Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.403
Filter
1.
PLoS One ; 19(5): e0278957, 2024.
Article in English | MEDLINE | ID: mdl-38722986

ABSTRACT

BACKGROUND: Monkeypox is a viral zoonotic disease commonly reported in humans in parts of Central and West Africa. This protocol is for an Expanded Access Programme (EAP) to be implemented in the Central African Republic, where Clade I monkeypox virus diseases is primarily responsible for most monkeypox infections. The objective of the programme is to provide patients with confirmed monkeypox with access to tecovirimat, a novel antiviral targeting orthopoxviruses, and collect data on clinical and virological outcomes of patients to inform future research. METHODS: The study will be conducted at participating hospitals in the Central African Republic. All patients who provide informed consent to enrol in the programme will receive tecovirimat. Patients will remain in hospital for the duration of treatment. Data on clinical signs and symptoms will be collected every day while the patient is hospitalised. Blood, throat and lesion samples will be collected at baseline and then on days 4, 8, 14 and 28. Patient outcomes will be assessed on Day 14 -end of treatment-and at Day 28. Adverse event and serious adverse event data will be collected from the point of consent until Day 28. DISCUSSION: This EAP is the first protocolised treatment programme in Clade I MPXV. The data generated under this protocol aims to describe the use of tecovirimat for Clade I disease in a monkeypox endemic region of Central Africa. It is hoped that this data can inform the definition of outcome measures used in future research and contribute to the academic literature around the use of tecovirimat for the treatment of monkeypox. The EAP also aims to bolster research capacity in the region in order for robust randomised controlled trials to take place for monkeypox and other diseases. TRIAL REGISTRATION: {2a & 2b}: ISRCTN43307947.


Subject(s)
Antiviral Agents , Mpox (monkeypox) , Humans , Mpox (monkeypox)/drug therapy , Antiviral Agents/therapeutic use , Monkeypox virus/drug effects , Benzamides/therapeutic use , Male , Adult , Female , Isoindoles/therapeutic use , Adolescent , Treatment Outcome , Alanine/analogs & derivatives , Alanine/therapeutic use , Phthalimides
2.
Adv Exp Med Biol ; 1451: 301-316, 2024.
Article in English | MEDLINE | ID: mdl-38801586

ABSTRACT

The smallpox infection with the variola virus was one of the most fatal disorders until a global eradication was initiated in the twentieth century. The last cases were reported in Somalia 1977 and as a laboratory infection in the UK 1978; in 1980, the World Health Organization (WHO) declared smallpox for extinct. The smallpox virus with its very high transmissibility and mortality is still a major biothreat, because the vaccination against smallpox was stopped globally in the 1980s. For this reason, new antivirals (cidofovir, brincidofovir, and tecovirimat) and new vaccines (ACAM2000, LC16m8 and Modified Vaccine Ankara MVA) were developed. For passive immunization, vaccinia immune globulin intravenous (VIGIV) is available. Due to the relationships between orthopox viruses such as vaccinia, variola, mpox (monkeypox), cowpox, and horsepox, the vaccines (LC16m8 and MVA) and antivirals (brincidofovir and tecovirimat) could also be used in the mpox outbreak with positive preliminary data. As mutations can result in drug resistance against cidofovir or tecovirimat, there is need for further research. Further antivirals (NIOCH-14 and ST-357) and vaccines (VACΔ6 and TNX-801) are being developed in Russia and the USA. In conclusion, further research for treatment and prevention of orthopox infections is needed and is already in progress. After a brief introduction, this chapter presents the smallpox and mpox disease and thereafter full overviews on antiviral treatment and vaccination including the passive immunization with vaccinia immunoglobulins.


