay, the pooled SMD was 0.13 (95% CI: -0.29 to 0.55), while pooled SMD for mechanical ventilation time was -0.02 (95% CI: -0.54 to 0.51). CONCLUSION: Isoflurane did not have significant cardioprotective effect compared to propofol following CABG. Hence, the anaesthetists need to check some viable alternatives to manage these patients and reduce the rate of postoperative complications.


Subject(s)
Anesthetics , Isoflurane , Propofol , Humans , Randomized Controlled Trials as Topic , Coronary Artery Bypass , Myocardium
18.
Zhonghua Yi Xue Za Zhi ; 104(15): 1316-1322, 2024 Apr 16.
Article in Chinese | MEDLINE | ID: mdl-38637168

ABSTRACT

Objective: To explore the relationship between gut microbiota and its metabolite dysregulation and postoperative cognitive dysfunction in elderly male C57BL/6J mice after laparotomy exploration. Methods: A total of 48 specific pathogen-free (SPF) male C57BL/6J mice, aged 16-17 months, were divided into two groups by random number table method: control group (n=24) and operation group (n=24). Mice in the operation group were induced with 1.4% isoflurane for 15 minutes, followed by a 10 minutes exploratory laparotomy anesthetized with 1.4% isoflurane and 100% oxygen, and anesthesia continued for 2 hours after surgery. Mice in control group were put in 100% oxygen for 2 hours. Feces and venous blood samples of both groups were collected 48 hours after surgery. Changes in the abundance and diversity of intestinal bacteria in the feces were detected by 16S rDNA gene sequencing. Functional changes of fecal metabolic profiles were detected by liquid chromatography tandem mass spectrometry (LC/MS) metabolomics and differential metabolite functions were analyzed. The serum level of interleukin (IL)-6, IL-1ß and tumor necrosis factor-α (TNF-α) were detected by Enzyme-linked immunosorbent assay (ELISA). The cognitive function of the mice was detected by Morris water maze test 3 days after operation. Results: The postoperative escape latency of mice in control group and operation group was (22.0±4.9) and (35.0±5.1) s, and the target quadrant residence time was (26.0±3.7) and (16.0±2.9) s, respectively. Compared with the control group, the postoperative escape latency of mice in the operation group was prolonged (P=0.035), and the residence time in the target quadrant was reduced (P=0.006). The difference of intestinal flora between the two groups was comparable. The expression levels of Escherichia coli, shigella and clostridium in the operation group were up-regulated, while the expression levels of rumen bacteria and butyricobacteria were down-regulated. Fecal metabolic profiles of mice in control group and operation group were obtained by LC/MS, and 14 and 21 different metabolites were screened in positive and negative ion modes, respectively. The different metabolites in positive ion mode were glutamic acid, 2-indoleic acid, kynuuric acid and glyceraldehyde. The negative ion pattern differential metabolites are methionine, aspartic acid, L-threonine, tyrosyl-threonine and 5-hydroxyindole-3-acetic acid. The identified differential metabolite pathways are mainly involved in amino acid, fatty acid and tryptophan metabolism and nucleotide synthesis. There were no significant differences in serum levels of IL-1ß, IL-6 and TNF-α between the two groups (all P>0.05). Conclusion: The dysregulated changes of gut microbiota and its metabolites are correlated with the occurrence of postoperative cognitive dysfunction in elderly male C57BL/6J mice. Anesthesia and surgery alter the structure of mice intestinal bacteria on the level of abundance, and change the metabolic balance and feces metabolomic phenotype.


Subject(s)
Gastrointestinal Microbiome , Isoflurane , Postoperative Cognitive Complications , Humans , Male , Mice , Animals , Aged , Tumor Necrosis Factor-alpha , Mice, Inbred C57BL , Laparotomy/adverse effects , Interleukin-6 , Oxygen , RNA, Ribosomal, 16S
19.
Biomed Phys Eng Express ; 10(3)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38565093

