Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.538
Filter
1.
CNS Neurosci Ther ; 30(6): e14782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828651

ABSTRACT

BACKGROUND: The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia. METHODS: We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia. RESULTS: c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency. CONCLUSION: Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.


Subject(s)
Anesthesia, General , Consciousness , GABAergic Neurons , Isoflurane , Propofol , Propofol/pharmacology , Isoflurane/pharmacology , Animals , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Mice , Consciousness/drug effects , Consciousness/physiology , Male , Electroencephalography , Anesthetics, Inhalation/pharmacology , Anterior Thalamic Nuclei/drug effects , Anterior Thalamic Nuclei/physiology , Mice, Inbred C57BL , Mice, Transgenic , Anesthetics, Intravenous/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Optogenetics
2.
BMC Anesthesiol ; 24(1): 200, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840092

ABSTRACT

BACKGROUND: The inhalational anesthetic isoflurane is commonly utilized in clinical practice, particularly in the field of pediatric anesthesia. Research has demonstrated its capacity to induce neuroinflammation and long-term behavioral disorders; however, the underlying mechanism remains unclear [1]. The cation-chloride cotransporters Na+-K+-2Cl--1 (NKCC1) and K+-2Cl--2 (KCC2) play a pivotal role in regulating neuronal responses to gamma-aminobutyric acid (GABA) [2]. Imbalances in NKCC1/KCC2 can disrupt GABA neurotransmission, potentially leading to neural circuit hyperexcitability and reduced inhibition following neonatal exposure to anesthesia [3]. Therefore, this study postulates that anesthetics have the potential to dysregulate NKCC1 and/or KCC2 during brain development. METHODS: We administered 1.5% isoflurane anesthesia to neonatal rats for a duration of 4 h at postnatal day 7 (PND7). Anxiety levels were assessed using the open field test at PND28, while cognitive function was evaluated using the Morris water maze test between PND31 and PND34. Protein levels of NKCC1, KCC2, BDNF, and phosphorylated ERK (P-ERK) in the hippocampus were measured through Western blotting analysis. Pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were quantified using ELISA. RESULTS: We observed a decrease in locomotion trajectories within the central region and a significantly shorter total distance in the ISO group compared to CON pups, indicating that isoflurane induces anxiety-like behavior. In the Morris water maze (MWM) test, rats exposed to isoflurane exhibited prolonged escape latency onto the platform. Additionally, isoflurane administration resulted in reduced time spent crossing in the MWM experiment at PND34, suggesting long-term impairment of memory function. Furthermore, we found that isoflurane triggered activation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α; downregulated KCC2/BDNF/P-ERK expression; and increased the NKCC1/KCC2 ratio in the hippocampus of PND7 rats. Bumetadine (NKCC1 specific inhibitors) reversed cognitive damage and effective disorder induced by isoflurane in neonatal rats by inhibiting TNF-α activation, normalizing IL-6 and IL-1ß levels, restoring KCC2 expression levels as well as BDNF and ERK signaling pathways. Based on these findings, it can be speculated that BDNF, P-ERK, IL-1ß, IL-6 and TNF - α may act downstream of the NKCC1/KCC2 pathway. CONCLUSIONS: Our findings provide evidence that isoflurane administration in neonatal rats leads to persistent cognitive deficits through dysregulation of the Cation-Chloride Cotransporters NKCC1 and KCC2, BDNF, p-ERK proteins, as well as neuroinflammatory processes.


Subject(s)
Anesthetics, Inhalation , Animals, Newborn , Isoflurane , K Cl- Cotransporters , Solute Carrier Family 12, Member 2 , Symporters , Animals , Isoflurane/pharmacology , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/adverse effects , Rats , Mice , Rats, Sprague-Dawley , Male , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Female , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism
3.
Ann Card Anaesth ; 27(1): 10-16, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38722115

ABSTRACT

BACKGROUND AND OBJECTIVE: Regional analgesia is effective for post-thoracotomy pain. The primary objective of the study is to compare the intraoperative requirement of isoflurane and fentanyl between general anaesthesia (GA) with epidural analgesia and GA with paravertebral analgesia. METHODS AND MATERIAL: A prospective observational comparative study was conducted on 56 patients undergoing open thoracotomy procedures. The patients were divided into two groups of 28 by assigning the study participants alternatively to each group: Group GAE - received thoracic epidural catheterization with GA, and Group GAP - received ultrasound guided thoracic paravertebral catheterization on the operative side with GA. Intraoperative requirement of isoflurane, fentanyl, postoperative analgesia, stress response, need of rescue analgesics and adverse effects were observed and analysed. RESULTS: 25 patients in each group were included in the data analysis. The intraoperative requirement of isoflurane (32.28 ± 1.88 vs 48.31 ± 4.34 ml; p < 0.0001) and fentanyl (128.87 ± 25.12 vs 157 ± 30.92 µg; p = 0.0009) were significantly less in the GAE group than in the GAP group. VAS scores and need of rescue analgesics and blood glucose levels were not statistically significant during the postoperative period (p > 0.05). The incidence of adverse effects was comparable except for hypotension and urinary retention which were significantly higher in the GAE group. CONCLUSION: GA with epidural analgesia resulted in significant reduction in the intraoperative consumption of isoflurane and fentanyl in comparison to GA with paravertebral analgesia. However, both the techniques were equally effective in the postoperative period.