Subject(s)
Antiviral Agents , Mpox (monkeypox) , Smallpox Vaccine , Smallpox , Smallpox/prevention & control , Smallpox/epidemiology , Smallpox/immunology , Smallpox/history , Humans , Antiviral Agents/therapeutic use , Smallpox Vaccine/immunology , Smallpox Vaccine/therapeutic use , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/prevention & control , Mpox (monkeypox)/immunology , Vaccination/methods , Variola virus/immunology , Variola virus/genetics , Animals , Cytosine/analogs & derivatives , Cytosine/therapeutic use , Monkeypox virus/immunology , Monkeypox virus/pathogenicity , Monkeypox virus/genetics , Immunization, Passive/methods , Organophosphonates/therapeutic use , Isoindoles/therapeutic use , Cidofovir/therapeutic use , Immunoglobulins, Intravenous/therapeutic use , Benzamides , Phthalimides
3.
Lasers Med Sci ; 39(1): 133, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771549

ABSTRACT

BACKGROUND: Tooth discoloration is a common concern in antimicrobial photodynamic therapy (aPDT) using various photosensitizers (PS). Toluidine Blue (TB), Methylene Blue (MB), Phthalocyanine (Pc), and 2-mercaptopyridine-substituted zinc phthalocyanine (TM-ZnPc) are among those studied, but their relative impacts on tooth discoloration remain unclear. AIM: This study aimed to compare the effects of TB, MB, Pc, and TM-ZnPc in aPDT on tooth discoloration, utilizing a controlled experimental setup. MATERIALS AND METHODS: The study comprised seventy-five single-rooted incisors with root canals. Following meticulous preparation, a standardized area on the crown surface was designated for examination, and precise measurements of the initial tooth colors were recorded. Samples were randomly divided into five groups: Negative control, MB, TM, Pc, and TM-ZnPc. Photoactivation was performed using LED light, and color measurements were taken at multiple time points up to 90 days. Data were converted to Lab* color values of the CIE Lab* color system (International Commission on Illumination, Vienna, Austria), and ΔE values were calculated. Statistical analysis was performed using Two-way ANOVA and Post-Hoc Tukey tests (p < 0.05). RESULTS: At day 7 and 30, TM-ZnPc and Pc caused less discoloration compared to MB and TB. TM-ZnPc caused more tooth discoloration compared to Pc (p < 0.05). Compared to baseline, MB and TM-ZnPc caused more tooth discoloration at 30 days and TB caused more tooth discoloration at 90 days (p < 0.05). No significant difference was observed in terms of tooth discoloration at all periods evaluated after Pc application (p > 0.05). All photosensitizers tested in the study caused tooth coloration. CONCLUSION: All PS induced clinically detectable tooth discoloration, with TB and MB causing more significant discoloration compared to Pc and TM-ZnPc at certain time points. TM-ZnPc and Pc demonstrated more stable coloration levels over time, suggesting their potential reliability in aPDT applications. This study highlights the importance of selecting appropriate PS to minimize tooth discoloration in aPDT, with Pc showing promise in this regard.


Subject(s)
Isoindoles , Methylene Blue , Photochemotherapy , Photosensitizing Agents , Spectrophotometry , Tolonium Chloride , Tooth Discoloration , Photochemotherapy/methods , Photochemotherapy/adverse effects , Photosensitizing Agents/administration & dosage , Humans , Tooth Discoloration/chemically induced , Methylene Blue/administration & dosage , Zinc Compounds , Indoles/adverse effects , Indoles/administration & dosage , Organometallic Compounds/administration & dosage , Organometallic Compounds/adverse effects
4.
Eur J Med Chem ; 272: 116467, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38735150

ABSTRACT

The World Health Organization (WHO) identifies several bunyaviruses as significant threats to global public health security. Developing effective therapies against these viruses is crucial to combat future outbreaks and mitigate their impact on patient outcomes. Here, we report the synthesis of some isoindol-1-one derivatives and explore their inhibitory properties over an indispensable metal-dependent cap-snatching endonuclease (Cap-ENDO) shared among evolutionary divergent bunyaviruses. The compounds suppressed RNA hydrolysis by Cap-ENDOs, with IC50 values predominantly in the lower µM range. Molecular docking studies revealed the interactions with metal ions to be essential for the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold activity. Calorimetric analysis uncovered Mn2+ ions to have the highest affinity for sites within the targets, irrespective of aminoacidic variations influencing metal cofactor preferences. Interestingly, spectrophotometric findings unveiled sole dinuclear species formation between the scaffold and Mn2+. Moreover, the complexation of two Mn2+ ions within the viral enzymes appears to be favourable, as indicated by the binding of compound 11 to TOSV Cap-ENDO (Kd = 28 ± 3 µM). Additionally, the tendency of compound 11 to stabilize His+ more than His- Cap-ENDOs suggests exploitable differences in their catalytic pockets relevant to improving specificity. Collectively, our results underscore the isoindolinone scaffold's potential as a strategic starting point for the design of pan-antibunyavirus drugs.


