Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 735
Filter
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 540-545, 2024 May 10.
Article in Chinese | MEDLINE | ID: mdl-38684297

ABSTRACT

OBJECTIVE: To explore the clinical, biochemical and genetic characteristics of three children with Isoleucine metabolic disorders due to variants of HSD17B10 and ACAT1 genes. METHODS: Two children with 17ß hydroxysteroid dehydrogenase 10 (HSD17B10) deficiency and a child with ß-ketothiolase deficiency (BKD) diagnosed at Shanghai Children's Hospital between 2014 and 2021 were selected as the study subjects. Clinical data of the children were collected. The children were subjected to blood acylcarnitine, urinary organic acid and genetic testing, and candidate variants were analyzed with bioinformatic tools. RESULTS: The main symptoms of the three children had included epilepsy, developmental delay, hypotonia and acidosis. Their blood acylcarnitine methylcrotonyl carnitine (C5:1), 3-hydroxyisovalerylcarnitine (C5-OH) and 3-hydroxybutylcarnitine (C4OH) were increased to various extents, and urine organic acids including methyl crotonylglycine and 2-methyl-3-hydroxybutyric acid were significantly increased. Child 1 and child 2 were respectively found to harbor a c.347G>A (p.R116Q) variant and a c.274G>A (p.A92T) variant of the HSD17B10 gene, and child 3 was found to harbor compound heterozygous variants of the ACAT1 gene, namely c.547G>A (p.G183R) and a c.331G>C (p.A111P). Among these, the c.274G>A (p.A92T) and c.331G>C (p.A111P) variants were unreported previously. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), they were respectively classified as variant of unknown significance (PP3_Strong+PM2_supporting) and likely pathogenic (PM3+PM2_Supporting+PP3_Moderate+PP4). CONCLUSION: Both the HSD17B10 deficiency and BKD can lead to Isoleucine metabolism disorders, which may be difficult to distinguish clinically. Genetic testing can further confirm the diagnosis. Discoveries of the HSD17B10: c.274G>A (p.A92T) variant and the ACAT1: c.331G>C (p.A111P) variant have enriched the mutational spectrum of the two diseases.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases , Acetyl-CoA C-Acetyltransferase , Acetyl-CoA C-Acyltransferase/deficiency , Amino Acid Metabolism, Inborn Errors , Isoleucine , Humans , Male , Female , Acetyl-CoA C-Acetyltransferase/genetics , Isoleucine/genetics , Infant , Child, Preschool , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/diagnosis , Child , Mutation , Carnitine/analogs & derivatives , Carnitine/blood , Carnitine/urine
2.
J Am Heart Assoc ; 13(5): e032084, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38420789

ABSTRACT

BACKGROUND: This study aimed to investigate the causal relationships between branched-chain amino acids (BCAAs) and the risks of hypertension via meta-analysis and Mendelian randomization analysis. METHODS AND RESULTS: A meta-analysis of 32 845 subjects was conducted to evaluate the relationships between BCAAs and hypertension. In Mendelian randomization analysis, independent single-nucleotide polymorphisms associated with BCAAs at the genome-wide significance level were selected as the instrumental variables. Meanwhile, the summary-level data for essential hypertension and secondary hypertension end points were obtained from the FinnGen study. As suggested by the meta-analysis results, elevated BCAA levels were associated with a higher risk of hypertension (isoleucine: summary odds ratio, 1.26 [95% CI, 1.08-1.47]; leucine: summary odds ratio, 1.28 [95% CI, 1.07-1.52]; valine: summary odds ratio, 1.32 [95% CI, 1.12-1.57]). Moreover, the inverse variance-weighted method demonstrated that an elevated circulating isoleucine level might be the causal risk factor for essential hypertension but not secondary hypertension (essential hypertension: odds ratio, 1.22 [95% CI, 1.12-1.34]; secondary hypertension: odds ratio, 0.96 [95% CI, 0.54-1.68]). CONCLUSIONS: The increased levels of 3 BCAAs positively correlated with an increased risk of hypertension. Particularly, elevated isoleucine level is a causal risk factor for essential hypertension. Increased levels of leucine and valine also tend to increase the risk of essential hypertension, but further verification is still warranted.