Subject(s)
Analgesia, Epidural , Anesthesia, General , Fentanyl , Pain, Postoperative , Thoracotomy , Humans , Female , Male , Thoracotomy/methods , Prospective Studies , Middle Aged , Anesthesia, General/methods , Fentanyl/administration & dosage , Analgesia, Epidural/methods , Pain, Postoperative/prevention & control , Pain, Postoperative/drug therapy , Adult , Isoflurane/administration & dosage , Anesthetics, Inhalation/administration & dosage , Analgesics/therapeutic use , Analgesics/administration & dosage , Aged , Nerve Block/methods
4.
Br Dent J ; 236(9): 680-682, 2024 May.
Article in English | MEDLINE | ID: mdl-38730155

ABSTRACT

Nitrous oxide is a widely used and well-established form of inhalation sedation in dentistry. Its properties have a wide margin of safety and allow for anxious, paediatric and adult patients to receive dental treatment with minimal impact upon discharge. Nitrous oxide has drawbacks, however, including its environmental impact and need for specialist equipment. Methoxyflurane is another drug which could prove to be an alternative to nitrous oxide. Methoxyflurane's use has proved popular within emergency medicine in Australia and New Zealand for its potent analgesic effects and recognition of its anxiolytic effect. As a result, its use in invasive outpatient procedures has now become popular. Unfortunately, there is very limited evidence of its use within dentistry as a form of inhalation sedation and analgesic. A wider evidence base should be established, as methoxyflurane could prove to be an effective and environmentally friendly alternative to nitrous oxide.


Subject(s)
Anesthesia, Dental , Anesthetics, Inhalation , Methoxyflurane , Nitrous Oxide , Humans , Methoxyflurane/administration & dosage , Methoxyflurane/therapeutic use , Methoxyflurane/pharmacology , Nitrous Oxide/administration & dosage , Anesthetics, Inhalation/administration & dosage , Anesthesia, Dental/methods , Isoflurane/administration & dosage , Conscious Sedation/methods
5.
Neurotox Res ; 42(3): 27, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819761

ABSTRACT

Early and prolonged exposure to anesthetic agents could cause neurodevelopmental disorders in children. Astrocytes, heavily outnumber neurons in the brain, are crucial regulators of synaptic formation and function during development. However, how general anesthetics act on astrocytes and the impact on cognition are still unclear. In this study, we investigated the role of ferroptosis and GPX4, a major hydroperoxide scavenger playing a pivotal role in suppressing the process of ferroptosis, and their underlying mechanism in isoflurane-induced cytotoxicity in astrocytes and cognitive impairment. Our results showed that early 6 h isoflurane anesthesia induced cognitive impairment in mice. Ferroptosis-relative genes and metabolic changes were involved in the pathological process of isoflurane-induced cytotoxicity in astrocytes. The level of GPX4 was decreased while the expression of 4-HNE and generation of ROS were elevated after isoflurane exposure. Selectively blocking ferroptosis with Fer-1 attenuated the abovementioned cytotoxicity in astrocytes, paralleling with the reverse of the changes in GPX4, ROS and 4-HNE secondary to isoflurane anesthesia. Fer-1 attenuated the cognitive impairment induced by prolonged isoflurane exposure. Thus, ferroptosis conduced towards isoflurane-induced cytotoxicity in astrocytes via suppressing GPX4 and promoting lipid peroxidation. Fer-1 was expected to be an underlying intervention for the neurotoxicity induced by isoflurane in the developing brain, and to alleviate cognitive impairment in neonates.


Subject(s)
Animals, Newborn , Astrocytes , Cognitive Dysfunction , Ferroptosis , Isoflurane , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Isoflurane/toxicity , Ferroptosis/drug effects , Ferroptosis/physiology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/metabolism , Mice , Anesthetics, Inhalation/toxicity , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism
6.
Sci Rep ; 14(1): 10669, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724577

ABSTRACT

Anaesthetics are used daily in human and veterinary medicine as well as in scientific research. Anaesthetics have an impact on cell homeostasis especially through modulation of protein post-translational modifications. O-GlcNAcylation, a ubiquitous post-translational modification, plays a role in many biological processes. The aims of this study were to evaluate whether (1) anaesthesia influences O-GlcNAcylation and (2) its stimulation affects physiological parameters. Male Wistar rats (n = 38) were anaesthetized with ketamine-xylazine or isoflurane. They randomly received either an intravenous injection of Ringer's lactate or NButGT (10mg/kg) in order to increase O-GlcNAcylation levels. One hour after induction of anaesthesia, haemodynamic parameters and plasmatic markers were evaluated. Heart, brain and lungs were harvested and O-GlcNAcylation levels and O-GlcNAc-related enzymes were evaluated by western blot. Cardiac and pulmonary O-GlcNAcylation levels and cardiac, cerebral and pulmonary O-GlcNAc associated enzyme expression were not impacted with anaesthesia. Compared with ketamine-xylazine, isoflurane had a lower impact on blood pressure, heart rate and glycaemia. Pharmacological stimulation of O-GlcNAcylation by NButGT did not affect the physiological parameters. This study offers unprecedented insights into the regulation of O-GlcNAcylation and O-GlcNAc related enzymes during anaesthesia. Pharmacological stimulation of O-GlcNAcylation over a 1-h period did not disrupt the physiological balance in healthy anaesthetized rats.