Subject(s)
Drug Design , Endonucleases , Molecular Docking Simulation , Endonucleases/metabolism , Endonucleases/antagonists & inhibitors , Isoindoles/chemical synthesis , Isoindoles/pharmacology , Isoindoles/chemistry , Structure-Activity Relationship , Molecular Structure , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Bunyaviridae/drug effects , Bunyaviridae/metabolism , Dose-Response Relationship, Drug , Humans
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732115

ABSTRACT

Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models-Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment.


Subject(s)
Antiviral Agents , Machine Learning , Molecular Dynamics Simulation , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Density Functional Theory , Thermodynamics , Isoindoles/chemistry , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Azoles/chemistry , Azoles/pharmacology
6.
Environ Sci Pollut Res Int ; 31(24): 35651-35665, 2024 May.
Article in English | MEDLINE | ID: mdl-38740683

ABSTRACT

In the present study, two iron phthalocyanine (FePc)-based nanocatalysts were synthesized and fully characterized. The carbon nanotubes (CNT) functionalized in an easy way with either Fe(II)Pc or Fe(III)Pc exhibit a very good catalytical activity. The activity in real wastewater effluent was comparable with the activity in distilled water. The procedure of modeling and optimizing with the assistance of chemometrics, utilizing design of experiments (DOE) and response surface methodology (RSM), revealed the conditions of optimum for decaying Reactive Yellow 84 on the nanocatalysts FePc_CNT. These optimal conditions included a catalyst dose of 1.70 g/L and an initial concentration (C0) of 20.0 mg/L. Under the indicated optimal conditions, the experimental findings verified that the removal efficiency was equal to Y = 98.92%, representing the highest observed value in this study. Under UVA light, after only 15 min of reaction, over 94% of dye was removed using both catalysts. The reuse experiments show that the activity of both nanohybrid material based on FePc-CNT slightly decreases over four consecutive runs. The quenching experiments show that RY84 was removed through radical pathways (O2•- and •OH) as well as non-radical pathways (1O2 and direct electron transfer).


Subject(s)
Indoles , Nanotubes, Carbon , Water Pollutants, Chemical , Nanotubes, Carbon/chemistry , Catalysis , Indoles/chemistry , Water Pollutants, Chemical/chemistry , Iron/chemistry , Isoindoles , Wastewater/chemistry , Ferrous Compounds
7.
Org Biomol Chem ; 22(20): 4057-4061, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38716633

ABSTRACT

An efficient and practical one-pot synthesis of isoindolines from readily available starting materials was achieved under mild conditions by implementing an isoindole umpolung strategy. A variety of isoindolines were prepared with good to excellent yields. Biological screens of these identified compounds demonstrated that they are potent potentiators of colistin for multi-drug resistant Acinetobacter baumannii.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Colistin , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Colistin/pharmacology , Colistin/chemical synthesis , Colistin/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Isoindoles/chemical synthesis , Isoindoles/pharmacology , Isoindoles/chemistry , Molecular Structure , Structure-Activity Relationship
8.
Transl Psychiatry ; 14(1): 200, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714646

ABSTRACT

Lithium is an effective augmenting agent for depressed patients with inadequate response to standard antidepressant therapy, but numerous adverse effects limit its use. We previously reported that a lithium-mimetic agent, ebselen, promoted a positive emotional bias-an indicator of potential antidepressant activity in healthy participants. We therefore aimed to investigate the effects of short-term ebselen treatment on emotional processing and brain neurochemistry in depressed patients with inadequate response to standard antidepressants. We conducted a double-blind, placebo-controlled 7-day experimental medicine study in 51 patients with major depressive disorder who were currently taking antidepressants but had an inadequate response to treatment. Participants received either ebselen 600 mg twice daily for seven days or identical matching placebo. An emotional testing battery, magnetic resonance spectroscopy and depression and anxiety rating scales were conducted at baseline and after seven days of treatment. Ebselen did not increase the recognition of positive facial expressions in the depressed patient group. However, ebselen increased the response bias towards fear emotion in the signal detection measurement. In the anterior cingulate cortex, ebselen significantly reduced the concentrations of inositol and Glx (glutamate+glutamine). We found no significant differences in depression and anxiety rating scales between visits. Our study did not find any positive shift in emotional bias in depressed patients with an inadequate response to antidepressant medication. We confirmed the ability of ebselen to lower inositol and Glx in the anterior cingulate cortex. These latter effects are probably mediated through inhibition of inositol monophosphatase and glutaminase respectively.