Subject(s)
Amino Acids, Branched-Chain , Hypertension , Humans , Amino Acids, Branched-Chain/metabolism , Isoleucine/genetics , Leucine , Mendelian Randomization Analysis , Valine , Hypertension/epidemiology , Hypertension/genetics , Hypertension/chemically induced , Essential Hypertension , Genome-Wide Association Study
3.
Obesity (Silver Spring) ; 32(2): 423-435, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38269471

ABSTRACT

OBJECTIVE: Genetic studies have suggested that the branched-chain amino acids (BCAAs) valine, leucine, and isoleucine have a causal association with type 2 diabetes (T2D). However, inferences are based on a limited number of genetic loci associated with BCAAs. METHODS: Instrumental variables (IVs) for each BCAA were constructed and validated using large well-powered data sets and their association with T2D was tested using a two-sample inverse-variance weighted Mendelian randomization approach. Sensitivity analyses were performed to ensure the accuracy of the findings. A reverse association was assessed using instrumental variables for T2D. RESULTS: Estimated effect sizes between BCAA IVs and T2D, excluding outliers, were as follows: valine (ß = 0.14 change in log-odds per SD change in valine, 95% CI: -0.06 to 0.33, p = 0.17), leucine (ß = 0.15, 95% CI: -0.02 to 0.32, p = 0.09), and isoleucine (ß = 0.13, 95% CI: -0.08 to 0.34, p = 0.24). In contrast, T2D IVs were positively associated with each BCAA, i.e., valine (ß = 0.08 per SD change in levels per log-odds change in T2D, 95% CI: 0.05 to 0.10, p = 1.8 × 10-9 ), leucine (ß = 0.06, 95% CI: 0.04 to 0.09, p = 4.5 × 10-8 ), and isoleucine (ß = 0.06, 95% CI: 0.04 to 0.08, p = 2.8 × 10-8 ). CONCLUSIONS: These data suggest that the BCAAs are not mediators of T2D risk but are biomarkers of diabetes.


Subject(s)
Amino Acids, Branched-Chain , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Mendelian Randomization Analysis , Isoleucine/genetics , Leucine/genetics , Valine/genetics
4.
Clin Nutr ; 42(12): 2493-2502, 2023 12.
Article in English | MEDLINE | ID: mdl-37922693

ABSTRACT

BACKGROUND: Studies have suggested a possible relevance between branched-chain amino acid (BCAA) catabolic enzymes and cancers. However, few studies have explored the variation in circulating concentrations of BCAAs. Our study used bi-directional, two-sample Mendelian randomization (MR) analysis for predicting the causality between the BCAA levels and 9 types of cancers. METHODS: The largest genome-wide association studies (GWAS) provided data for total BCAAs, valine, leucine, and isoleucine from the UK Biobank. Data on multiple cancer endpoints were collected from various sources, such as the International Lung Cancer Consortium (ILCCO), the Pancreatic Cancer Cohort Consortium 1 (PanScan1), the Breast Cancer Association Consortium (BCAC), the FinnGen Biobank, and the Ovarian Cancer National Alliance (OCAC). The mainly analysis method was the inverse-variance-weighted (IVW). For assessing horizontal pleiotropy, the researchers performed MR-Egger regression and MR-PRESSO global test. Finally, the Cochran's Q test served for evaluating the heterogeneity. RESULTS: Circulating total BCAAs levels (OR 1.708, 95%CI 1.168, 2.498; p = 0.006), valine levels (OR 1.747, 95%CI 1.217, 2.402; p < 0.001), leucine levels (OR 1.923, 95%CI 1.279, 2.890; p = 0.002) as well as isoleucine levels (OR 1.898, 95%CI 1.164, 3.094; p = 0.010) positively correlated with the squamous cell lung cancer risk. Nevertheless, no compelling evidence was found to support a causal link between BCAAs and any other examined cancers. CONCLUSIONS: Increased circulating total-BCAAs levels, leucine levels, isoleucine levels and valine levels had higher hazard of squamous cell lung cancer. No such associations were found for BCAAs with other cancers.


Subject(s)
Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Female , Isoleucine/genetics , Mendelian Randomization Analysis , Leucine/genetics , Genome-Wide Association Study , Amino Acids, Branched-Chain , Valine/genetics , Lung Neoplasms/genetics
5.
Nucleic Acids Res ; 51(21): 11893-11910, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37831086

ABSTRACT

RIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5'triphosphorylated and 5'base-paired RNA(dsRNA). Here, we found that, while 5'unmodified hydroxyl(OH)-dsRNA demonstrated residual activation potential, 5'-monophosphate(5'p)-termini, present on most cellular RNAs, prevented RIG-I activation. Determination of CTD/dsRNA co-crystal structures and mutant activation studies revealed that the evolutionarily conserved I875 within the CTD sterically inhibits 5'p-dsRNA binding. RIG-I(I875A) was activated by both synthetic 5'p-dsRNA and endogenous long dsRNA within the polyA-rich fraction of total cellular RNA. RIG-I(I875A) specifically interacted with long, polyA-bearing, mitochondrial(mt) RNA, and depletion of mtRNA from total RNA abolished its activation. Altogether, our study demonstrates that avoidance of 5'p-RNA recognition is crucial to prevent mtRNA-triggered RIG-I-mediated autoinflammation.