Subject(s)
Isoflurane , Ketamine , Rats, Wistar , Xylazine , Animals , Male , Rats , Isoflurane/pharmacology , Ketamine/pharmacology , Xylazine/pharmacology , Anesthesia , Acetylglucosamine/metabolism , Protein Processing, Post-Translational , Brain/metabolism , N-Acetylglucosaminyltransferases/metabolism , Heart Rate/drug effects , Lung/metabolism , Anesthetics/pharmacology , Blood Pressure/drug effects , Hemodynamics
7.
Physiol Meas ; 45(5)2024 May 21.
Article in English | MEDLINE | ID: mdl-38697205

ABSTRACT

Objectives.The purpose of this study is to investigate the age dependence of bilateral frontal electroencephalogram (EEG) coupling characteristics, and find potential age-independent depth of anesthesia monitoring indicators for the elderlies.Approach.We recorded bilateral forehead EEG data from 41 patients (ranged in 19-82 years old), and separated into three age groups: 18-40 years (n= 12); 40-65 years (n= 14), >65 years (n= 15). All these patients underwent desflurane maintained general anesthesia (GA). We analyzed the age-related EEG spectra, phase amplitude coupling (PAC), coherence and phase lag index (PLI) of EEG data in the states of awake, GA, and recovery.Main results.The frontal alpha power shows age dependence in the state of GA maintained by desflurane. Modulation index in slow oscillation-alpha and delta-alpha bands showed age dependence and state dependence in varying degrees, the PAC pattern also became less pronounced with increasing age. In the awake state, the coherence in delta, theta and alpha frequency bands were all significantly higher in the >65 years age group than in the 18-40 years age group (p< 0.05 for three frequency bands). The coherence in alpha-band was significantly enhanced in all age groups in GA (p< 0.01) and then decreased in recovery state. Notably, the PLI in the alpha band was able to significantly distinguish the three states of awake, GA and recovery (p< 0.01) and the results of PLI in delta and theta frequency bands had similar changes to those of coherence.Significance.We found the EEG coupling and synchronization between bilateral forehead are age-dependent. The PAC, coherence and PLI portray this age-dependence. The PLI and coherence based on bilateral frontal EEG functional connectivity measures and PAC based on frontal single-channel are closely associated with anesthesia-induced unconsciousness.


Subject(s)
Desflurane , Electroencephalography , Humans , Desflurane/pharmacology , Adult , Middle Aged , Aged , Electroencephalography/drug effects , Young Adult , Male , Female , Aged, 80 and over , Adolescent , Aging/physiology , Aging/drug effects , Frontal Lobe/drug effects , Frontal Lobe/physiology , Isoflurane/analogs & derivatives , Isoflurane/pharmacology , Anesthetics, Inhalation/pharmacology , Anesthesia, General
8.
Biomed Pharmacother ; 175: 116751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754266

ABSTRACT

Anesthesia inhibits neural activity in the brain, causing patients to lose consciousness and sensation during the surgery. Layers 2/3 of the cortex are important structures for the integration of information and consciousness, which are closely related to normal cognitive function. However, the dynamics of the large-scale population of neurons across multiple regions in layer 2/3 during anesthesia and recovery processes remains unclear. We conducted simultaneous observations and analysis of large-scale calcium signaling dynamics across multiple cortical regions within cortical layer 2/3 during isoflurane anesthesia and recovery in vivo by high-resolution wide-field microscopy. Under isoflurane-induced anesthesia, there is an overall decrease in neuronal activity across multiple regions in the cortical layer 2/3. Notably, some neurons display a paradoxical increase in activity during anesthesia. Additionally, the activity among multiple cortical regions under anesthesia was homogeneous. It is only during the recovery phase that variability emerges in the extent of increased neural activity across different cortical regions. Within the same duration of anesthesia, neural activity did not return to preanesthetic levels. To sum up, anesthesia as a dynamic alteration of brain functional networks, encompassing shifts in patterns of neural activity, homogeneousness among cortical neurons and regions, and changes in functional connectivity. Recovery from anesthesia does not entail a reversal of these effects within the same timeframe.


Subject(s)
Anesthetics, Inhalation , Cerebral Cortex , Isoflurane , Neurons , Isoflurane/pharmacology , Neurons/drug effects , Neurons/physiology , Animals , Anesthetics, Inhalation/pharmacology , Male , Cerebral Cortex/drug effects , Mice , Calcium Signaling/drug effects , Mice, Inbred C57BL
9.
Biosci Rep ; 44(6)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38757914