Subject(s)
Antidepressive Agents , Azoles , Depressive Disorder, Major , Emotions , Isoindoles , Organoselenium Compounds , Humans , Female , Male , Organoselenium Compounds/pharmacology , Double-Blind Method , Adult , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Middle Aged , Emotions/drug effects , Azoles/pharmacology , Magnetic Resonance Spectroscopy , Depressive Disorder, Treatment-Resistant/drug therapy , Depressive Disorder, Treatment-Resistant/metabolism , Gyrus Cinguli/metabolism , Gyrus Cinguli/drug effects , Gyrus Cinguli/diagnostic imaging , Brain/drug effects , Brain/metabolism , Brain/diagnostic imaging
9.
Sci Rep ; 14(1): 12118, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802492

ABSTRACT

Amyotrophic lateral sclerosis (ALS) selectively affects motor neurons. SOD1 is the first causative gene to be identified for ALS and accounts for at least 20% of the familial (fALS) and up to 4% of sporadic (sALS) cases globally with some geographical variability. The destabilisation of the SOD1 dimer is a key driving force in fALS and sALS. Protein aggregation resulting from the destabilised SOD1 is arrested by the clinical drug ebselen and its analogues (MR6-8-2 and MR6-26-2) by redeeming the stability of the SOD1 dimer. The in vitro target engagement of these compounds is demonstrated using the bimolecular fluorescence complementation assay with protein-ligand binding directly visualised by co-crystallography in G93A SOD1. MR6-26-2 offers neuroprotection slowing disease onset of SOD1G93A mice by approximately 15 days. It also protected neuromuscular junction from muscle denervation in SOD1G93A mice clearly indicating functional improvement.


Subject(s)
Amyotrophic Lateral Sclerosis , Azoles , Isoindoles , Organoselenium Compounds , Superoxide Dismutase-1 , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Animals , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Isoindoles/pharmacology , Mice , Azoles/pharmacology , Humans , Mice, Transgenic , Disease Models, Animal , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
10.
J Photochem Photobiol B ; 255: 112923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692166

ABSTRACT

Accurately visualizing the intracellular trafficking of upconversion nanoparticles (UCNPs) loaded with phthalocyanines and achieving precise photodynamic therapy (PDT) using near-infrared (NIR) laser irradiation still present challenges. In this study, a novel NIR laser-triggered upconversion luminescence (UCL) imaging-guided nanoparticle called FA@TPA-NH-ZnPc@UCNPs (FTU) was developed for PDT. FTU consisted of UCNPs, folic acid (FA), and triphenylamino-phenylaniline zinc phthalocyanine (TPA-NH-ZnPc). Notably, TPA-NH-ZnPc showcases aggregation-induced emission (AIE) characteristic and NIR absorption properties at 741 nm, synthesized initially via molybdenum-catalyzed condensation reaction. The UCL emitted by FTU enable real-time visualization of their subcellular localization and intracellular trafficking within ovarian cancer HO-8910 cells. Fluorescence images revealed that FTU managed to escape from lysosomes due to the "proton sponge" effect of TPA-NH-ZnPc. The FA ligands on the surface of FTU further directed their transport and accumulation within mitochondria. When excited by a 980 nm laser, FTU exhibited UCL and activated TPA-NH-ZnPc, consequently generating cytotoxic singlet oxygen (1O2), disrupted mitochondrial function and induced apoptosis in cancer cells, which demonstrated great potential for tumor ablation.