Subject(s)
DEAD Box Protein 58 , Isoleucine , Receptors, Immunologic , DEAD Box Protein 58/chemistry , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Immune Tolerance , Isoleucine/genetics , RNA, Double-Stranded/genetics , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
6.
Biotechnol Lett ; 45(9): 1169-1181, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37395871

ABSTRACT

OBJECTIVES: To explore an L-isoleucine (Ile)-induced biosensor for down-regulation of Ile synthesis pathway and enhancement of 4-hydroxyisoleucine (4-HIL) production in Corynebacterium glutamicum SN01. RESULTS: Four Ile-induced riboswitches (IleRSN) with different strength were screened from mutation library based on TPP riboswitch. Firstly, IleRSN were integrated into the chromosome of strain SN01 immediately upstream of ilvA gene. The 4-HIL titer of strains carrying PtacM-driven IleRS1 or IleRS3 (14.09 ± 1.07, 15.20 ± 0.93 g 4-HIL L-1) were similar with control strain S-D5I (15.73 ± 2.66 g 4-HIL L-1). Then, another copy of IleRS3-ilvA was integrated downstream of the chromosomal cg0963 gene in SN01-derived strain D-RS with down-regulated L-lysine (Lys) biosynthesis. The Ile supply and 4-HIL titer increased in ilvA two-copy strains KIRSA-3-D5I and KIRSA-3-9I, and Ile concentration was maintained less than 35 mmol L-1 under the control of IleRS3 during fermentation. The resulting strain KIRSA-3-9I produced 22.46 ± 0.96 g 4-HIL L-1. CONCLUSION: The screened IleRS was effective in the dynamic down-regulation of Ile synthesis pathway in C. glutamicum, and IleRSN with different strength can be applied in various conditions.


Subject(s)
Corynebacterium glutamicum , Riboswitch , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Riboswitch/genetics , Isoleucine/genetics , Isoleucine/metabolism , Metabolic Engineering
7.
Biosci Biotechnol Biochem ; 87(10): 1122-1128, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37403366

ABSTRACT

(3R, 7S)-jasmonoyl-L-isoleucine (JA-Ile) is a lipid-derived plant hormone that regulates plant responses, including biotic/abiotic stress adaptation. In the plant cells, JA-Ile is perceived by COI1-JAZ co-receptor by causing protein-protein interaction between COI1 and JAZ proteins to trigger gene expressions. In this study, we focused on Oryza sativa, a model monocot and an important crop, with 45 possible OsCOI-OsJAZ co-receptor pairs composed of three OsCOI homologs (OsCOI1a, OsCOI1b, and OsCOI2) and 15 OsJAZ homologs. We performed fluorescein anisotropy and pull-down assays to examine the affinity between JA-Ile and OsCOI1a/1b/2-OsJAZ1-15 co-receptor pairs. The results revealed a remarkable difference in the modes of ligand perception by OsCOI1a/1b and OsCOI2. Recently, the unique function of OsCOI2 in some of the JA-responses were revealed. Our current results will lead to the possible development of OsCOI2-selective synthetic ligand.


Subject(s)
Arabidopsis Proteins , Oryza , Arabidopsis Proteins/genetics , Oryza/genetics , Oryza/metabolism , Plant Growth Regulators/metabolism , Ligands , Plants/metabolism , Cyclopentanes/metabolism , Isoleucine/genetics , Isoleucine/metabolism , Oxylipins/metabolism , Gene Expression Regulation, Plant
8.
World J Microbiol Biotechnol ; 39(10): 266, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37524856

ABSTRACT

Corynebacterium glutamicum, an important industrial producer, is a model microorganism. However, the limited gene editing methods and their defects limit the efficient genome editing of C. glutamicum. To improve the screening efficiency of second-cross-over strains of traditional SacB editing system, a universal pCS plasmid which harbors CRISPR-Cpf1 system targeting kan gene of SacB system was designed and established to kill the false positive single-cross-over strains remained abundantly after the second-cross-over events. The lethality of pCS plasmid to C. glutamicum carrying kan gene on its genome was as high as 98.6%. In the example of PodhA::PilvBNC replacement, pCS plasmid improved the screening efficiency of second-cross-over bacteria from 5% to over 95%. Then this pCS-assisted gene editing system was applied to improve the supply of precursors and reduce the generation of by-products in the production of 4-hydroxyisoleucine (4-HIL). The 4-HIL titer of one edited strain SC01-TD5IM reached 137.0 ± 33.9 mM, while the weakening of lysE by promoter engineering reduced Lys content by 19.0-47.7% and 4-HIL titer by 16.4-64.5%. These editing demonstrates again the efficiency of this novel CRISPR-Cpf1-assisted gene editing tool, suggesting it as a useful tool for improving the genome editing and metabolic engineering in C. glutamicum.