ABSTRACT

Surgeries that require general anesthesia occur in 1.5-2% of gestations. Isoflurane is frequently used because of its lower possibility of affecting fetal growth. Therefore, we examined the isoflurane anesthesia-induced effects on maternal hemodynamic and vascular changes. We hypothesized that isoflurane would enhance endothelium-dependent vasodilation as a consequence of increased nitric oxide and decreased metalloproteinases (MMPs). Female rats (n=28) were randomized into 4 groups (7 rats/group): conscious (non-anesthetized) non-pregnant group, non-pregnant anesthetized group, conscious pregnant group, and pregnant anesthetized group. Anesthesia was performed on the 20th pregnancy day, and hemodynamic parameters were monitored. Nitric oxide metabolites, gelatinolytic activity of MMP-2 and MMP-9, and the vascular function were assessed. Isoflurane caused no significant hemodynamic changes in pregnant compared with non-pregnant anesthetized group. Impaired acetylcholine-induced relaxations were observed only in conscious non-pregnant group (by approximately 62%) versus 81% for other groups. Phenylephrine-induced contractions were greater in endothelium-removed aorta segments of both pregnant groups (with or without isoflurane) compared with non-pregnant groups. Higher nitric oxide metabolites were observed in anesthetized pregnant in comparison with the other groups. Reductions in the 75 kDa activity and concomitant increases in 64 kDa MMP-2 isoforms were observed in aortas of pregnant anesthetized (or not) groups compared with conscious non-pregnant group. Isoflurane anesthesia shows stable effects on hemodynamic parameters and normal MMP-2 activation in pregnancy. Furthermore, there were increases in nitric oxide bioavailability, suggesting that isoflurane provides protective actions to the endothelium in pregnancy.


Subject(s)
Isoflurane , Matrix Metalloproteinase 2 , Nitric Oxide , Vasodilation , Animals , Female , Pregnancy , Isoflurane/pharmacology , Nitric Oxide/metabolism , Matrix Metalloproteinase 2/metabolism , Rats , Vasodilation/drug effects , Matrix Metalloproteinase 9/metabolism , Rats, Sprague-Dawley , Anesthetics, Inhalation/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Hemodynamics/drug effects
10.
Nutrients ; 16(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38794716

ABSTRACT

It has been demonstrated that isoflurane-induced anesthesia can increase the blood glucose level, leading to hyperglycemia and several adverse effects. The administration of a mix of ketone diester (KE) and medium-chain triglyceride (MCT) oil, named KEMCT, abolished the isoflurane-anesthesia-induced increase in blood glucose level and prolonged the recovery time from isoflurane anesthesia in a male preclinical rodent model, Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. While most preclinical studies use exclusively male animals, our previous study on blood glucose changes in response to KEMCT administration showed that the results can be sex-dependent. Thus, in this study, we investigated female WAG/Rij rats, whether KEMCT gavage (3 g/kg/day for 7 days) can change the isoflurane (3%)-anesthesia-induced increase in blood glucose level and the recovery time from isoflurane-evoked anesthesia using the righting reflex. Moreover, KEMCT-induced ketosis may enhance both the extracellular level of adenosine and the activity of adenosine A1 receptors (A1Rs). To obtain information on the putative A1R mechanism of action, the effects of an A1R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine; intraperitoneal/i.p. 0.2 mg/kg), on KEMCT-generated influences were also investigated. Our results show that KEMCT supplementation abolished the isoflurane-anesthesia-induced increase in blood glucose level, and this was abrogated by the co-administration of DPCPX. Nevertheless, KEMCT gavage did not change the recovery time from isoflurane-induced anesthesia. We can conclude that intragastric gavage of exogenous ketone supplements (EKSs), such as KEMCT, can abolish the isoflurane-anesthesia-induced increase in blood glucose level in both sexes likely through A1Rs in WAG/Rij rats, while recovery time was not affected in females, unlike in males. These results suggest that the administration of EKSs as an adjuvant therapy may be effective in mitigating metabolic side effects of isoflurane, such as hyperglycemia, in both sexes.


Subject(s)
Anesthetics, Inhalation , Blood Glucose , Isoflurane , Ketones , Animals , Female , Isoflurane/pharmacology , Isoflurane/administration & dosage , Blood Glucose/drug effects , Blood Glucose/metabolism , Rats , Ketones/administration & dosage , Ketones/pharmacology , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacology , Rats, Wistar , Dietary Supplements , Triglycerides/blood , Triglycerides/administration & dosage , Male , Adenosine/pharmacology , Adenosine/administration & dosage , Anesthesia/methods
11.
Saudi Med J ; 45(5): 468-475, 2024 May.
Article in English | MEDLINE | ID: mdl-38734439

ABSTRACT

OBJECTIVES: To compare the genotoxic effects of desflurane and propofol using comet assay in patients undergoing elective discectomy surgery. METHODS: This was a randomized controlled study. Patients who underwent elective lumbar discectomy under general anesthesia with propofol or desflurane were included in the study. Venous blood samples were obtained at 4 different time points: 5 minutes before anesthesia induction (T1), 2 hours after the start of anesthesia (T2), the first day after surgery (T3), and the fifth day following surgery (T4). Deoxyribonucleic acid damage in lymphocytes was assessed via the comet assay. RESULTS: A total of 30 patients, 15 in each group, were included in the analysis. The groups were similar in terms of age and gender distribution. There were no significant differences in demographics, duration of surgery, total remifentanil consumption, and total rocuronium bromide consumption. The comet assay revealed that head length, head intensity, tail intensity, tail moment at T1 were similar in the desflurane and propofol groups. Head length, tail length and tail moment measured in the desflurane group at T4 were significantly higher compared to the propofol group. Tail lengths of the desflurane group at T1, T2 and T3 were significantly higher than the corresponding values in the propofol group. CONCLUSION: Propofol and desflurane do not appear to induce DNA damage in lymphocytes. However, when the quantitative data were compared, it was determined that propofol had relatively lower genotoxic potential than desflurane.ClinicalTrials.gov Reg. No.: NCT05185167.