Subject(s)
Indoles , Infrared Rays , Isoindoles , Lysosomes , Mitochondria , Nanoparticles , Organometallic Compounds , Photochemotherapy , Zinc Compounds , Zinc Compounds/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Indoles/chemistry , Indoles/pharmacology , Lysosomes/metabolism , Humans , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Nanoparticles/chemistry , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Singlet Oxygen/metabolism , Female , Folic Acid/chemistry
11.
ACS Appl Bio Mater ; 7(5): 3215-3226, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38695746

ABSTRACT

This study presents a tetra-substituted phthalonitrile derivative, namely, diethyl 2-(3,4-dicyano-2,5-bis(hexyloxy)-6-(4-(trifluoromethoxy)phenoxy)phenyl)malonate (a), cyclotetramerizing in the presence of some metal salts. The resultant hexadeca-substituted metal phthalocyanines [M= Co, Zn, InCl)] (b-d) were used for the modification of reduced graphene oxide for the first time. The effect of the phthalonitrile/metal phthalocyanines on biological features of reduced graphene oxide (rGO) was extensively examined by the investigation of antioxidant, antimicrobial, DNA cleavage, cell viability, and antibiofilm activities of nanobioagents (1-4). The results were compared with those of unmodified rGO (nanobioagent 5), as well. Modification of reduced graphene oxide with the synthesized compounds improved its antioxidant activity. The antioxidant activities of all the tested nanobioagents also enhanced as the concentration increased. The antibacterial activities of all the nanobioagents improved by applying the photodynamic therapeutic (PDT) method. All the phthalonitrile/phthalocyanine-based nanobioagents (especially phthalocyanine-based nanocomposites) exhibited DNA cleavage activities, and complete DNA fragmentation was observed for nanobioagents (1-4) at 200 mg/L. They can be used as potent antimicrobial and antimicrobial photodynamic therapy agents as well as Escherichia coli microbial cell inhibitors. As a result, the prepared nanocomposites can be considered promising candidates for biomedicine.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Graphite , Indoles , Isoindoles , Materials Testing , Particle Size , Graphite/chemistry , Graphite/pharmacology , Indoles/chemistry , Indoles/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Microbial Sensitivity Tests , Cell Survival/drug effects , Escherichia coli/drug effects , Molecular Structure , Biofilms/drug effects , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Oxides/chemistry , Oxides/pharmacology
12.
BMC Med ; 22(1): 148, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561738

ABSTRACT

BACKGROUND: Indobufen is widely used in patients with aspirin intolerance in East Asia. The OPTION trial launched by our cardiac center examined the performance of indobufen based dual antiplatelet therapy (DAPT) after percutaneous coronary intervention (PCI). However, the vast majority of patients with acute coronary syndrome (ACS) and aspirin intolerance were excluded. We aimed to explore this question in a real-world population. METHODS: Patients enrolled in the ASPIRATION registry were grouped according to the DAPT strategy that they received after PCI. The primary endpoints were major adverse cardiovascular and cerebrovascular events (MACCE) and Bleeding Academic Research Consortium (BARC) type 2, 3, or 5 bleeding. Propensity score matching (PSM) was adopted for confounder adjustment. RESULTS: A total of 7135 patients were reviewed. After one-year follow-up, the indobufen group was associated with the same risk of MACCE versus the aspirin group after PSM (6.5% vs. 6.5%, hazard ratio [HR] = 0.99, 95% confidence interval [CI] = 0.65 to 1.52, P = 0.978). However, BARC type 2, 3, or 5 bleeding was significantly reduced (3.0% vs. 11.9%, HR = 0.24, 95% CI = 0.15 to 0.40, P < 0.001). These results were generally consistent across different subgroups including aspirin intolerance, except that indobufen appeared to increase the risk of MACCE in patients with ACS. CONCLUSIONS: Indobufen shared the same risk of MACCE but a lower risk of bleeding after PCI versus aspirin from a real-world perspective. Due to the observational nature of the current analysis, future studies are still warranted to further evaluate the efficacy of indobufen based DAPT, especially in patients with ACS. TRIAL REGISTRATION: Chinese Clinical Trial Register ( https://www.chictr.org.cn ); Number: ChiCTR2300067274.