Subject(s)
Corynebacterium glutamicum , Gene Editing , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Isoleucine/genetics , Isoleucine/metabolism , Metabolic Engineering
9.
World J Microbiol Biotechnol ; 39(7): 181, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37142865

ABSTRACT

With the development of synthetic biology, some quorum sensing (QS) systems have been studied and applied to coordinate growth and production. Recently, a novel ComQXPA-PsrfA system with different response strengths was constructed in Corynebacterium glutamicum. However, the plasmid-harbored ComQXPA-PsrfA system lacks genetic stability, which restricts the application of this QS system. In this study, the comQXPA expression cassette was integrated into the chromosome of C. glutamicum SN01, resulting in QSc chassis strain. The green fluorescence protein (GFP) was expressed by the natural and mutant PsrfA promoters (PsrfAM) with various strengths in QSc. All the expressions of gfp were activated to the related level in a cell density-dependent manner. Therefore, ComQXPA-PsrfAM circuit was applied for modulating the dynamic biosynthesis of 4-hydroxyisoleucine (4-HIL). First, the expression of ido encoding α-ketoglutarate (α-KG)-dependent isoleucine dioxygenase was dynamically regulated by PsrfAM promoters, resulting in QSc/NI. The 4-HIL titer (125.18 ± 11.26 mM) increased by 45.1% compared to static ido expression strain. Then, to coordinate the α-KG supply between TCA cycle and 4-HIL synthesis, the activity of α-KG dehydrogenase complex (ODHC) was dynamically inhibited by regulating the expression of ODHC inhibitor gene odhI under QS-responsive PsrfAM promoters. The highest 4-HIL titer of QSc-11O/20I (145.20 ± 7.80 mM) increased by 23.2% compared to QSc/20I. This study modulated two critical genes expression in both cell growth and 4-HIL de novo synthesis pathways by the stable ComQXPA-PsrfAM system, and 4-HIL was produced responsively with the cell density. This strategy enhanced the 4-HIL biosynthesis efficiently without additional genetic regulation.


Subject(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Isoleucine/genetics , Isoleucine/metabolism , Quorum Sensing , Plasmids
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(5): 1562-1566, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36208266

ABSTRACT

OBJECTIVE: To explore the serological characteristics and molecular biological mechanism of an ael subtype specimen. METHODS: The ABO blood typing was identified by routine blood group serological and absorption/elution methods; PCR-SBT method for ABO genotyping: 7 exons of ABO gene were amplified by PCR, the amplified products were purified, and then sequencing primers were designed and the amplified products were sequenced directly for analysis; 3D molecular model was constructed and the difference of free energy (ΔΔG) was used to predict the GTA mutant stability. RESULTS: A antigen was not detected on erythrocytes through absorption and elution tests, which was not consistent with the serological characteristics of ael, and the serological typing results were ambiguous. The ABO genotype was ABO*AEL.02/O.01.01, and there were two mutations in exon 7 of the gene, c.467C>T and c.646T>A, which could lead to the replacement of proline with leucine at position 156 (p.Pro156Leu) and phenylalanine with isoleucine at position 216 on the GTA, respectively. The 3D model predicts that the mutations do not introduce new hydrogen bonds to the GTA mutant and do not form a new secondary structure, but can lead to an increase in the ΔΔG value of the GTA mutant, suggesting a decrease in protein stability. CONCLUSION: The serological characteristics alone is not reliable to determine the ael subype; the ael phenotype may be due to the GTA mutant that reduces enzyme stability.


Subject(s)
ABO Blood-Group System , Isoleucine , ABO Blood-Group System/genetics , Alleles , Genotype , Isoleucine/genetics , Leucine/genetics , Phenotype , Phenylalanine/genetics , Proline/genetics
11.
Biomolecules ; 12(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36291746