Subject(s)
Anesthetics, Inhalation , Comet Assay , DNA Damage , Desflurane , Diskectomy , Lymphocytes , Propofol , Humans , Propofol/adverse effects , Diskectomy/methods , Comet Assay/methods , Male , Lymphocytes/drug effects , Female , Adult , Middle Aged , Anesthetics, Inhalation/adverse effects , DNA Damage/drug effects , Lumbar Vertebrae/surgery , Anesthetics, Intravenous/adverse effects , Isoflurane/analogs & derivatives , Isoflurane/adverse effects
12.
Biomed Phys Eng Express ; 10(3)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38565093

ABSTRACT

To treat diseases associated with vagal nerve control of peripheral organs, it is necessary to selectively activate efferent and afferent fibers in the vagus. As a result of the nerve's complex anatomy, fiber-specific activation proves challenging. Spatially selective neuromodulation using micromagnetic stimulation(µMS) is showing incredible promise. This neuromodulation technique uses microcoils(µcoils) to generate magnetic fields by powering them with a time-varying current. Following the principles of Faraday's law of induction, a highly directional electric field is induced in the nerve from the magnetic field. In this study on rodent cervical vagus, a solenoidalµcoil was oriented at an angle to left and right branches of the nerve. The aim of this study was to measure changes in the mean arterial pressure (MAP) and heart rate (HR) followingµMS of the vagus. Theµcoils were powered by a single-cycle sinusoidal current varying in pulse widths(PW = 100, 500, and 1000µsec) at a frequency of 20 Hz. Under the influence of isoflurane,µMS of the left vagus at 1000µsec PW led to an average drop in MAP of 16.75 mmHg(n = 7). In contrast,µMS of the right vagus under isoflurane resulted in an average drop of 11.93 mmHg in the MAP(n = 7). Surprisingly, there were no changes in HR to either right or left vagalµMS suggesting the drop in MAP associated with vagusµMS was the result of stimulation of afferent, but not efferent fibers. In urethane anesthetized rats, no changes in either MAP or HR were observed uponµMS of the right or left vagus(n = 3). These findings suggest the choice of anesthesia plays a key role in determining the efficacy ofµMS on the vagal nerve. Absence of HR modulation uponµMS could offer alternative treatment options using VNS with fewer heart-related side-effects.


Subject(s)
Anesthesia , Isoflurane , Rats , Animals , Isoflurane/pharmacology , Vagus Nerve/physiology , Heart , Heart Rate/physiology
13.
Braz J Cardiovasc Surg ; 39(3): e20210424, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629941

ABSTRACT

OBJECTIVE: Intravenous non-volatile anaesthetics like propofol are commonly used in cardiac surgeries across several countries. Volatile anaesthetics like isoflurane may help in protecting the myocardium and minimize ischaemia-reperfusion injury. Hence, we did this review to compare the cardioprotective effect of isoflurane and propofol among patients undergoing coronary artery bypass grafting (CABG). METHODS: We conducted a search in the databases Medical Literature Analysis and Retrieval System Online (or MEDLINE), Embase, PubMed Central®, ScienceDirect, Google Scholar, and Cochrane Library from inception until April 2021. We carried out a meta-analysis with random-effects model and reported pooled risk ratio (RR) or standardized mean difference (SMD) with 95% confidence interval (CI) depending on the type of outcome. RESULTS: We analysed 13 studies including 808 participants. Almost all were low-quality studies. For cardiac index, the pooled SMD was 0.14 (95% CI: -0.22 to 0.50); for cardiac troponin I, pooled SMD was 0.10 (95% CI: -0.28 to 0.48). For mortality, the RR was 3.00 (95% CI: 0.32 to 28.43); for MI, pooled RR was 1.58 (95% CI: 0.59 to 4.20); and for inotropic drug use, pooled RR was 1.04 (95% CI: 0.90 to 1.21). For length of intensive care unit stay, the pooled SMD was 0.13 (95% CI: -0.29 to 0.55), while pooled SMD for mechanical ventilation time was -0.02 (95% CI: -0.54 to 0.51). CONCLUSION: Isoflurane did not have significant cardioprotective effect compared to propofol following CABG. Hence, the anaesthetists need to check some viable alternatives to manage these patients and reduce the rate of postoperative complications.


Subject(s)
Anesthetics , Isoflurane , Propofol , Humans , Randomized Controlled Trials as Topic , Coronary Artery Bypass , Myocardium
14.
Zhonghua Yi Xue Za Zhi ; 104(15): 1316-1322, 2024 Apr 16.
Article in Chinese | MEDLINE | ID: mdl-38637168