Subject(s)
Acute Coronary Syndrome , Isoindoles , Percutaneous Coronary Intervention , Phenylbutyrates , Humans , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/surgery , Aspirin/adverse effects , Drug Therapy, Combination , Hemorrhage/chemically induced , Hemorrhage/epidemiology , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Platelet Aggregation Inhibitors/adverse effects , Registries , Treatment Outcome
13.
Top Curr Chem (Cham) ; 382(2): 12, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589598

ABSTRACT

Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.


Subject(s)
Iodine , Isoindoles , Organoselenium Compounds , Selenium , Iodine/chemistry , Indicators and Reagents , Organoselenium Compounds/chemistry , Lactones/chemistry , Carbon
14.
Carbohydr Polym ; 336: 122134, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670761

ABSTRACT

In our research we used the anionic nanofibrillar cellulose (ANFC) as a platform for far-red light-induced release of cargo from liposomes. In contrast to previous works, where photosensitizers are usually in the liposomal bilayers, we used a cellulose-binding dye. Our phthalocyanine derivative has been shown to bind very strongly to cellulose and cellulose nanofiber hydrogels, allowing us to place it outside of the liposomes. Both the sensitizer and cationic liposomes bind strongly to the ANFC after mixing, making the system easy to fabricate. Upon light activation, the photosensitizer generates reactive oxygen species (ROS) within the ANFC hydrogel, where the reactive oxygen species oxidize unsaturated lipids in the liposomal membrane, which makes the liposomes more permeable, resulting in on-demand cargo release. We were able to achieve ca. 70 % release of model hydrophilic cargo molecule calcein from the hydrogels with a relatively low dose of light (262 J/cm2) while employing the straightforward fabrication techniques. Our system was remarkably responsive to the far-red light (730 nm), enabling deep tissue penetration. Therefore, this very promising novel cellulose-immobilized photosensitizer liposomal platform could be used as a controlled drug delivery system, which can have applications in externally activated coatings or implants.


Subject(s)
Cellulose , Hydrogels , Light , Liposomes , Nanofibers , Photosensitizing Agents , Liposomes/chemistry , Cellulose/chemistry , Photosensitizing Agents/chemistry , Hydrogels/chemistry , Nanofibers/chemistry , Reactive Oxygen Species/metabolism , Isoindoles , Drug Liberation , Fluoresceins/chemistry , Indoles/chemistry , Red Light
15.
PLoS One ; 19(4): e0299079, 2024.
Article in English | MEDLINE | ID: mdl-38630772

ABSTRACT

Organic photovoltaic cells are a promising technology for generating renewable energy from sunlight. These cells are made from organic materials, such as polymers or small molecules, and can be lightweight, flexible, and low-cost. Here, we have created a novel mixture of magnesium phthalocyanine (MgPc) and chlorophenyl ethyl diisoquinoline (Ch-diisoQ). A coating unit has been utilized in preparing MgPc, Ch-diisoQ, and MgPc-Ch-diisoQ films onto to FTO substrate. The MgPc-Ch-diisoQ film has a spherical and homogeneous surface morphology with a grain size of 15.9 nm. The optical absorption of the MgPc-Ch-diisoQ film was measured, and three distinct bands were observed at 800-600 nm, 600-400 nm, and 400-250 nm, with a band gap energy of 1.58 eV. The current density-voltage and capacitance-voltage measurements were performed to analyze the photoelectric properties of the three tested cells. The forward current density obtained from our investigated blend cell is more significant than that for each material by about 22%. The photovoltaic parameters (Voc, Isc, and FF) of the MgPc-Ch-diisoQ cell were found to be 0.45 V, 2.12 µA, and 0.4, respectively. We believe that our investigated MgPc-Ch-diisoQ film will be a promising active layer in organic solar cells.