ABSTRACT

Gerstmann-Sträussler-Scheinker disease (GSS) is a rare genetic prion disease. A large GSS kindred linked to the serine-for-phenylalanine substitution at codon 198 of the prion protein gene (GSS-F198S) is characterized by conspicuous accumulation of prion protein (PrP)-amyloid deposits and neurofibrillary tangles. Recently, we demonstrated the transmissibility of GSS-F198S prions to bank vole carrying isoleucine at 109 PrP codon (BvI). Here we investigated: (i) the transmissibility of GSS-F198S prions to voles carrying methionine at codon 109 (BvM); (ii) the induction of hyperphosphorylated Tau (pTau) in two vole lines, and (iii) compared the phenotype of GSS-F198S-induced pTau with pTau induced in BvM following intracerebral inoculation of a familial Alzheimer's disease case carrying Presenilin 1 mutation (fAD-PS1). We did not detect prion transmission to BvM, despite the high susceptibility of BvI previously observed. Immunohistochemistry established the presence of induced pTau depositions in vole brains that were not affected by prions. Furthermore, the phenotype of pTau deposits in vole brains was similar in GSS-F198S and fAD-PS1. Overall, results suggest that, regardless of the cause of pTau deposition and its relationship with PrPSc in GSS-F198S human-affected brains, the two components possess their own seeding properties, and that pTau deposition is similarly induced by GSS-F198S and fAD-PS1.


Subject(s)
Gerstmann-Straussler-Scheinker Disease , Prions , Animals , Humans , Arvicolinae/genetics , Codon , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/metabolism , Gerstmann-Straussler-Scheinker Disease/pathology , Isoleucine/genetics , Methionine/genetics , Mutation , Phenylalanine , Presenilin-1/genetics , Prion Proteins/genetics , Prions/genetics , Serine
12.
J Transl Med ; 20(1): 475, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266699

ABSTRACT

BACKGROUND: Although anxiety disorders are one of the most prevalent mental disorders, their underlying biological mechanisms have not yet been fully elucidated. In recent years, genetically determined metabolites (GDMs) have been used to reveal the biological mechanisms of mental disorders. However, this strategy has not been applied to anxiety disorders. Herein, we explored the causality of GDMs on anxiety disorders through Mendelian randomization study, with the overarching goal of unraveling the biological mechanisms. METHODS: A two-sample Mendelian randomization (MR) analysis was implemented to assess the causality of GDMs on anxiety disorders. A genome-wide association study (GWAS) of 486 metabolites was used as the exposure, whereas four different GWAS datasets of anxiety disorders were the outcomes. Notably, all datasets were acquired from publicly available databases. A genetic instrumental variable (IV) was used to explore the causality between the metabolite and anxiety disorders for each metabolite. The MR Steiger filtering method was implemented to examine the causality between metabolites and anxiety disorders. The standard inverse variance weighted (IVW) method was first used for the causality analysis, followed by three additional MR methods (the MR-Egger, weighted median, and MR-PRESSO (pleiotropy residual sum and outlier) methods) for sensitivity analyses in MR analysis. MR-Egger intercept, and Cochran's Q statistical analysis were used to evaluate possible heterogeneity and pleiotropy. Bonferroni correction was used to determine the causative association features (P < 1.03 × 10-4). Furthermore, metabolic pathways analysis was performed using the web-based MetaboAnalyst 5.0 software. All statistical analysis were performed in R software. The STROBE-MR checklist for the reporting of MR studies was used in this study. RESULTS: In MR analysis, 85 significant causative relationship GDMs were identified. Among them, 11 metabolites were overlapped in the four different datasets of anxiety disorders. Bonferroni correction showing1-linoleoylglycerophosphoethanolamine (ORfixed-effect IVW = 1.04; 95% CI 1.021-1.06; Pfixed-effect IVW = 4.3 × 10-5) was the most reliable causal metabolite. Our results were robust even without a single SNP because of a "leave-one-out" analysis. The MR-Egger intercept test indicated that genetic pleiotropy had no effect on the results (intercept = - 0.0013, SE = 0.0006, P = 0.06). No heterogeneity was detected by Cochran's Q test (MR-Egger. Q = 7.68, P = 0.742; IVW. Q = 12.12, P = 0.436). A directionality test conducted by MR Steiger confirmed our estimation of potential causal direction (P < 0.001). In addition, two significant pathways, the "primary bile acid biosynthesis" pathway (P = 0.008) and the "valine, leucine, and isoleucine biosynthesis" pathway (P = 0.03), were identified through metabolic pathway analysis. CONCLUSION: This study provides new insights into the causal effects of GDMs on anxiety disorders by integrating genomics and metabolomics. The metabolites that drive anxiety disorders may be suited to serve as biomarkers and also will help to unravel the biological mechanisms of anxiety disorders.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Polymorphism, Single Nucleotide/genetics , Leucine/genetics , Isoleucine/genetics , Anxiety Disorders/genetics , Valine/genetics , Bile Acids and Salts
13.
Cell ; 185(20): 3671-3688.e23, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36113466

ABSTRACT

Bacteria encode reverse transcriptases (RTs) of unknown function that are closely related to group II intron-encoded RTs. We found that a Pseudomonas aeruginosa group II intron-like RT (G2L4 RT) with YIDD instead of YADD at its active site functions in DNA repair in its native host and when expressed in Escherichia coli. G2L4 RT has biochemical activities strikingly similar to those of human DNA repair polymerase Î¸ and uses them for translesion DNA synthesis and double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ). We also found that a group II intron RT can function similarly in DNA repair, with reciprocal active-site substitutions showing isoleucine favors MMEJ and alanine favors primer extension in both enzymes. These DNA repair functions utilize conserved structural features of non-LTR-retroelement RTs, including human LINE-1 and other eukaryotic non-LTR-retrotransposon RTs, suggesting such enzymes may have inherent ability to function in DSBR in a wide range of organisms.