ABSTRACT

Objective: To explore the relationship between gut microbiota and its metabolite dysregulation and postoperative cognitive dysfunction in elderly male C57BL/6J mice after laparotomy exploration. Methods: A total of 48 specific pathogen-free (SPF) male C57BL/6J mice, aged 16-17 months, were divided into two groups by random number table method: control group (n=24) and operation group (n=24). Mice in the operation group were induced with 1.4% isoflurane for 15 minutes, followed by a 10 minutes exploratory laparotomy anesthetized with 1.4% isoflurane and 100% oxygen, and anesthesia continued for 2 hours after surgery. Mice in control group were put in 100% oxygen for 2 hours. Feces and venous blood samples of both groups were collected 48 hours after surgery. Changes in the abundance and diversity of intestinal bacteria in the feces were detected by 16S rDNA gene sequencing. Functional changes of fecal metabolic profiles were detected by liquid chromatography tandem mass spectrometry (LC/MS) metabolomics and differential metabolite functions were analyzed. The serum level of interleukin (IL)-6, IL-1ß and tumor necrosis factor-α (TNF-α) were detected by Enzyme-linked immunosorbent assay (ELISA). The cognitive function of the mice was detected by Morris water maze test 3 days after operation. Results: The postoperative escape latency of mice in control group and operation group was (22.0±4.9) and (35.0±5.1) s, and the target quadrant residence time was (26.0±3.7) and (16.0±2.9) s, respectively. Compared with the control group, the postoperative escape latency of mice in the operation group was prolonged (P=0.035), and the residence time in the target quadrant was reduced (P=0.006). The difference of intestinal flora between the two groups was comparable. The expression levels of Escherichia coli, shigella and clostridium in the operation group were up-regulated, while the expression levels of rumen bacteria and butyricobacteria were down-regulated. Fecal metabolic profiles of mice in control group and operation group were obtained by LC/MS, and 14 and 21 different metabolites were screened in positive and negative ion modes, respectively. The different metabolites in positive ion mode were glutamic acid, 2-indoleic acid, kynuuric acid and glyceraldehyde. The negative ion pattern differential metabolites are methionine, aspartic acid, L-threonine, tyrosyl-threonine and 5-hydroxyindole-3-acetic acid. The identified differential metabolite pathways are mainly involved in amino acid, fatty acid and tryptophan metabolism and nucleotide synthesis. There were no significant differences in serum levels of IL-1ß, IL-6 and TNF-α between the two groups (all P>0.05). Conclusion: The dysregulated changes of gut microbiota and its metabolites are correlated with the occurrence of postoperative cognitive dysfunction in elderly male C57BL/6J mice. Anesthesia and surgery alter the structure of mice intestinal bacteria on the level of abundance, and change the metabolic balance and feces metabolomic phenotype.


Subject(s)
Gastrointestinal Microbiome , Isoflurane , Postoperative Cognitive Complications , Humans , Male , Mice , Animals , Aged , Tumor Necrosis Factor-alpha , Mice, Inbred C57BL , Laparotomy/adverse effects , Interleukin-6 , Oxygen , RNA, Ribosomal, 16S
15.
Vet Anaesth Analg ; 51(3): 253-265, 2024.
Article in English | MEDLINE | ID: mdl-38580536

ABSTRACT

OBJECTIVE: To evaluate cardiovascular effects of oral tasipimidine on propofol-isoflurane anaesthesia with or without methadone and dexmedetomidine at equianaesthetic levels. STUDY DESIGN: Prospective, placebo-controlled, blinded, experimental trial. ANIMALS: A group of seven adult Beagle dogs weighing (mean ± standard deviation) 12.4 ± 2.6 kg and a mean age of 20.6 ± 1 months. METHODS: The dogs underwent four treatments 60 minutes before induction of anaesthesia with propofol. PP: placebo orally and placebo (NaCl 0.9%) intravenously (IV); TP: tasipimidine 30 µg kg-1 orally and placebo IV; TMP: tasipimidine 30 µg kg-1 orally and methadone 0.2 mg kg-1 IV; and TMPD: tasipimidine 30 µg kg-1 orally with methadone 0.2 mg kg-1 and dexmedetomidine 1 µg kg-1 IV followed by 1 µg kg-1 hour-1. Isoflurane in oxygen was maintained for 120 minutes at 1.2 individual minimum alveolar concentration preventing motor movement. Cardiac output (CO), tissue blood flow (tbf), tissue oxygen saturation (stO2) and relative haemoglobin content were determined. Arterial and mixed venous blood gases, arterial and pulmonary artery pressures and heart rate (HR) were measured at baseline; 60 minutes after oral premedication; 5 minutes after IV premedication; 15, 30, 60, 90 and 120 minutes after propofol injection; and 30 minutes after switching the vaporiser off. Data were analysed by two-way anova for repeated measures; p < 0.05. RESULTS: Tasipimidine induced a significant 20-30% reduction in HR and CO with decreases in MAP (10-15%), tbf (40%) and stO2 (43%). Blood pressure and oxygenation variables were mainly influenced by propofol-isoflurane-oxygen anaesthesia, preceded by short-lived alterations related to IV methadone and dexmedetomidine. CONCLUSIONS AND CLINICAL RELEVANCE: Tasipimidine induced mild to moderate cardiovascular depression. It can be incorporated into a common anaesthetic protocol without detrimental effects in healthy dogs, when anaesthetics are administered to effect and cardiorespiratory function is monitored.