Subject(s)
Edible Grain , Isoindoles , Magnesium , Electric Capacitance , Electronics , Indoles
16.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675664

ABSTRACT

The integration of a multidimensional treatment dominated by active ingredients of traditional Chinese medicine (TCM), including enhanced chemotherapy and synergistically amplification of oxidative damage, into a nanoplatform would be of great significance for furthering accurate and effective cancer treatment with the active ingredients of TCM. Herein, in this study, we designed and synthesized four matrine-proteolysis-targeting chimeras (PROTACs) (depending on different lengths of the chains named LST-1, LST-2, LST-3, and LST-4) based on PROTAC technology to overcome the limitations of matrine. LST-4, with better anti-tumor activity than matrine, still degrades p-Erk and p-Akt proteins. Moreover, LST-4 NPs formed via LST-4 self-assembly with stronger anti-tumor activity and glutathione (GSH) depletion ability could be enriched in lysosomes through their outstanding enhanced permeability and retention (EPR) effect. Then, we synthesized LST-4@ZnPc NPs with a low-pH-triggered drug release property that could release zinc(II) phthalocyanine (ZnPc) in tumor sites. LST-4@ZnPc NPs combine the application of chemotherapy and phototherapy, including both enhanced chemotherapy from LST-4 NPs and the synergistic amplification of oxidative damage, through increasing the reactive oxygen species (ROS) by photodynamic therapy (PDT), causing an GSH decrease via LST-4 mediation to effectively kill tumor cells. Therefore, multifunctional LST-4@ZnPc NPs are a promising method for killing cancer cells, which also provides a new paradigm for using natural products to kill tumors.


Subject(s)
Alkaloids , Glutathione , Indoles , Isoindoles , Matrines , Quinolizines , Reactive Oxygen Species , Alkaloids/chemistry , Alkaloids/pharmacology , Reactive Oxygen Species/metabolism , Quinolizines/chemistry , Quinolizines/pharmacology , Glutathione/metabolism , Humans , Animals , Indoles/chemistry , Indoles/pharmacology , Mice , Cell Line, Tumor , Zinc Compounds/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Photochemotherapy/methods , Proteolysis , Nanoparticles/chemistry
17.
J Inorg Biochem ; 256: 112570, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685138

ABSTRACT

This work reports on the synthesis of triphenylphosphine-labelled cationic phthalocyanines (Pc) complexed with bovine serum albumin (BSA) and gold nanoparticles (Au NPs). This nano-complex (Pc-BSA-Au) is studied for its photodynamic therapy (PDT) activity compared to the non-complexed Pc counterpart. The photochemical properties and in vitro PDT efficacies of the Pc and the nano-complex were determined and are compared herein. The singlet oxygen (1O2) yields of the Pcs were determined and are reported in DMF. A singlet oxygen quantum yield of 0.47 was obtained for the Pcs. The PDT efficacies of the complexes were thereafter determined using malignant melanoma A375 cancer cell line in vitro. An increase in the cell toxicity was observed for cells treated with Pc-BSA-Au compared to those treated with the Pc alone. The cell survival percentages were 23.1% for cells treated with Pc-BSA-Au and 48.7% for those treated with Pc alone under PDT treatments.


Subject(s)
Gold , Indoles , Isoindoles , Melanoma , Metal Nanoparticles , Organophosphorus Compounds , Photochemotherapy , Photosensitizing Agents , Serum Albumin, Bovine , Gold/chemistry , Gold/pharmacology , Serum Albumin, Bovine/chemistry , Humans , Metal Nanoparticles/chemistry , Photochemotherapy/methods , Indoles/chemistry , Indoles/pharmacology , Cell Line, Tumor , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Melanoma/drug therapy , Melanoma/pathology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Cattle , Singlet Oxygen/metabolism
18.
Indian J Pharmacol ; 56(2): 129-135, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38687317

ABSTRACT

ABSTRACT: The virus known as monkeypox is the source of the zoonotic disease monkeypox, which was historically widespread in Central Africa and West Africa. The cases of monkeypox in humans are uncommon outside of West and Central Africa, but copious nonendemic nations outside of Africa have recently confirmed cases. People when interact with diseased animals, then, they may inadvertently contact monkeypox. There are two drugs in the market: brincidofovir and tecovirimat and both of these drugs are permitted for the cure of monkeypox by the US Food and Drug Administration. The present review summarizes the various parameters of monkeypox in context with transmission, signs and symptoms, histopathological and etiological changes, and possible treatment. Monkeypox is clinically similar to that of smallpox infection but epidemiologically, these two are different, the present study also signifies the main differences and similarities of monkeypox to that of other infectious diseases. As it is an emerging disease, it is important to know about the various factors related to monkeypox so as to control it on a very early stage of transmission.