Subject(s)
RNA-Directed DNA Polymerase , Retroelements , Alanine/genetics , DNA End-Joining Repair , DNA Repair , DNA-Directed RNA Polymerases/genetics , Humans , Introns , Isoleucine/genetics , RNA-Directed DNA Polymerase/chemistry
14.
J Am Chem Soc ; 144(39): 17876-17888, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36128669

ABSTRACT

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of natural products with diverse activities and structures. RiPP classes are defined by the tailoring enzyme, which can introduce a narrow range of modifications or a diverse set of alterations. In the latter category, RiPPs synthesized by radical S-adenosylmethionine (SAM) enzymes, known as RaS-RiPPs, have emerged as especially divergent. A map of all RaS-RiPP gene clusters does not yet exist. Moreover, precursor peptides remain difficult to predict using computational methods. Herein, we have addressed these challenges and report a bioinformatic atlas of RaS-RiPP gene clusters in available microbial genome sequences. Using co-occurrence of RaS enzymes and transporters from varied families as a bioinformatic hook in conjunction with an in-house code to identify precursor peptides, we generated a map of ∼15,500 RaS-RiPP gene clusters, which reveal a remarkable diversity of syntenies pointing to a tremendous range of enzymatic and natural product chemistries that remain to be explored. To assess its utility, we examined one family of gene clusters encoding a YcaO enzyme and a RaS enzyme. We find the former is noncanonical, contains an iron-sulfur cluster, and installs a novel modification, a backbone amidine into the precursor peptide. The RaS enzyme was also found to install a new modification, a C-C crosslink between the unactivated terminal δ-methyl group of Ile and a Trp side chain. The co-occurrence search can be applied to other families of RiPPs, as we demonstrate with the emerging DUF692 di-iron enzyme superfamily.


Subject(s)
Biological Products , S-Adenosylmethionine , Amidines , Computational Biology , Iron , Isoleucine/genetics , Peptides/chemistry , Protein Processing, Post-Translational , S-Adenosylmethionine/metabolism , Sulfur , Tryptophan
15.
Pestic Biochem Physiol ; 187: 105194, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36127066

ABSTRACT

Chlorantraniliprole (CAP), a representative bisamide insecticide, is widely used in rice fields around the world, posing potential toxicity risks to aquatic organisms. In this study, we examined the effects of exposure to CAP on growth and metabolic phenotype of zebrafish (Danio rerio) and oxidative stress and apoptosis in the liver of zebrafish (Danio rerio). First, we identified that CAP had a low bioaccumulation in zebrafish. Subsequently, growth phenotype analysis revealed that CAP could significantly increase liver weight and liver index in zebrafish. In addition, we found that CAP exposure could cause significant changes in indicators of oxidative stress, resulting in a significant increase in the content of malondialdehyde (MDA), causing oxidative stress in the liver of zebrafish. Meanwhile, the expression levels of apoptosis-related genes were also significantly changed and apoptosis was promoted in the liver of zebrafish with CAP exposure. Importantly, the results of metabolomics analysis shown that CAP exposure could significantly disrupt the metabolic phenotype of zebrafish, interfering with multiple metabolic pathways, mainly including valine, leucine and isoleucine biosynthesis and degradation, alanine, aspartate and glutamate metabolism and d-glutamine and D-glutamate metabolism. Last but not least, correlation analysis identified strong links between changes in liver function involving oxidative stress and apoptosis and changes in metabolic phenotype of zebrafish following CAP exposure. In brief, these results indicate that potential environmental risks of CAP to aquatic organisms should receive more attention.