Subject(s)
Dexmedetomidine , Isoflurane , Methadone , Propofol , Pyrazoles , Animals , Dogs , Dexmedetomidine/administration & dosage , Dexmedetomidine/pharmacology , Propofol/administration & dosage , Propofol/pharmacology , Methadone/administration & dosage , Methadone/pharmacology , Female , Isoflurane/administration & dosage , Isoflurane/pharmacology , Heart Rate/drug effects , Male , Blood Pressure/drug effects , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/administration & dosage , Quinolizines/pharmacology , Quinolizines/administration & dosage , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/pharmacology , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacology , Premedication/veterinary
16.
Mutat Res ; 828: 111857, 2024.
Article in English | MEDLINE | ID: mdl-38603928

ABSTRACT

Inhaled anesthetics, such as isoflurane, may cause side effects, including short-term immunosuppression and DNA damage. In contrast, low molecular weight fucoidan (LMF), derived from brown seaweed, exhibits promising immunomodulatory effects. In this study, we determined the effect of isoflurane on telomeres and examined the potential of LMF to ameliorate the harmful effects of isoflurane. Male Lewis rats, the mouse lymphoma cell line YAC-1, and the human nature killer cell line NK-92 MI were exposed to isoflurane. The relative telomere length (T/S) ratio and mRNA expression were determined by quantitative PCR. The viability assay was used to assess cell viability. In vivo, 2% isoflurane exposure, which is a clinically relevant concentration, reduced telomere length, and correlated with exposure frequency and duration. Isoflurane concentrations above 2% shortened YAC-1 telomeres, with minimal impact on cell viability. LMF pre-treatment enhanced NK-92 MI cell survival resulting from isoflurane exposure and exerted superior telomere protection compared with LMF post-treatment. Furthermore, adding LMF during isoflurane exposure resulted in a significant increase in IFN-γ, TNF-α, and IL-10 mRNA compared with the untreated group. LMF protected against isoflurane-induced telomere shortening, enhanced NK cell viability, and modulated cytokine expression, thus mitigating postoperative immune suppression and risk of tumor metastasis.


Subject(s)
Isoflurane , Killer Cells, Natural , Polysaccharides , Animals , Polysaccharides/pharmacology , Isoflurane/pharmacology , Isoflurane/toxicity , Mice , Male , Humans , Rats , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Anesthetics, Inhalation/toxicity , Anesthetics, Inhalation/pharmacology , Cell Survival/drug effects , Telomere/drug effects , Rats, Inbred Lew , Molecular Weight , Cell Line, Tumor , Telomere Homeostasis/drug effects
17.
Environ Mol Mutagen ; 65(3-4): 137-142, 2024.
Article in English | MEDLINE | ID: mdl-38679908

ABSTRACT

This study compared genetic damage and immunological markers between surgical patients who underwent inhalational anesthesia with isoflurane or sevoflurane. Blood samples were collected from surgical patients (n = 18 in the isoflurane group and n = 17 in the sevoflurane group) at baseline (before the anesthesia procedure) and the day after anesthesia. DNA damage was detected using an alkaline comet assay; proinflammatory interleukin (IL)-6 was detected by flow cytometry, and white blood cells were detected via an automatic hematology analyzer. The characteristics of both groups were similar, and neither of the two anesthetics induced DNA damage. Similarly, mild neutrophilia was observed after anesthesia in both groups. Increased IL-6 levels were observed 1 day after anesthesia regardless of the type of anesthetic, but this increase was greater in the isoflurane group. Our study suggested that isoflurane and sevoflurane administration may contribute to changes in the immune parameters measured, though no genotoxic hazard was identified, in healthy adult patients who undergo low-stress surgery.


Subject(s)
Anesthetics, Inhalation , Biomarkers , Comet Assay , DNA Damage , Interleukin-6 , Isoflurane , Sevoflurane , DNA Damage/drug effects , Humans , Anesthetics, Inhalation/adverse effects , Sevoflurane/adverse effects , Male , Female , Adult , Isoflurane/adverse effects , Middle Aged , Comet Assay/methods , Biomarkers/blood , Interleukin-6/blood , Methyl Ethers/adverse effects , Methyl Ethers/toxicity
18.
J Nanobiotechnology ; 22(1): 200, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654299

ABSTRACT

The glymphatic system plays an important role in the transportation of cerebrospinal fluid (CSF) and the clearance of metabolite waste in brain. However, current imaging modalities for studying the glymphatic system are limited. Herein, we apply NIR-II nanoprobes with non-invasive and high-contrast advantages to comprehensively explore the function of glymphatic system in mice under anesthesia and cerebral ischemia-reperfusion injury conditions. Our results show that the supplement drug dexmedetomidine (Dex) enhances CSF influx in the brain, decreases its outflow to mandibular lymph nodes, and leads to significant differences in CSF accumulation pattern in the spine compared to isoflurane (ISO) alone, while both ISO and Dex do not affect the clearance of tracer-filled CSF into blood circulation. Notably, we confirm the compromised glymphatic function after cerebral ischemia-reperfusion injury, leading to impaired glymphatic influx and reduced glymphatic efflux. This technique has great potential to elucidate the underlying mechanisms between the glymphatic system and central nervous system diseases.