Subject(s)
Antiviral Agents , Communicable Diseases, Emerging , Cytosine/analogs & derivatives , Mpox (monkeypox) , Phthalimides , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/transmission , Humans , Animals , Antiviral Agents/therapeutic use , Communicable Diseases, Emerging/epidemiology , Cytosine/therapeutic use , Monkeypox virus , Isoindoles/therapeutic use , Organothiophosphorus Compounds , Organophosphonates/therapeutic use , Benzamides/therapeutic use
19.
Biomed Mater ; 19(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38653254

ABSTRACT

Cervical carcinoma persists as a major global public health burden. While conventional therapeutic modalities inevitably cause ablation of adjacent non-tumorous tissues, photodynamic therapy (PDT) offers a targeted cytotoxic strategy through a photosensitizing agent (PS). However, the hydrophobicity and lack of selective accumulation of promising PS compounds such as zinc(II) phthalocyanine (ZnPc) impedes their clinical translation as standalone agents. The present study sought to incorporate ZnPc within double-layer hollow mesoporous silica nanoparticles (DHMSN) as nanocarriers to enhance aqueous dispersibility and tumor specificity. Owing to their compartmentalized design, the hollow mesoporous silica nanoparticles (HMSN) demonstrated enhanced ultrasonic imaging contrast. Combined with the vaporization of the perfluorocarbon perfluoropentane (PFP), the HMSN-encapsulated ZnPc enabled real-time ultrasound monitoring of PDT treatment.In vivo, the innate thermal energy induced vaporization of the DHMSN-carried PFP to significantly amplify ultrasound signals from the tumor site. Results demonstrated biocompatibility, efficient PFP microbubble generation, and robust photocatalytic activity. Collectively, this investigation establishes ultrasound-guided PDT utilizing multi-layer HMSN as a targeted therapeutic strategy for cervical malignancies with mitigated toxicity.


Subject(s)
Fluorocarbons , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Silicon Dioxide , Photochemotherapy/methods , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Humans , Animals , Female , Fluorocarbons/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Porosity , Mice , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/diagnostic imaging , Ultrasonography/methods , Indoles/chemistry , Microbubbles , Isoindoles , Cell Line, Tumor , HeLa Cells
20.
Biomacromolecules ; 25(5): 3044-3054, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38662992

ABSTRACT

Photodynamic therapy (PDT) has demonstrated efficacy in eliminating local tumors, yet its effectiveness against metastasis is constrained. While immunotherapy has exhibited promise in a clinical context, its capacity to elicit significant systemic antitumor responses across diverse cancers is often limited by the insufficient activation of the host immune system. Consequently, the combination of PDT and immunotherapy has garnered considerable attention. In this study, we developed pH-responsive porphyrin-peptide nanosheets with tumor-targeting capabilities (PRGD) that were loaded with the IDO inhibitor NLG919 for a dual application involving PDT and immunotherapy (PRGD/NLG919). In vitro experiments revealed the heightened cellular uptake of PRGD/NLG919 nanosheets in tumor cells overexpressing αvß3 integrins. The pH-responsive PRGD/NLG919 nanosheets demonstrated remarkable singlet oxygen generation and photocytotoxicity in HeLa cells in an acidic tumor microenvironment. When treating HeLa cells with PRGD/NLG919 nanosheets followed by laser irradiation, a more robust adaptive immune response occurred, leading to a substantial proliferation of CD3+CD8+ T cells and CD3+CD4+ T cells compared to control groups. Our pH-responsive targeted PRGD/NLG919 nanosheets therefore represent a promising nanosystem for combination therapy, offering effective PDT and an enhanced host immune response.


Subject(s)
Immunotherapy , Nanostructures , Photochemotherapy , Humans , Photochemotherapy/methods , Hydrogen-Ion Concentration , Immunotherapy/methods , Nanostructures/chemistry , HeLa Cells , Animals , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Mice , Peptides/chemistry , Peptides/pharmacology , Tumor Microenvironment/drug effects , Porphyrins/chemistry , Porphyrins/pharmacology , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Imidazoles , Isoindoles
SELECTION OF CITATIONS
SEARCH DETAIL
...