Subject(s)
Insecticides , Water Pollutants, Chemical , Alanine/metabolism , Animals , Aspartic Acid/genetics , Aspartic Acid/metabolism , Aspartic Acid/pharmacology , Glutamic Acid , Glutamine/genetics , Glutamine/metabolism , Glutamine/pharmacology , Insecticides/pharmacology , Isoleucine/genetics , Isoleucine/metabolism , Isoleucine/pharmacology , Leucine , Liver , Malondialdehyde/metabolism , Phenotype , Valine/pharmacology , Water Pollutants, Chemical/toxicity , Zebrafish/genetics , ortho-Aminobenzoates
16.
FEMS Microbiol Ecol ; 98(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-36066920

ABSTRACT

Herein, Bacillus subtilis PBE-8's biocontrol efficacy was evaluated through physiological and metabolic approaches against Fusarium oxysporum f.sp. lycopersici (FOL). The study elaborates on PBE-8's cell-free filtrate (CFF) antifungal activity through mycelial growth inhibition, metabolite profiling, and substrates utilization patterns. Additionally, under different CFF concentrations, reduction in spore count (94%-55%), biomass (50%), and cytoplasmic bulbous protrusions in mycelia were also observed. Furthermore, the effect of bacterial CFF on FOL metabolism was confirmed through GC-MS. CFF suppresses the concentration of aliphatic amino acids like L-valine, L-leucine, L-Isoleucine, glycine, and fatty acids such as linoleic acid and α- linolenic acid during the co-culturing conditions, which are essential for pathogenicity and resistance against host's systemic acquired resistance. The phenotype microarray assay revealed that CFF-treated FOL shows phenotype loss in 507 (56.58%) out of 896 substrates. Among 507, twenty-seven substrates showed significant phenotype loss, among which four substrates such as L-glutamic acid, L-glutamine, ammonia, and L-arginine are common in different crucial metabolic pathways of FOL, like alanine, aspartate, and glutamate metabolism, arginine and proline, carbon metabolism, arginine biosynthesis, nitrogen metabolism, amino-acyl tRNA synthesis, and biosynthesis of amino acids. The results suggest that PBE-8 CFF has certain antifungal metabolites that hinder the fungal metabolic pathways.


Subject(s)
Fusarium , Solanum lycopersicum , Alanine/genetics , Alanine/pharmacology , Ammonia , Antifungal Agents/pharmacology , Arginine , Aspartic Acid , Bacillus subtilis/genetics , Biotransformation , Carbon , Fusarium/genetics , Glutamic Acid/genetics , Glutamic Acid/pharmacology , Glutamine/genetics , Glutamine/pharmacology , Glycine , Isoleucine/genetics , Isoleucine/pharmacology , Leucine/genetics , Leucine/pharmacology , Linoleic Acids/pharmacology , Linolenic Acids/pharmacology , Solanum lycopersicum/microbiology , Microarray Analysis , Nitrogen , Phenotype , Plant Diseases/microbiology , Plant Diseases/prevention & control , Proline/genetics , Proline/pharmacology , RNA, Transfer/pharmacology , Valine/genetics , Valine/pharmacology
17.
Autoimmunity ; 55(7): 455-461, 2022 11.
Article in English | MEDLINE | ID: mdl-35918839

ABSTRACT

Autoimmune diseases, which affect approximately 5% of human population, are a range of diseases in which the immune response to self-antigens results in damage or dysfunction of tissues. Recent genome wide association studies (GWAS) have successfully identified novel autoimmune disease-associated loci, with many of them shared by multiple disease-associated pathways but much of the genetics and pathophysiological mechanisms remain still obscure. Considering that most of the potential causal variants are still unknown, many studies showed that the missense variant rs35667974 at interferon-induced with helicase C domain 1 (IFIH1) gene is protective for type 1 diabetes (T1D), psoriasis (PS) and psoriatic arthritis (PsA). Recently, this variant was found to be also associated with ankylosing spondylitis (AS), Crohn's disease (CD) and ulcerative colitis (UC). The IFIH1 gene encodes a cytoplasmic RNA helicase otherwise known as melanoma differentiation-associated 5 (MDA5) that recognizes viral RNA and is involved in innate immunity through recognition of viral RNA. In the present study we sought to investigate the association of the rare rs35667974 variant of IFIH1 gene, which resides in exon 14 and changes a conserved isoleucine at position #923 to valine, in the development of various autoimmune diseases and give a reason for the selectivity affecting different autoimmune diseases. Evolutionary studies and three-dimensional (3 D) homology modelling were employed on the MDA5 protein product, through its association with dsRNA, recognition factor controlling cytokine and chemokine signalling, to investigate the protective role of the MDA5 variant for certain autoimmune diseases.