ABSTRACT

To treat diseases associated with vagal nerve control of peripheral organs, it is necessary to selectively activate efferent and afferent fibers in the vagus. As a result of the nerve's complex anatomy, fiber-specific activation proves challenging. Spatially selective neuromodulation using micromagnetic stimulation(µMS) is showing incredible promise. This neuromodulation technique uses microcoils(µcoils) to generate magnetic fields by powering them with a time-varying current. Following the principles of Faraday's law of induction, a highly directional electric field is induced in the nerve from the magnetic field. In this study on rodent cervical vagus, a solenoidalµcoil was oriented at an angle to left and right branches of the nerve. The aim of this study was to measure changes in the mean arterial pressure (MAP) and heart rate (HR) followingµMS of the vagus. Theµcoils were powered by a single-cycle sinusoidal current varying in pulse widths(PW = 100, 500, and 1000µsec) at a frequency of 20 Hz. Under the influence of isoflurane,µMS of the left vagus at 1000µsec PW led to an average drop in MAP of 16.75 mmHg(n = 7). In contrast,µMS of the right vagus under isoflurane resulted in an average drop of 11.93 mmHg in the MAP(n = 7). Surprisingly, there were no changes in HR to either right or left vagalµMS suggesting the drop in MAP associated with vagusµMS was the result of stimulation of afferent, but not efferent fibers. In urethane anesthetized rats, no changes in either MAP or HR were observed uponµMS of the right or left vagus(n = 3). These findings suggest the choice of anesthesia plays a key role in determining the efficacy ofµMS on the vagal nerve. Absence of HR modulation uponµMS could offer alternative treatment options using VNS with fewer heart-related side-effects.


Subject(s)
Anesthesia , Isoflurane , Rats , Animals , Isoflurane/pharmacology , Vagus Nerve/physiology , Heart , Heart Rate/physiology
20.
Vet Anaesth Analg ; 51(3): 253-265, 2024.
Article in English | MEDLINE | ID: mdl-38580536

ABSTRACT

OBJECTIVE: To evaluate cardiovascular effects of oral tasipimidine on propofol-isoflurane anaesthesia with or without methadone and dexmedetomidine at equianaesthetic levels. STUDY DESIGN: Prospective, placebo-controlled, blinded, experimental trial. ANIMALS: A group of seven adult Beagle dogs weighing (mean ± standard deviation) 12.4 ± 2.6 kg and a mean age of 20.6 ± 1 months. METHODS: The dogs underwent four treatments 60 minutes before induction of anaesthesia with propofol. PP: placebo orally and placebo (NaCl 0.9%) intravenously (IV); TP: tasipimidine 30 µg kg-1 orally and placebo IV; TMP: tasipimidine 30 µg kg-1 orally and methadone 0.2 mg kg-1 IV; and TMPD: tasipimidine 30 µg kg-1 orally with methadone 0.2 mg kg-1 and dexmedetomidine 1 µg kg-1 IV followed by 1 µg kg-1 hour-1. Isoflurane in oxygen was maintained for 120 minutes at 1.2 individual minimum alveolar concentration preventing motor movement. Cardiac output (CO), tissue blood flow (tbf), tissue oxygen saturation (stO2) and relative haemoglobin content were determined. Arterial and mixed venous blood gases, arterial and pulmonary artery pressures and heart rate (HR) were measured at baseline; 60 minutes after oral premedication; 5 minutes after IV premedication; 15, 30, 60, 90 and 120 minutes after propofol injection; and 30 minutes after switching the vaporiser off. Data were analysed by two-way anova for repeated measures; p < 0.05. RESULTS: Tasipimidine induced a significant 20-30% reduction in HR and CO with decreases in MAP (10-15%), tbf (40%) and stO2 (43%). Blood pressure and oxygenation variables were mainly influenced by propofol-isoflurane-oxygen anaesthesia, preceded by short-lived alterations related to IV methadone and dexmedetomidine. CONCLUSIONS AND CLINICAL RELEVANCE: Tasipimidine induced mild to moderate cardiovascular depression. It can be incorporated into a common anaesthetic protocol without detrimental effects in healthy dogs, when anaesthetics are administered to effect and cardiorespiratory function is monitored.


Subject(s)
Dexmedetomidine , Isoflurane , Methadone , Propofol , Pyrazoles , Animals , Dogs , Dexmedetomidine/administration & dosage , Dexmedetomidine/pharmacology , Propofol/administration & dosage , Propofol/pharmacology , Methadone/administration & dosage , Methadone/pharmacology , Female , Isoflurane/administration & dosage , Isoflurane/pharmacology , Heart Rate/drug effects , Male , Blood Pressure/drug effects , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/administration & dosage , Quinolizines/pharmacology , Quinolizines/administration & dosage , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/pharmacology , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacology , Premedication/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...