Subject(s)
Glymphatic System , Reperfusion Injury , Animals , Glymphatic System/metabolism , Mice , Reperfusion Injury/metabolism , Male , Mice, Inbred C57BL , Brain/metabolism , Dexmedetomidine/pharmacology , Stroke , Anesthesia , Isoflurane/pharmacology , Nanoparticles/chemistry , Cerebrospinal Fluid/metabolism , Cerebrospinal Fluid/chemistry
19.
Exp Eye Res ; 243: 109914, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685338

ABSTRACT

A-scan ultrasonography enables precise measurement of internal ocular structures. Historically, its use has underpinned fundamental studies of eye development and aberrant eye growth in animal models of myopia; however, the procedure typically requires anaesthesia. Since anaesthesia affects intra-ocular pressure (IOP), we investigated changes in internal ocular structures with isoflurane exposure and compared measurements with those taken in awake animals using optical coherence tomography (OCT). Continuous A-scan ultrasonography was undertaken in tri-coloured guinea pigs aged 21 (n = 5), 90 (n = 5) or 160 (n = 5) days while anaesthetised (up to 36 min) with isoflurane (5% in 1.5L/min O2). Peaks were selected from ultrasound traces corresponding to the boundaries of the cornea, crystalline lens, retina, choroid and sclera. OCT scans (Zeiss Cirrus Photo 800) of the posterior eye layers were taken in 28-day-old animals (n = 19) and compared with ultrasound traces, with choroid and scleral thickness adjusted for the duration of anaesthesia based on the changes modelled in 21-day-old animals. Ultrasound traces recorded sequentially in left and right eyes in 14-day-old animals (n = 30) were compared, with each adjusted for anaesthesia duration. The thickness of the cornea was measured in enucleated eyes (n = 5) using OCT following the application of ultrasound gel (up to 20 min). Retinal thickness was the only ultrasound internal measure unaffected by anaesthesia. All other internal distances rapidly changed and were well fitted by exponential functions (either rise-to-max or decay). After 10 and 20 min of anaesthesia, the thickness of the cornea, crystalline lens and sclera increased by 17.1% and 23.3%, 0.4% and 0.6%, and 5.2% and 6.5% respectively, whilst the anterior chamber, vitreous chamber and choroid decreased by 4.4% and 6.1%, 0.7% and 1.1%, and 10.7% and 11.8% respectively. In enucleated eyes, prolonged contact of the cornea with ultrasound gel resulted in an increase in thickness of 9.3% after 10 min, accounting for approximately half of the expansion observed in live animals. At the back of the eye, ultrasound measurements of the thickness of the retina, choroid and sclera were highly correlated with those from posterior segment OCT images (R2 = 0.92, p = 1.2 × 10-13, R2 = 0.55, p = 4.0 × 10-4, R2 = 0.72, p = 5.0 × 10-6 respectively). Furthermore, ultrasound measures for all ocular components were highly correlated in left and right eyes measured sequentially, when each was adjusted for anaesthetic depth. This study shows that the depth of ocular components can change dramatically with anaesthesia. Researchers should therefore be wary of these concomitant effects and should employ adjustments to better render 'true' values.


Subject(s)
Anesthetics, Inhalation , Isoflurane , Tomography, Optical Coherence , Ultrasonography , Animals , Tomography, Optical Coherence/methods , Guinea Pigs , Isoflurane/pharmacology , Anesthetics, Inhalation/pharmacology , Choroid/drug effects , Choroid/diagnostic imaging , Aging/physiology , Intraocular Pressure/drug effects , Intraocular Pressure/physiology , Cornea/drug effects , Cornea/diagnostic imaging , Retina/drug effects , Retina/diagnostic imaging , Sclera/drug effects , Sclera/diagnostic imaging , Time Factors , Eye/diagnostic imaging , Eye/drug effects , Disease Models, Animal , Lens, Crystalline/diagnostic imaging , Lens, Crystalline/drug effects
20.
Eur J Pharmacol ; 970: 176494, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38484926

ABSTRACT

BACKGROUND: Inhalational anesthetics target the inhibitory extrasynaptic γ-aminobutyric acid type A (GABAA) receptors. Both neuronal and glial GABA mediate tonic inhibition of the extrasynaptic GABAA receptors. However, the role of glial GABA during inhalational anesthesia remains unclear. This study aimed to evaluate whether astrocytic GABA contributes to the action of different inhalational anesthetics. METHODS: Gene knockout of monoamine oxidase B (MAOB) was used to reduce astrocytic GABA levels in mice. The hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane were assessed by evaluating the loss of righting reflex (LORR) and tail-pinch withdrawal response (LTWR) in MAOB knockout and wild-type mice. Minimum alveolar concentration (MAC) for LORR, time to LORR, MAC for LTWR and time to LTWR of isoflurane, sevoflurane, and desflurane were assessed. RESULTS: Time to LORR and time to LTWR with isoflurane were significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001 and P = 0.032, respectively). Time to LORR with 0.8 MAC of sevoflurane was significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001), but not with 1.0 MAC of sevoflurane (P=0.217). MAC for LTWR was significantly higher in MAOB knockout mice exposed to sevoflurane (P < 0.001). With desflurane, MAOB knockout mice had a significantly higher MAC for LORR (P = 0.003) and higher MAC for LTWR (P < 0.001) than wild-type mice. CONCLUSIONS: MAOB knockout mice showed reduced sensitivity to the hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane. Behavioral tests revealed that the hypnotic and immobilizing effects of inhalational anesthetics would be mediated by astrocytic GABA.


Subject(s)
Anesthetics, Inhalation , Isoflurane , Methyl Ethers , Mice , Animals , Isoflurane/pharmacology , Sevoflurane/pharmacology , Desflurane/pharmacology , Anesthetics, Inhalation/pharmacology , gamma-Aminobutyric Acid , Hypnotics and Sedatives , Mice, Knockout , Receptors, GABA-A , Methyl Ethers/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...