Subject(s)
Autoimmune Diseases , Interferon-Induced Helicase, IFIH1 , Arthritis, Psoriatic/genetics , Autoantigens , Autoimmune Diseases/genetics , Chemokines/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Interferon-Induced Helicase, IFIH1/genetics , Interferons , Isoleucine/genetics , Polymorphism, Genetic , RNA, Viral , Valine/genetics
18.
Genes (Basel) ; 13(7)2022 06 30.
Article in English | MEDLINE | ID: mdl-35885961

ABSTRACT

This study sought to provide a theoretical basis for effectively controlling the content of higher alcohols and esters in fermented foods. In this work, isoleucine (Ile) or leucine (Leu) at high levels was used as the sole nitrogen source for a BAT2 mutant and its parental Saccharomyces. cerevisiae 38 to investigate the effects of the addition of amounts of Ile or Leu and BAT2 on the aroma components in the flavor profile using gas chromatography mass spectrometer (GC-MS). The results showed that 2-methyl-butyraldehyde, 2-methyl-1-butanol, and 2-methylbutyl-acetate were the products positively correlated with the Ile addition amount. In addition, 3-methyl-butyraldehyde, 3-methyl-1-butanol, and 3-methylbutyl-acetate were the products positively correlated with Leu addition amount. BAT2 deletion resulted in a significant decline in the yields of 2-methyl-butyraldehyde, 3-methyl-butyraldehyde,2-methyl-1-butanol, and 3-methyl-1-butanol, but also an increase in the yields of 2-methylbutyl-acetate and 3-methylbutyl-acetate. We speculated that BAT2 regulated the front and end of this metabolite chain in a feedback manner. Improved metabolic chain analyses, including the simulated energy metabolism of Ile or Leu, indicated that reducing the added amount of branched-chain amino acids, BAT mutation, and eliminating the role of energy cofactors such as NADH/NAD+ were three important ways to control the content of high alcohols and esters in fermented foods.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , 1-Butanol/metabolism , Acetates/metabolism , Alcohols/analysis , Alcohols/metabolism , Esters/metabolism , Isoleucine/genetics , Isoleucine/metabolism , Leucine/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transaminases/genetics
19.
Int J Mol Sci ; 23(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35628177

ABSTRACT

Messenger RNA (mRNA) is currently of great interest as a new category of therapeutic agent, which could be used for prevention or treatment of various diseases. For this mRNA requires effective delivery systems that will protect it from degradation, as well as allow cellular uptake and mRNA release. Random poly(lysine-co-isoleucine) polypeptides were synthesized and investigated as possible carriers for mRNA delivery. The polypeptides obtained under lysine:isoleucine monomer ratio equal to 80/20 were shown to give polyplexes with smaller size, positive ζ-potential and more than 90% encapsulation efficacy. The phase inversion method was proposed as best way for encapsulation of mRNA into polyplexes, which are based on obtained amphiphilic copolymers. These copolymers showed efficacy in protection of bound mRNA towards ribonuclease and lower toxicity as compared to lysine homopolymer. The poly(lysine-co-isoleucine) polypeptides showed greater than poly(ethyleneimine) efficacy as vectors for transfection of cells with green fluorescent protein and firefly luciferase encoding mRNAs. This allows us to consider obtained copolymers as promising candidates for mRNA delivery applications.


Subject(s)
Isoleucine , Lysine , Isoleucine/genetics , Lysine/genetics , Poly A , Polymers , RNA, Messenger/genetics , Transfection
20.
J Mol Biol ; 434(17): 167661, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35640719

ABSTRACT

While being a thoroughly studied model of dynamic allostery in a small protein, the pathway of signal transduction in the PDZ3 domain has not been fully determined. Here, we investigate peptide binding to the PDZ3 domain by conventional and fully data-driven analyses of molecular dynamics simulations. First, we identify isoleucine 37 as a key residue by widely used computational procedures such as cross-correlation and community network analysis. Simulations of the Ile37Ala mutant show disruption of the coordinated movements of spatially close regular elements of secondary structure. Then, we employ a recently developed unsupervised, data-driven procedure to determine an optimized reaction coordinate (slowest-relaxation eigenvector) of peptide binding. We use this reaction coordinate to improve sampling by restarting additional simulations from the transition state region. Significant differences in the distributions of some of the pairwise residue distances in the bound and unbound states emerge from the projection onto the optimized reaction coordinate. The unsupervised analysis shows that allosteric signaling is transduced from the ß2 strand, which forms part of the peptide binding site, to the spatially adjacent ß3 and ß4 strands, and from there to the α3 helix. The domino-like transmission of a (peptide binding) signal along ß strands and α helices that are close in three-dimensional space is likely to be a general mechanism of allostery in single-domain proteins.


Subject(s)
Molecular Dynamics Simulation , Peptides , Alanine/chemistry , Alanine/genetics , Allosteric Regulation , Allosteric Site , Isoleucine/chemistry , Isoleucine/genetics , Peptides/chemistry , Peptides/genetics , Protein Binding , Protein Structure, Secondary , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...